用户名: 密码: 验证码:
云南红土型滑坡室内试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在综合分析国内外关于边坡稳定、滑坡试验、降雨型滑坡等研究现状的基础上,明确了滑坡研究中存在的问题,并结合云南大量存在的红土型边坡和降雨集中的特点,提出了“云南红土型滑坡室内试验研究”这一课题。针对云南典型红土,开展了室内滑坡试验研究。研究内容主要包括滑坡试验装置的研制、降雨量的率定、滑坡试验的开展、物理特性与抗剪强度特性的研究以及滑坡机理分析等方面,这对于深入研究红土型滑坡的滑动机制以及开展红土型滑坡的防治具有重要的理论意义和现实意义。
     室内滑坡试验装置主要由降雨系统、模型槽和集水槽三部分构成。降雨系统的降雨特性通过降雨量的率定试验来确定,其率定方法包括降雨量实测法和能量修正法。率定结果表明,水龙头开度一定时的室内降雨量、实际降雨量均与水龙头关闭时刻呈线性关系,但室内实测降雨量大于进行能量法修正的实际降雨量,二者之间存在一个能量折减系数。
     在研制完成室内滑坡试验装置的基础上,针对云南典型红土,考虑坡角、坡高、含水率、干密度等不同影响因素,通过水平分层击实、竖直分层击实和堆积法制作边坡,控制降雨等级为暴雨,开展了一系列的滑坡试验研究。结果表明:产生滑坡的成功率很低;发生滑坡的条件为堆积法成型、干密度偏小、含水偏高、坡顶面长度偏长、坡高偏高、坡角偏大等情况;红土型滑坡的滑动面近似圆弧;边坡滑动时,可观测到裂缝、滑动面、滑带、滑动位置、滑壁高度、滑动历时、滑动方式、滑前征兆等滑动特征;不管边坡是否滑动,降雨过程中,都呈现出“溅蚀”、“结皮”、细颗粒运移和坡脚破坏等典型现象。
     滑坡红土的物理特性包括含水、密度及颗粒组成三个方面。不管边坡是否发生滑动,其含水特性表现为红土的含水率随坡高的降低逐渐增大,密度特性表现为密度随坡高的降低逐渐减小,颗粒组成特性表现为粉粒含量随坡高的降低均有不同程度的增加,粘粒含量均有不同程度的减少;边坡发生滑动时,坡高位置相同,滑带土的含水率最高,滑床土的含水率次之,滑体土的含水率最小。滑坡红土物理特性的变化就是降雨在坡体表面发生击打、入渗、产流等共同作用的结果。
     红土的抗剪强度特性表现为:干密度相同,其抗剪强度和内摩擦角随含水率的增加逐渐降低,粘聚力随含水率的增加出现最大值;含水率相同,其抗剪强度和粘聚力随干密度的减小逐渐降低,内摩擦角随干密度的减小有增大的趋势。红土抗剪强度的变化主要取决于红土颗粒的大小、颗粒之间的联结以及颗粒之间的排列所构成的复杂的土体结构和土中基质吸力的变化。
     降雨过程中,边坡呈现出的“溅蚀”、“结皮”、细颗粒运移和坡脚破坏等典型现象可以从雨滴对坡面土颗粒的击打、雨水渗入坡体、坡面产流以及坡体中产生的孔隙水压力等作用来解释。降雨作用下红土型滑坡的发生机理实际上就是雨水对边坡土体的增重、软化和润滑三个方面综合作用的结果。
On the basis of the comprehensive analysis of the slope stability,the landslide test and the rainfall-induced landslide from home and abroad,the substantial problems of the landslide research are defined.Combining with the characteristics of a large number of the laterite-type slopes existed and rainfall concentration in Yunnan province,the research subject,which is named as "laboratory test research on laterite-type landslide in Yunnan province",is presented.Aiming to the typical laterite in Yunnan province,laboratory landslide tests were carried out with contents such as manufacture of laboratory landslide test apparatus,calibration of rainfall capacity,development of landslide test,research of physical characteristics and shear strength characteristic of laterite and analysis of rainfall-induced landslides mechanism.The acquisitive research-fruits are of great theory and realization significance for the sliding mechanism and prevention of laterite-type landslides.
     The laboratory landslide test apparatus mainly includes rainfall system,model slot and water collecter.Rainfall characteristics of rainfall system can be confirmed by the rainfall capacity calibration tests.There are practical measurement method and energy modification method to confirm the rainfall of rainfall system.Under the condition that the tap is keeping certain opening,the relationships of both laboratory rainfall capacity and actual rainfall capacity to the tap closed-timing are linear, but actual rainfall capacity is larger than laboratory rainfall capacity, and there is an energy fold reduction factor between them.
     After finishing the manufacture of landslide test apparatus,aiming to the typical laterite in Yunnan province,under different conditions such as angle of slope,height of slope,moisture content,dry density and molding method including layered-bumping method in horizontal direction, layered-bumping method in vertical direction and packing method,a series of landslide tests were carried out while rainfall grade is rainstorm.The rate of success for laterite-type slope is very low.The occurrence conditions of landslide were as follows:laterite-type landslides are made by packing method,the dry density is smaller,the moisture content and heights of slope are higher.the roof length of slope is longer.and the angle of slope is larger.The sliding surface of the laterite-type landslide is approximate arc shape. when laterite-type slope is sliding.sliding characteristics,such as crack,sliding surface,sliding zone.sliding position,height of slippery wall.sliding lasted-time, sliding way and sign before sliding,can be observated.Whether laterite-type slope is sliding or not,there are several typical phenomenons during rainfall,which include"splash erosion","crust",particles migration and slope destruction.
     Physical characteristics of the landslide laterite include containing water, density and grain composition.Whether laterite-type slope is sliding or not, with the decrease of the slope height, whose moisture content is growing and density is reducing gradually, whose silt content is increased and clay content is reduced by different degrees.Under the condition of the same position for slope height, moisture content of slide-zone soils is maximum,moisture content of slide-part soils is next,moisture content of slide-bed soils is minimum.The variation mechanism of physical properties is the consequence of a combination of strike action,infiltration action and runoff action on slope surface caused by rainfall.
     Shear strength characteristic of the laterite which was prepared in different moisture contents and densities, was determined by direct shear tests.With the increase of the moisture content, shear strength and friction angle are reduced gradually in the same dry density, but there is an maxima for cohesion.In the same moisture content, as dry density reduced, shearing strength and cohesion are decreased gradually, but friction angle trends towands enlarger. The variation mechanism of shear strength characteristic depends on the size of the laterite particles, the link between laterite particles, soil structure by the way of arranging among particles and soil suction.
     In rainfall process, typical phenomenons, such as "splash erosion", "crust", particles migration and slope destruction, can be explained from strike action, infiltration action, runoff action and pore water pressure action on slope surface. Under the action of rainfall, laterite-type landslide mechanism is clarified with weight increase action, soften action and lubrication action.
引文
[1]中华人名共和国国土资源部.全国地质灾害通报(2010年1-6月)[中国地质环境信息网].[发表日期:2010年7月20日].访问路径http://www.cigem.gov.cn/ReadNews.asp?NewsID=30769.
    [2]李媛,孟晖,董颖等.中国地质灾害类型及其特征——基于全国县市地质灾害成果分析[J].中国地质灾害与防治学报,2004,15(2):29-34.
    [3]中国岩石力学与工程学会地面岩石工程专业委员会,中国地质学会工程地质专业委员会.中国典型滑坡[M].北京:科学出版社,1988.
    [4]唐川,朱静等著.云南省滑坡泥石流研究[M].北京:商务印书馆出版社,2003.
    [5]张红兵,金得山.影响云南省滑坡泥石流的几个自然因素[J].水文地质工程地质,2004,(5):38-41.
    [6]向俊红.概论滑坡稳定性影响因素[J].铁道勘察,2009,(4):27-29.
    [7]程东幸,刘大安,丁思保等.层状反倾岩质边坡影响因素及反倾条件分析[J].岩土工程学报,2005,27(11):1362-1366.
    [8]李志清,田奎生,雷立平.三峡库区万州区三期滑坡(搬迁搬让)主要特征及其影响因素浅析[J].工程地质学报,2004,(12):175-180.
    [9]刘涛,王俊杰.基于正交设计的土坡稳定影响因素敏感性分析[J].水电能源科学,2010,28(3):88-91.
    [10]姚兆明.基于非线性系统的边坡影响因素灵敏度分析[J].水文地质工程地质,2009,(5):8-12.
    [11]王俊卿,李靖,李琦等.黄土高边坡稳定性影响因素分析——以宝鸡峡引水工程为例[J].岩土力学,2009,30(7):2114-2118.
    [12]夏元友,熊海丰.边坡稳定性影响因素敏感性人工神经网络分析[J].岩石力学与工程学报,2004,23(16):2703-2707.
    [13]林鸿州,于玉贞,李广信等.降雨特性对土质边坡失稳的影响[J].岩石力学与工程学报,2009,28(1):198-204.
    [14]贾官伟,詹良通,陈云敏.水位骤降对边坡稳定性影响的模型试验研究[J].岩石力学与工程学报,2009,28(9):1798-1803.
    [15]矫滨田,鲁晓兵,王淑云等.土体降雨滑坡中细颗粒运移及效应[J].地下空间与工程学报,2005,1(6):1014-1016.
    [16]文高原,姚鹏运,曾宪明等.降雨前、后击实填土边坡破坏模式试验研究[J].岩石力学与 工程学报,2005,,24(5):747-754.
    [17]张元才,黄润秋,傅荣华等.溜砂坡大规模失稳动力学机制试验研究[J].岩石力学与工程学报,2010,29(1):65-72.
    [18]胡修文,唐辉明,刘佑荣.三峡库区赵树岭滑坡稳定性物理模拟试验研究[J].岩石力学与工程学报,2005,24(12):2089-2095.
    [19]罗先启,刘德富,吴剑等.雨水及库水作用下滑坡模型试验研究[J].岩石力学与工程学报,2005,24(14):2476-2483.
    [20]刘波,罗先启,张振华.三峡库区千将坪滑坡模型试验研究[J].三峡大学学报(自然科学版),2005,29(2):124-128.
    [21]任伟中,陈浩.滑坡变形破坏机理和整治工程的模型试验研究[J].岩石力学与工程学报,2005,24(12):2136-2141.
    [22]朱宝龙,胡厚田,陈强等.降雨条件下固体废弃物边坡变形及破坏模式试验研究[J].工程地质学报,2004,12(3):312-317.
    [23]靳德武,牛富俊,陈志新等.冻土斜坡模型试验相似分析[J].地球科学与环境,2004,26(1):29-32.
    [24]Ching-Chuan Huang,Chien-Li Lo b,Jia-Shiun Jang et al. Internal soil moisture response to rainfall-induced slope failures and debris discharge [J]. Engineering Geology,2008,101:134-145.
    [25]Y.S.Lee, C.Y.Cheuk, Sassa, K.. Instability caused by a seepage impediment in layered fill slopes [J].Cannada Geotech,2008,45:1410-1425.
    [26]Lourenco,S.D.N., M.D.Bolton et al. Failure process and hydrologic response of a two layer physical model:implications for rainfall-induced landslides [J]. Geomorphology,2006, 73:115-130.
    [27]Orense, R.P., Shimoma et al. Instrumented model slope failure due to water seepage [J]. Journal of Natural Disaster Science,2004,26(1):15-26.
    [28]Ng, C.W.W., Li et al. Centrifuge modeling of loose fill embankment subjected to uni-axial and bi-axial earthquakes[J]. Journal of Soil Dynamics and Earthquake Engineering,2004,24:305-318.
    [29]Take,W.A., Bolton et al. Evaluation of landslide triggering mechanisms in model fill slopes [J]. Landslides,2004,1:173-184.
    [30]Okura,Y.,Kitahara et al. Landslide fluidization process by flume experiments [J]. Engineering Geology,2002,66:65-78.
    [31]Wang,G.,Sassa et al.Factors affecting rainfall-induced flow slides in laboratory flume tests[J]. Geotechnique,2001,51(7):587-599.
    [32]Iversion, R.M., Reid et al. Debris-flow mobilization from landslides [J]. Annual Review of Earth and Planetary Sciences,1997,25:85-138.
    [33]许强,张登项,郑光.锦屏I级水电站左岸坝肩边坡施工期破坏模式及稳定性分析[J].岩石力学与工程学报,2009,28(6):1183-1192.
    [34]蔡国军,黄润,严明等.反倾向边坡开挖变形破裂响应的物理模拟研究[J].岩石力学与工程学报,2008,27(4):811-817.
    [35]张登项,许强.基于底摩擦试验的锦屏一级水电站左岸岩石高边坡变形机制研究[J].地质灾害与环境保护,2008,19(1):71-75.
    [36]钱纪芸,张嘎,张建民等.降雨时黏性土边坡的离心模型试验[J].清华大学学报(自然科学版),2009,49(6):829-833.
    [37]李邵军,KNAPPETTJA,冯夏庭.库水位升降条件下边坡失稳离心模型试验研究[J].岩石力学与工程学报,2008,27(8):1586-1593.
    [38]刘翠容,王化光.降雨入渗对土质边坡稳定的影响[J].铁道建筑,2006,(2):66-68.
    [39]傅鹤林,李昌友,郭峰等.滑坡触发因数及其影响的原位试验[J].中南大学学报(自然科学版),2009,40(3):781-785.
    [40]詹良通,吴宏伟,包承刚等.降雨入渗条件下非饱和膨胀土边坡原位监测[J].岩土力学,2003,24(2):151-158.
    [41]胡明鉴,汪稔,张平仓.斜坡稳定性及降雨条件下激发滑坡的试验研究——以蒋家沟流域滑坡堆积角砾土坡地为例[J].岩土工程学报,2001,23(4):454-457.
    [42]Rahardjo,Lee T T,Leong E C et al. Response of a residual soil slope to rainfall [J]. Canadian Geotechnical Journal,2005,42:340-351.
    [43]胡晋川,谢永利,王文生.降雨条件下阶梯状黄土边坡稳定性试验[J].广西大学学报(自然科学版),2010,35(1):83-89.
    [44]罗先启,葛修润.滑坡模型试验理论及其应用[M].北京:中国水利水电出版,2008.
    [45]程圣国,罗先启.降雨型滑坡模型相似判据研究[J].三峡大学学报(自然科学版),2004,26(6):506-508.
    [46]牛恩宽.畸变模型理论在滑坡模型试验中的应用研究[D].宜昌:三峡大学,2007.
    [47]罗先启,程圣国,牛恩宽.滑坡物理模型试验畸变修正及应用研究[J].岩石力学与工程学报,2009,28(增1):3082-3088.
    [48]牛恩宽,罗先启,张振华.畸变补偿法在滑坡模型试验中的应用可行性探索[J].岩土力学,2009.30(2):457-462.
    [49]王汉鹏.李术才,张强勇等.新型地质力学模型试验相似材料的研制[J].岩石力学与工程学报.2006,25(9):1842-1847.
    [50]左保成,陈从新.刘才华等.相似材料试验研究[J].岩土力学,2004,25(11):1805-1808.
    [51]马芳平,李仲奎,罗光福.NIOS模型材料及其在地质力学相似模型试验中的应用[J].水力发电学报,2004,23(1):48-51.
    [52]张强勇,李术才,郭小红等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.
    [53]李勇,朱维申,王汉鹏等.新型岩土相似材料的力学试验研究及应用[J].隧道建设,2007,27(z2):197-200.
    [54]彭海明,彭振斌,韩金田等.岩土相似材料研究[J].广东土木与建筑,2002,12(12):13-17.
    [55]韩伯鲤,陈霞龄,宋一乐等.岩体相似材料的研究[J].武汉水利电力大学学报,1997,30(2):6-9.
    [56]Haifeng WANG,Yuanping CHENG, Liang YUAN etal. Similarity model tests of movement and deformation of coal-rock mass below stopes[J]. Mining Science and Technology (China),2010,20(2):188-192.
    [57]Q.Y. Zhang, W. S. Zhu, Y. Li et al. Development of New-Type Similar Materials of Geomechanics Models Test for Geotechnical Engineering [J]. Key Engineering Materials, 2006,326:1781-1784.
    [58]Q.Y. Zhang, S. C. Li, X.H. Guo.Research on 3D Geo-mechanics Model Test for a Large-Scale Offspur Tunnel Project [J]. Key Engineering Materials,2006,326:557-560.
    [59]S. C. Li, H. P. Wang, Q. Y. Zhang et al. New type geo-mechanical similar material experiments research and its application [J]. Key Engineering Materials,2006, 326:1801-1804.
    [60]S. C. Li, Z.N. Li, G.Q. Li et al. Experimental and numerical seismic investigations of the Three Gorges dam [J]. Engineering Structures,2005,27(4):501-513.
    [61]刘波.降雨诱发碎石土斜坡变形破坏机理模型试验研究[D].宜昌:三峡大学,2007.
    [62]程圣国,吴剑,朱乔森.滑坡模型相似材料组成试验研究[J].水电科技进展,2003,(2):1-4.
    [63]程圣国.滑坡相似材料试验结果优化分析研究[J].水力发电,2003,29(1):14-16.
    [64]李显平,罗先启,张振华.滑坡模型试验γ透射法坡体水分测量精度探讨[J].三峡大学学报(自然科学版),2008,30(3):53-57.
    [65]李焕强,孙红月,刘永莉等.光纤传感技术在边坡模型试验中的应用[J].岩石力学与工程学报2008,27(8):1703-1708.
    [66]罗先启,陈海玉,沈辉等.自动网格法在大型滑坡模型试验位移测试中的应用[J].岩土力学,2005,26(2):231-235.
    [67]白义如,白世伟,冯传玉.模型位移场的散斑互相关法测量技术研究及应用[J].岩土力学,2004,25(6):995-998.
    [68]姚顽强,汤伏全.普通数码相机测定相似材料实验模型位移方法[J].煤炭学报,2009,34(9):1223-1227.
    [69]胡修文,唐辉明,李建松.基于普通数码相机的滑坡物理模型监测可靠性研究[J].岩土力学,2006,27:1223-1226.
    [70]徐福卫,陈海玉.数字网格摄影测量法及其在滑坡模型试验中的应用[J].地球科学与环境学报,2009,31(2):216-210.
    [71]周拥军,任伟中.一种仅需距离控制的模型试验平面位移场单像视觉测量[J].岩石力学与工程学报,2009,28(4):799-804.
    [72]李元海,靖洪文,刘刚等.数字照相量测在岩石隧道模型试验中的应用研究[J].岩石力学与工程学报,2007,26(8):1684-1690.
    [73]李元海,靖洪文,曾庆有.岩土工程数字照相量测软件系统研发与应用[J].岩石力学与工程学报,2006,25(增2):3859-3866.
    [74]OHNISHI Y,NISHIYAMA S,YANO T et al. A study of the application of digital photogrammetry to slope monitoring systems[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(5):756-766.
    [75]LEE Y J,BASSETT R H. Application of a photogrammetric technique to a model tunnel[J]. Tunneling and Underground Space Technology,2006,21(1):79-95.
    [76]任伟中,寇新建,凌浩.美数字化近景摄影测量在模型试验变形测量中的应用[J].岩石力学与工程学报,2004,23(3):436-440.
    [77]White D J,Take W A,Bolton M D et al. A deformation measurement system for geotechnical testing based on digital imaging,close-range photogrammetry,and PIV image analysis[A]. In:the 15th International Conference on Soil Mechanics Engineering[C]. Istanbul,Turkey:[s.n.],2001.539-542.
    [78]Mochizuki A,Mikasa M. Deformation measurement of slop models in centrifuge[A]. In: Proceedings of Int.Symposium on Geotechnical Centrifuge Model Testing[C]. Tokyo:[s.n.],1984.139-148.
    [79]严绍军,唐辉明,项伟降.雨对滑坡稳定性影响过程分析[J].水文地质工程地质,2007,(2):33-36.
    [80]王晓峰,刘光焰,刘均利等.降雨入渗与滑坡关系研究综述[J].人民黄河,2006,28(8):25-27.
    [81]Ng C W W, Wang B, Tung Y K.Three-dimensional numerical investigations of groundwater responses in an unsaturated slope subjected to various rainfall patterns[J]. Canadian Geotechnical Journal,2001,38(5):1049-1062.
    [82]Ng C W W.Shi Q.A numerical investigation of the stability of unsaturated soil slopes subjected to transientseepage[J].Computers and Geotechnics,1998,22(1):1-28.
    [83]Lam L,Fredlund D G,Barbour S L.Transient seepage model for saturated-unsaturated soil systems:a geotechnical engineering approach[J].Canadian Geotechnical Journal,1987,24: 565-580.
    [84]陈丽霞,殷坤龙,刘礼领等.江西省滑坡与降雨的关系研究[J].岩土力学,2008,29(4):1114-1120.
    [85]张友谊,胡卸文,朱海勇.滑坡与降雨关系研究展望[J].自然灾害学报,2007,16(1):104-108.
    [86]高华喜,殷坤龙.降雨与滑坡灾害相关性分析及预警预报阀值之探讨[J].岩土力学,2008,28(5):1055-1060.
    [87]张珍,李世海,马力.重庆地区滑坡与降雨关系的概率分析[J].岩石力学与工程学报,2005,24(17):3185-3191.
    [88]陈剑,杨志法,李晓.三峡库区滑坡发生概率与降水条件的关系[J].岩石力学与工程学报,2005,24(17):3052-3056.
    [89]谢守益,张年学,许兵.长江三峡库区典型滑坡降雨诱发的概率分析[J].工程地质学报,1995,3(2):60-69.
    [90]张友谊.雅安市雨城区滑坡降雨临界值研究[J].铁道建筑,2009,(4):70-72.
    [91]R.Giannecchini.Relationship between rainfall and shallow landslides in the southern Apuan Alps (Italy) [J].Natural Hazards and Earth System Sciences,2006,(6):357-364.
    [92]张玲,黄敬峰,王深法.基于GIS的滑坡临界降雨指标的研究[J].浙江大学学报(农业与生命科学版),2003,29(5):493-498.
    [93]柳源.滑坡临界暴雨强度[J].水文地质工程地,1998,(2):43-45.
    [94]BRAND E W,PREMCHITT J,PHILLIPSON H B. Relationship between rainfall and landslides[C].Proceedings of the Fourth International Symposium on Landslides. Vancouver,Canada:[s.n.],1984:377-384.
    [95]李峰,郭院成.降雨人渗对边坡稳定性作用机理分析[J].人民黄河,2007,29(6):44-46.
    [96]乔娟,罗先启.水对边坡失稳的作用机理探讨[J].灾害与防治工程,2005,(2):39-43.
    [97]谭桔红,晏鄂川.水与裂隙对边坡稳定性的影响分析及工程应用[J].山地学报,2004,22(3):373-377.
    [98]段坤龙,汪洋,唐仲华.降雨对滑坡的作用机理及动态模拟研究[J].地质科技情报,2002,21(1):75-78.
    [99]Fredlund D G,Rahardjo H非饱和土土力学[M].陈仲颐,张在明,陈愈炯等译.北京:中国建筑工业出版社,1997.
    [100]郭抗美,王超,纪洪广.基于降雨入渗深度反演的某黄土滑坡机理研究[J].湖南科技大学学报(自然科学版),2009,24(3):55-59.
    [101]许建聪,尚岳全.降雨作用下浅层碎石土滑坡解体破坏机理研究[J].自然灾害学报,2008,17(23):117-124.
    [102]许建聪,尚岳全.降雨作用下碎石土滑坡解体变形破坏机制研究[J].岩土力学,2008,29(1):106-113.
    [103]刘礼领,殷坤龙.暴雨型滑坡降水入渗机理分析[J].岩土力学,2008,29(4):1061-1066.
    [104]邱路阳,刘毓氚,李大勇.高填方残积土路堤降雨滑塌机理与治理对策[J].岩土力学,2007,28(10):2161-2166.
    [105]Cho S.E.,Lee S R.Evaluation of surficial stability for homogeneous slopes considering[J].Journal of geotechnical and geo-environmental engineering,2002,128(9):756-763.
    [106]龙万学-吴俊,傅鹤林.降雨型滑坡现场模拟试验研究[J].贵州工业大学学报(自然科学版),2008,37(8):20-24.
    [107]姚裕春,姚令侃,袁碧玉.降雨条件下边坡破坏机理离心模型研究[J].中国铁道科学,2004,25(4):64-68.
    [108]黎志恒.兰州黄土滑坡与地表水入渗变形关系分析——以皋兰山滑坡降雨入渗试验研究为例[J].甘肃科学学报,2003,15:131-134.
    [109]邓卫东,吴光勇,唐树名.路堑边坡破坏机理的试验与计算分析[J].中国公路学报,2001,14(3):21-25.
    [110]Harris C,Davis M,Rea B. Geotechnical centrifuge modeling of movement processes associated with thawing permafrost soils[J].Landslides on Research,Theory and Practice,2000,(2):693-700.
    [111]徐向舟,张红武,董占地等.SX2002管网式降雨模拟装置的试验研究[J].中国水土保持,2006,(4):8-10.
    [112]陈文亮,唐克丽.SR型野外人工模拟降雨装置[J].水土保持研究,2000,7(4):106-110.
    [113]吕宏兴-武春龙,熊运章等.雨滴降落速度的数值模拟[J].土壤侵蚀与水土保持学报,1997,3(2):14-21.
    [114]吴魁鳌.人工模拟降雨中大粒径雨滴着地速度公式的探讨[J].水土保持学报,1988,2(1):82-87.
    [115]南京水利科学研究院主编.SL237-1999土工试验规程[S].北京:水利水电出版社,2000.
    [116]唐川,朱静等著.云南滑坡泥石流研究[M].商务印书馆出版社,2003.
    [117]朱崎武,拜存有.水文与水利水电规划[M].郑州:黄河水利出版社,2003.
    [118]朱志杰.最新建筑高级装饰施工与报价[M].北京:中国水利水电出版社,2000.
    [119]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700