用户名: 密码: 验证码:
黄土高边坡稳定性分析及桩群研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
边坡稳定性分析是土力学的三大经典问题之一,也是岩土工程中的重要课题。我国西北地区黄土地层全、类型多、分布广、厚度大,在黄土地区进行公路和铁路建设时,面临着大量高边坡问题,如何保证黄土高边坡的稳定性,公路和铁路建设的关键问题之一。同时处于高边坡上的桥梁墩台桩基,其受力较为复杂。桩基除了承受桩顶传来的上部竖向和水平荷载外,桩侧还要承受坡体的推力作用,兼有主动桩和被动桩的特性。
     本文以宁夏固原地区的新建铁路工程为背景,以黄土地区典型的路堑高边坡、高边坡上的桥梁桥台和桥墩为对象,通过基于材料非线性的有限元数值仿真技术,系统研究了高边坡的稳定性、桥台—桩基—边坡体系和桥墩承台—桩基—边坡体系最不利荷载下的稳定性和力学行为。
     通过基于有限元强度折减法的多级黄土路堑高边坡的稳定研究,得出不同的湿陷程度对边坡稳定承载力存在较大影响,因此影响黄土高边坡稳定性的关键是黄土湿陷引起的强度折减。同时多级黄土路堑边坡破坏首先从底层坡脚开始,坡脚应力集中导致土的剪切强度首先达到峰值而破坏,从而导致坡肩开裂并将其不能承担的剪应力向临近点传递,使其强度降低;随着剪应力的依次传递,最后整个滑移面的强度均降低后,滑移面开始整体滑塌而破坏。
     通过对黄土高边坡上桥台—桩基—边坡体系基于非线性有限元的分析得出,在正常使用的最不利荷载工况下,桥台—桩基—边坡体系失稳的主要原因是桩底土体的破坏;边坡-桥台-桩基体系在加载至最大承载力的过程中,边坡土体没有出现明显的滑移面,说明只要桥台偏离边坡一定距离,可保证边坡的稳定性。当桩侧土体具有明显分层性质时,桩基应力在土层分界部位较大,容易出现了塑性屈服区域,反映出高边坡上桥台承受较大桩后土推力的受力特点。
     通过对黄土高边坡上桥墩承台—桩基—边坡体系基于非线性有限元的分析得出,正常使用的最不利荷载情况下边坡-承台-桩基体系失稳的主要原因是桩侧黄土破坏,桩身和土体滑移分离,桩基失去竖向承载能力。对于桩侧土体全部为黄土的桥墩桩基,在最不利荷载下桩基应力在桩顶部位较大,且最先开裂,建议应加强桩顶和承台连接部位的配筋和构造设计。同时,桩基应力和位移结果表明,沿纵向和横向不同部位桩基的受力存在较大的差异,反映出较强的群桩受力的非同步效应和桩后土体的土推力作用。
Soil slope stability analysis is one of the three classical mechanics, It is also an important subject in geotechnical engineering. In Northwest China loess is all the type、widely distributed、large thickness, in the loess area which road and rail are constructing, it will face with a lot of high slope problems, such as how to ensure high loess slope stability, it is also the key to road and railway construction of which the problems. At the same time, the high slope on the bridge pier foundation, which force is more complex. In addition, come from the under the pile of the upper vertical and lateral loads, the pile side also bear the thrust of the role of the slope, it is that both active and passive pile characteristics.
     This paper lies in the city of guyuan's new railway projects area background, it is lies on typical of loess cut slope, high slope on the bridge abutments and piers for the object, through the material nonlinear finite element based numerical simulation, the system The stability of the slope, abutments-pile-slope system and pier cap-pile-slope system stability under the worst load and mechanical behavior
     Finite element-based multi-level strength reduction of high slope stability loess cutting research, arrive at different degree of slope stability collapsible capacity there is a big influence, thus affecting the high loess slope stability, the key to loess depression caused by strength reduction. While multi-level damage Loess Slope first start from the bottom foot of the slope, toe stress concentration caused the shear strength of soil and destruction of the first peak, which leads to cracking and its slope can not afford to shoulder the shear stress near the point of delivery to make reduce its intensity; with shear stress were passed, then finally the strength of the slip plane is reduced, as the result,the overall slump and started sliding surface damage。
     Through the bridge abutment on the high loess slope-pile-the slope system, it based on nonlinear finite element analysis derived in the normal use of the most unfavorable loading conditions, the bridge abutment-pile-instability of the slope system mainly due to the destruction of the soil pile; Slope-abutment-pile system to the maximum load carrying capacity in the process, the slope of the soil without significant slip surface, indicating that as long as the deviation from the slope of a certain distance from abutment which can guarantee the stability of the slope. When the pile has a clear hierarchical nature of the soil, the pile of soil boundaries in the part of a larger is stressing, prone to the plastic yield region, reflecting the high slope on the pile soil behind abutment to withstand greater thrust force characteristics.
     Through the high loess slope pier cap on-pile-the slope system which based on nonlinear finite element analysis derived, the normal use of the slope under the most adverse load-pile-pile system is the main reason for instability loess pile damage, pile and soil slip separation, loss of vertical bearing capacity of pile. For all of the soil pile pier loess pile, pile foundation under the most unfavorable load stress in the pile at the top bit larger, and the first to crack, with recommendations to strengthen the pile top and cap connected parts of the reinforcement and structural design. Meanwhile, pile the stress and displacement results show that different parts along the vertical and horizontal pile there is a big difference in the force, reflecting the strong force of pile groups and pile of non-synchronous effect of the soil thrust the role of soil mass.
引文
[1]岩土工程手册编写委员会.岩土工程手册[M].中国建筑工业出版社,1995
    [2]谢颂华.边坡稳定性评估专家系统研究:[学位论文].武汉:武汉理工大学,2002
    [3]孙玉科等.边坡稳定性分析[M].北京:北京科学出版社,1999
    [4]E.Hoek等.岩石边坡工程[M].北京:冶金出版社,1981
    [5]杨学堂等.边坡稳定性评价方法及趋势[J].土木工程技术,2004,18(2):103~106
    [6]蔡美峰等.岩石力学与工程[M].北京:科学出版社,2002
    [7]廖红建.岩土工程数值分析[M].北京:机械工业出版社,2009.7
    [8]郑颖人,杨明成.边坡稳定安全系数求解格式的分类统一[J].岩石力学与工程学报,2004,(16).
    [9]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.5
    [10]David M. Potts, Lidija Zdravkovic著,周建,谢新宇等译.岩土工程有限元分析:应用[M].北京:科学出版社,2010.5
    [11]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学,2002,(10).
    [12]郑颖人,赵尚毅.用有限元法求边坡稳定安全系数[J].公路交通技术,2002,(1).
    [13]郑颖人,赵尚毅,时卫民,林丽.边坡稳定分析的一些进展[J].地下空间,2001,(4).
    [14]叶万军,折学森,方鹏.黄土路堑边坡剥落病害发育规律研究[J].公路,2010,(4).
    [15]何丽君,石玉成,杨惠林,胡明清,莘海亮.地震动作用下黄土边坡稳定性分析[J].西北地震学报,2009,(2).
    [17]王念秦,罗东海,姚勇.铁路黄土高边坡变形破坏机理及稳定性研究[J].铁道工程学报,2009,(7).
    [18]谢永利,胡晋川,王文生.黄土公路路堑边坡稳定性状离心模型试验[J].中国公路学报,2009,(5).
    [19]陈昌禄,邵生俊,郑万坤,牛洪涛.黄土高边坡的三维动力稳定性分析——以固原九龙山边坡为例[J].岩土力学,2010,(1).
    [20]Stewart D PJewell R J,Randolph M F. Numerical modeling of piled bridge abutments on soft ground[J]. Computer and Geotechnics,1993,15(1)
    [21]Stewart D P,Jewell R J,Randolph M F. Design of piled bridge abutments on soft clay for loading from lateral soil movements[J]. Geotechnique,1994,44(2)
    [22]刘忠玉,慕青松.饱和黄土边坡的动力失稳机制研究[J].岩土工程学报,2005,(9).
    [23]郭俊英,石玉成.地震动特性对黄土斜坡稳定性的影响分析[J].西北地震学报,2004,(3).
    [24]陈祖煜,孙平,王玉杰,张宏涛.采用非相关联应力应变关系的三维边坡稳定分析[J].中国科学(E辑:技术科学),2009,(9).
    [25]陈祖煜,汪小刚,邢义川,韩连兵,梁建辉,邢建营.边坡稳定分析最大原理的理论分析和试验验证[J].岩土工程学报,2005,(5).
    [26]陈祖煜,陈立宏,孙平.非线性强度指标边坡稳定安全系数取值标准的研究[J].水力发电,2004,(2).
    [27]陈祖煜,弥宏亮,汪小刚.边坡稳定三维分析的极限平衡方法[J].岩土工程学报,2001,(5).
    [28]冯志焱主编.湿陷性黄土地基[M].北京:科学出版社,2009.11
    [29]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1991
    [30]刘金砺.竖向荷载下的群桩效应和群桩基础概念设计若十问题[J].土木工程学报,2004,(1).
    [31]杜娟,陈奕柏,陈颖杰.大直径钻孔灌注桩群桩效应非线性分析[J].海南大学学报(自然科学版),2007,(1).
    [32]汤斌,王月香,雷学文.承台底土阻力群桩效应系数有限元分析[J].岩石力学与工程学报,2004,(5).
    [33]王旭东,魏道垛,宰金珉.群桩—土—承台结构共同作用的数值分析[J].岩土工程学报,1996,(4).
    [34]刘炎海,刘凤奎.群桩的有限元分析[J].兰州铁道学院学报,1998,(1).
    [35]张雄文,董学武,李镇.苏通大桥主塔墩基础群桩效应研究[J].河海大学学报(自然科学版),2006,(2).
    [36]齐良锋,吴辉科.群桩与土共同作用的有限元分析[J].土工基础,2006,(3).
    [37]吴鹏.刚性承台超大群桩承载性状的三维有限元分析[J].铁道科学与工程学报,2007,(2).
    [38]王俊杰,朱俊高,吴寿昌.大规模超长群桩基础工作性能的数值模拟[J].岩土力学,2008,(3).
    [39]汤斌,陈晓平.群桩效应有限元分析[J].岩土力学,2005,(2).
    [40]高永贵.黄土中低承台群桩承载性能的试验研究[J].西安建筑科技大学学报,1994,(4).
    [41]谢耀峰.横向承载群桩性状及承载力研究[J].岩土工程学报,1996,(6).
    [42]蔺鹏臻.桥梁结构有限元分析[M].北京:科学出版社,2008.6
    [43]ANSYS Inc. ANSYS Basic Analysis Guide.2005.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700