用户名: 密码: 验证码:
用DefH9-iaaM和TERF1基因转化糖橙的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘是世界第一大水果,2006年,世界柑橘年产量1.1亿吨,面积10730万亩,年贸易额达65亿美元,堪称世界第一大水果。我国是柑橘的重要原产地之一,柑橘资源丰富,优良品种繁多,栽培历史悠久。
     2006年我国柑橘面积已超过170万公顷,占世界柑橘总面积的23%,居世界第一位,产量近1800万吨,居世界第二位。柑橘已经成为我国南方经济的支柱产业。但是我国柑橘产业虽有一定的基础,但与世界柑橘生产先进国家相比,差距还较大。特别是在品种选育方面还需进一步加强。柑橘是木本植物,存在童期长、珠心胚干扰、高度杂合、遗传背景复杂等缺点,导致常规育种的方法不仅存在很大的盲目性,而且育种效率低。随着生物技术的发展,与传统育种方法相比,利用基因工程培育新品种不受基因型限制,目的基因来源广泛,可以定向地改变目标性状等优点,采用成年态材料作为转化受体,还可以大大缩短育种周期,研究外源基因对植物开花和结果的影响。
     糖橙由于纯甜似蜜,深受消费者的喜爱。但糖橙种籽较多,目前还没有无核的糖橙品种,同时细菌病害和真菌病害危害较多,增强抗病性也是主要育种目标之一。因此本项研究的目的是建立糖橙的高效再生转化体系和成年态再生转化体系,在此基础上把defH9-iaaM基因,即来自金鱼草的iaaM基因和来自根癌农杆菌的DefH9启动子导入柑橘中,以期望获得具有单性结实能力的新种质。其次,将通过酵母单杂交从番茄中克隆的转录因子TERF1导入糖橙中,期望能够获得对柑橘主要病害如溃疡病、炭疽病有广谱抗性的新种质。通过对转基因的种质进行转基因表达、形态学观测和抗病性等方面的研究,综合评价转基因育种对品种改良方面的作用。
     本试验获得主要研究结果如下:
     (1)建立糖橙实生态的再生培养体系。以30d苗龄的糖橙实生态节间茎段不定芽分化率较高,暗培养可以显著的提高不定芽的再生率。筛选出适宜实生态节间茎段再生的不定芽诱导的培养基:MS+5mg/L 6-BA;不定芽增殖培养基:MS+1.0 mg/L 6-BA+NAA 1.0 mg/L;生根培养基:MS+0.5 mg/L NAA。其中采用两步法诱导不定芽再生和生根效果较好。
     (2)建立了成年态糖橙的不定芽再生体系。用改良的消毒方法G,即采枝梢前一周,每隔一天下午,于温室中将要采取的枝梢用10%的次氯酸钠溶液擦拭一遍,共擦拭4次,且供试植株须隔离放置。再采用70%的酒精处理30s,再用1%的升汞溶液加几滴吐温浸泡24min,无菌水冲洗4次进行消毒。可显著的提高成年态节间茎段的成活率。成年态节间茎段培养基以6-BA 5 mg/L+2,4-D 2 mg/L+IAA 2mg/L培养的效果最好,茎段愈伤诱导率和不定芽诱导率最高可达17.8%和2.87个。对成年态不定芽的嫁接进行了研究,认为经过改良的“⊥”压法成活率较高,可以达到78.94%。
     (3)建立了将DefH9-iaaM基因和TERF1基因两个外源基因导入到实生态糖橙的转化体系。研究了不同根癌农杆菌对糖橙实生态节间茎段的转化率,结果显示EHA105的转化能力强于LBA4404。浸染时间以15min为宜。针对糖橙实生态节间茎段和成年态节间茎段再生能力的差异性,认为卡那霉素浓度为100mg/L时适合对糖橙实生态节间茎段再生不定芽进行筛选,卡那霉素浓度为30mg/L时适合对柑橘成年态节间茎段再生不定芽进行筛选,通过PCR鉴定,不定芽的转化率高达29.4%。
     (4)通过PCR鉴定,结果显示以获得了6株转DefH9-iaaM基因植株,通过形态学的研究证实,这6株转基因植株在株高、节间长度、叶面积方面比对照有明显的增长、增宽现象。利用PCR、RT-PCR、Southern杂交技术对转TERF1基因的糖橙进行了分子检测,结果显示,共获得了7株转TERF1基因植株株系。通过对3,7,11号植株的Southern杂交,结果显示TERF1基因已经成功的整合到了糖橙的基因组中,且均为为单拷贝插入。从植株形态特征表现上看,转TERF1基因的植株与未转化植株无显著差异。
     (5)对转TERF1基因的糖橙进行离体溃疡病和炭疽病的接种试验。通过对病斑大小和数量的分析,结果表明1,3,7,8,11号株系对柑橘溃疡病和炭疽病表现出广谱抗性。接种溃疡病病害时,3号株系对溃疡病的抗病性最强,发病级别为0级。其余转基因植株溃疡病的发病率比对照植株下降了70%左右。进行炭疽病的离体接种7d后发现,转基因植株的叶片基本上都表现出针孔处病斑减小。从照片上可以看到3号和7号转TERF1基因糖橙叶片不仅基本上观察不到炭疽病的典型病斑,而且叶片仍然可以保持翠绿。
Citrus is the most important fruit crop in the world.Now its annual production in the world is 110 million metric tons,with a total acreage of 7.15 million hectares (ha) and an annual volume of international trade about 650 million dollars.China is recognized as one of the key original centers of citrus,with a long history of cultivation,plenty of natural resources and selected varieties for commercial use.
     In 2006,the planting area of citrus in China exceeded 1.7 million ha,which was 23%of the total acreage and ranked the first place in the world.The annual yield of citrus was nearly 18 million ton accepting the second biggest country for citrus production in the world.China has a long history of citrus breeding and has established the foundation of citrus industry,and the distance on technology application is widely accepted compared with those advanced countries of citrus production.In order to catch up with the international trade standard,the most important thing is to produce fruit of high quality and to satisfy the consumers.The criteria for evaluating the citrus cultivars are summarized as the following five main aspects:the appearance,taste,nutritive content,seeds number and easy-peeling by hand,et al.From the view of botany,the citrus is as a woody,low branching plant with a distinct juvenile stage,polyembryony,high genetic heterozygosity and arthenogenesis,and these characteristics have impeded the traditional breeding in citrus,such as the blindness in crossing and low efficiency for new cultivar development.With the development of biological technology,using transgenic technology to breed new variety is the best way to modify the genetic expressing or silencing.Transferring the foreign genes into mature explants will save us a lot of breeding time,and the gene expression in flower and fruit can be investigated much earlier than traditional did.
     Succari is a very popular sweet orange,almost acidless,and is extending quickly in the south of China,but with plenty of seeds.Liking other sweet oranges, Succari trees can be attacked by many biotic(bacteria,fungi,etc.) and abiotic stresses. The objective of this project is to establish the regeneration and transformation system of Succari orange and to transfer a parthenocarpy gene 'defH9-iaaM' and a transcription factor 'TERFI' gene into the genome by using seedlings and adult inter-nodal segments as explants.Hopefully to gain a new germplasm or breeding material,which carrying parthenocarpy gene and got a broad-spectrum resistance to diseases.The DefH9-iaaM gene consists of an iaaM gene and a DefH9 promotor.The transcription factors TERF1 gene as cloned from tomato by yeast-one-hybrid system. After the disease inoculation and morphological trait observation,we evaluated the modification capability of the wild plants by foreign gene.
     The main results are showed as follows:
     1.Establishing the regeneration system from Succari orange seedling sterms intemodal segments.The results indicated that 30-day-old seedlings were the most efficient explants,and the co-culture in darkness for 6 days gave much improvement for good regeneration.The optimum medium for adventitious buds regeneration was MS + 6-BA(5.0mg/L).And MS medium supplied with 6-BA1.0mg/L and NAA 0.1mg/L showed the highest bud multiplication ratio.The shoot tissues got rooted successfully after 20 days in 0.5mg/L NAA.The better way to get more adventitious buds is using the "two-step" method,which is to put the explants from the medium plus the auxin first,and then remove to medium with no hormones after 6 days.
     2.To set up an efficient regeneration system for mature sterms internodal segments.It shows that pretreatment disinfection method can raise significantly the survival rate to 80%.And the medium supplied with 6-BA 5 mg/L,2,4-D 2 mg/L and IAA 2mg/L could staminate the callus from cutting ends.And the callus induction rate reached up to 17.8%and 2.87 for the adventitious buds.The effect of three grafting methods on improving survival rate of adventitious buds was investigated,and the result showed that modified "⊥" way was the best one,which 78.94%of survival rate.
     3.Development of the transformation system and the transfer of DefH9-iaaM gene and TERF1 gene into Succari.The effects of transformed by different Agrobacterium strains was observed,and it seemed that EHA105 was better than LBA4404.And 15 min was the best infection time.The selection concentration of km is different between the seedlings and mature explants,and 100 mg/L for seedling explants and 30 mg/L for mature explants were justified.
     4.PCR results indicated that six regenerate plants of Succari were transgenic with the DefH9-iaaM gene,and the six transgenic plants showed evident increase in plant height,stem length,and leaf area.Through the PCR and RT-PCR analyses,it was showed that 7 regenerants were cooperated with the TERF1 gene.No.3,No.7 and No. 11 transgenic lines were verified by Southern blotting,and the results showed that one copy of the TERF1 gene were insert the plant genome.
     5.After inoculation with the citrus canker and anthracnose pathogen the transgenic plants of TERF1 gene,the results showed that the TERF1 gene can improve the resistance to both diseases.The transgenic plants could reduce citrus bacterial canker incidence rate,by 70%.The No.3 showed 0%of the incidence rate.When the transgenic leaves and control ones were both infected with the citrus anthracnose,all the leaves showed blots symptom of disease.The blots on transgenic leaves were smaller than that on the controls.Leaves of No.3 and No.7 plants did not have the disease blots,and the color of leaves also kept green.
引文
[1]邓秀新,郭文武,孙绪华.我国无核柑橘类型选育研究进展[J].园艺学报,1996,23(3):235-240;
    [2]王子成,邓秀新.柑橘转基因研究进展[J].华中农业大学学报,2002,21(5):494-499:
    [3]Gomez-Lim M A,Litz R E.Genetic transformation of perennial tropical fruits[J].In Vitro Cell Dev Biol Plant,2004,40(5):441-449;
    [4]吴初超,赵小龙.柑橘育种新技术综述[J].广西园艺.2007,18(3):50-52;
    [5]陈善春.柑橘生物技术研究的现状与展望[J].中国南方果树.1998,27(6):15-17:
    [6]Kobayashi S,Uchimiya H.Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer[J].Jpn J Genet,1989,64:91-97;
    [7]Hidaka T.Omura M.et al,Agrobacterium-mediated transformation and regeneration of Citrus spp from suspension cells[J].Japan Breed,1990,40:199-207;
    [8]陈大明,徐昌杰,张上隆.柑橘高效离体再生系统研究[J].浙江大学学报,2000,26(5):493-499;
    [9]Magdalena Cervera,Jose Juarez.Antonio Navarro,et al.Genetic transformation and regeneration of mature tissue of woody fruit plants bypassing the juvenile stage[J].Transgenic Research,1998,7:51-59;
    [10]Gentile,A.,Deng,Z,La Malfa,S.,et al.Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene[J].Plant Breeding,2007,126(2):146-151;
    [11]Weliton A.B.,Almeida,Francisco A.A.,et al.Genetic transformation and plant recovery from mature tissues of Citrus sinensis L.Osbeck[J].Plant Science,2003,164:203-211;
    [12]王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002年;
    [13]Bidney D,Scelonge C,Martich J,Burrus M,Sims L,Human G.Microprojectile bombardment of plant tissue increases transformation frequency by Agrobacterium tumefaciens[J].Plant Mol Biol,1992,18:301-308;
    [14]Finer J J,McMullen Michael D.Transformation of Cotton(Gossypium hirsutum L.) via particable Bombardment[J].Plant Cell Rep,1990,8:586-589;
    [15]John M E,Keller G.Metabolic pathway engineering in cotton:biosynthesis of polyhydroxybutyrate in fiber cells[J].Proc Natl Acad Sci USA.1996,93:12768-12773;
    [16]Hansen G,Chilton M."Agrolistic" transformation of plant cells:Integration of T-strands generated in planta[J].Proc Natl Acad Sci USA,1996,93:14978-14983;
    [17]Vardi A.,Bleichman S.,Aviv D.Genetic transformation of Citrus protoplasts and regeneration oftransgenic plants[J].Plant Science,1990,69:199-206;
    [18]Hidaka T,,Omura M.,Transformation of citrus protoplasts by electroporation[J].Jpn Soc Hort Sci,1993,62:371-376;
    [19]王峰,朱桢,李向辉.不同调控序列控制下的GUS基因在柑橘原生质体中的瞬间表达[J].福建农业学报,1998,13(2):1-5;
    [20]Yao J L.,Wu J H.,Gleave A.P.,et al.Transformation of citrus embryo-genie cells using particle bombardment and production of transgenic embryos[J].Plant Science,1996,113:175-183;
    [21]杜国强,马宝琨,师校欣等.植物基因转化方法在果树少上的应用[J].河北农业大学学报,1997,20(3):74-78;
    [22]王景雪,孙毅.农杆菌介导的植物基因转化研究进展.生物技术通报,1999,(1):7-13;
    [23]Gutierrez E.M.A.,Luth D.,Moore G,A.,Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange plants expressing the coat protein gene citrus tfisteza virus[J].Plant Cell Reports,1997,16:745-753;
    [24]Cervera M.,Pina J.,Juarez J.,et al.Agrobacterium-mediated transformation of citrange:factors affecting transformation and regeneration[J].Plant Cell Reports,1998,18:271-278;
    [25]Bond J.E.,Roose M.L.Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange[J].Plant Cell Reports,1998,18:229-234;
    [26]Costa M.G.C.,Otoni W.C.,Moore G.A..An evaluation of factors affecting the efficiency of Agrobacterium mediated transformation of Citrus paradisi(Macf.) and production of transgenic plants containing carotenoid biosynthetic genes[J].Plant Cell Reports,2002,21:365-373;
    [27]Dominguez A.,Guerri J.,Cambra M.,et al.Efficient production of transgenic citrus plants expressing the coat protein gene of citrus triteza virus[J].Plant Cell Reports,2000,19:427-433;
    [28]Moore G.A.,Jaoono C.C.,Neidigh J.L.,et al.Agrobacterium-mediated transformation of Citrus stem segments and regeneration of transgenic plants[J].Plant Cell Reports,1992,11:238-242;
    [29]Kaneyoshi J.,Kobayashi S.,Nakamura Y.,et al.A simple and sufficient gene transfer system of trifoliate orange(Poncirus trifoliate Raf.)[J].Plant Cell Reports,1994,13:541-545;
    [30]Pe(?)a L.,Cervera M.,Juarea J.,et al.Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants[J].Plant Cell Reports,1995,14:616-619;
    [31]Kayim M,Ceccardi T.L.,Berretta M.J.G.,et al.Introduction of a citrus blight -associated gene into Carrizo citrange(Citrus sinensis(L.) Osbc.x Poncirus trifoliata (L.) Raf.]by Agrobacterium-mediated transformation[J].Plant Cell Reports,2004,23:377-385;
    [32]李东栋,石玮,邓秀新,等.不同根癌农杆菌菌株对愈伤组织遗传转化效率的影响[J].华中农业大学学报,2002,21(4):379-381;
    [33]Ballester A,Cervera M,Pefia L.Efficient production oftransgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination[J].Plant Cell Rep,2006,10:39-45;
    [34]Yang Z N,Ingelbrecht I L,Louzada E,et al.Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red(Citrus paradise madf)[J].Plant Cell Rep,2000,19(12):1203-1211;
    [35]Iwanami T.,Namba,S.Yamashita,S.and Doi,Y.1987,Purification of grapevine leafroll virus(GLRV).Ann.Phytopathol.Soc.Jpn.:53:655-658;
    [36]胡天其.柑橘溃疡病的发生与防治的研究综述[J].世界农业,1988,(7):30-32;
    [37]Takahashi T A.Role of extracellular polysccharides of Xanthomonas campestrispv citris[J].Physiological plantpathology,1984,(7):1;
    [38]Lichtenstein C.Anti-sense RNA s a tool to study plant gene expression[J].Nature,1988,333:801;
    [39]陈善春,张进仁,黄自然.抗菌态基因介导的柑橘抗溃疡病基因工程研究[J].中国农业科学,1996,29:94;
    [40]郑启发,胡桂兵,陈大成,等.转抗菌肽D基因沙田柚对柑橘溃疡病抗性的评价[A].中国园艺学会第七届青年学术讨论会论文集[C],2006:658-662;
    [41]Vierheilig H.M.,Alt J.M.,Neuhaus T.,et al.Colonization of transgetic Nicotiana sylvestris plant expressing different from of Nicotiana tobacum chitinase,by the root pathogen Rhizoctonia solani and by the mycorrhizal symbionl Gomus mosseae[J].Molecular Plant-Microbe Interactions,1993,6(2):261;
    [42]Benhamou N.K.,Broglie I.C.,Broglie R..Cytology of infection of 35s-bean chitinase transgetic canola plants by Rhizotonia solani:cytochemical aspects of chitin breakdown in vivo[J].Plant Journal,1993,4:295;
    [43]Zhu Q.,Macher E.A.,Masoud S.,et aI.Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase geneain transgetic tobacco[J].Bio/Technology,1994,12:807;
    [44]李耿光,Chsn R.,贺红等.农杆菌介导几丁质酶基因转化的柑橘植株[J].中国学术期刊文摘.1999,7
    [45]陈善春,张进仁,黄自然,等.根癌农杆菌介导柞蚕抗菌态D基因转化柑橘的研究[J].中国农业科学,1997,30(3):7-13;
    [46]郑启发,陈大成,黄自然,胡桂兵.人工合成柞蚕抗菌肽D基因转化沙田柚[J].华南农业大学学报,1999,20(1):103-107;
    [47]瞿礼嘉等.现代生物技术导论[M].北京:高等教育出版社,1998;
    [48]鲁旭平,胡平.植物基因工程与柑橘育种[J].农业与技术,2006,04,77-79;
    [49]Molinari H B C,Marur C J,Filho J C B,et al.Osmotic adjustment in transgenic citrus rootstock Carrizo citrange(Citrus sinensis Osb.x Poncirus trifoliata L.Raf.)overproducing praline[J].Plant Sci,2004,167(6):1375-1381;
    [50]Cervera M,Ortega C,Navarro A,Navarro L,Pefia L.Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast[J].J Hortic Sci Biotechnol,2000,75:26-30;
    [51]龙桂友.柑橘低温诱导相关基因的克隆与表达分析.2007,生物科技学院.湖南农业大学;
    [52]Pefia L,Martin-Trillo M,Juarez J,et al.Constitutive expression of Arobidopsis LEAFY or APETALA1 genes in Citrus reduce their generation time[J].Nature Biotech,2001,19:263-267;
    [53]Motomu Endo,Satoshi Nakamura,Takashi Araki.et al.Phytochrome B in the Mesophy2 Delays Flowering by Suppressing Flowering locus T expression in Arabidopsis Vascular Bundles[J].Plant Cell,2005,17(7):1941-1952;
    [54]胡春华.转ROL基因枳橙分子鉴定、形态学观测及繁殖技术研究[M].2005,园艺园林学院,湖南农业大学;
    [55]卢存福,王红,简令成等.植物抗冻蛋白研究进展[J.生物化学与生物物理进展,1998,25(3):210-260;
    [56]Huang L C,Huang B L,Rhim S,et al.Genetically engineering citrus with the insecticidal gene from Bacillus thuringiensis subsp Tenebrionis.Proceeding of a symposium on enhancing competiveness of fruit industry[M].Taichung,Taiwan,March 1997,20-21.
    [57]Cervera M.,Oriega C.,Navarro A.,et al.Generation of transgenic citrus plants with the tolence-salting gene HAL2 from yeast[J].Horticultural Science Biotechnol,2000,75,(1):26-30;
    [58]Kaneyoshi J.,Kobayashi S..Nakamura Y.,et al.Genetic transformation of poncirus(trifoliate ogange).In:Biotechnology in Agriculture and forestry,ed.,Y.P.S Baiaj.Springer,1999:212-220;
    [59]Deng Z N,Gentile A.,La Malfa S.,et al.Morphological modifications of Citrus by genetic transformation with rolABC genes[J].XLVI Convegno Annuale della SIGA(Societa Italiana di Genetica Agraria) Giardini-Naxos(ME),2002,settembre 18-21;
    [60]Singh K,Foley C,Onate-Sm,et at.Transcription factors in plant defense and stress responses[J].Curr Opin Plant Biol,2002,5(5):430-436;
    [61]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474;
    [62]Class Schwechneimer,Michoel Bevan.The regulation of transcription factor activity in plants[J].Trends in Plant Science,1998,3(10):378-383;
    [63]霍大勇,沈黎明.逆境胁迫诱导基因的结构、功能与表达调控[J].生物化学与生物物理进展.1998,25(3):216-221;
    [64]Wu C Y,Suzuki A,Washida H,et al.The GCN4 motify in a rice glutelin gene is essential for endosperm-spercfic gene expression and is activated by Opaque-2 in transgenic rice plants[J].Plant,1998,14:673-683;
    [65]欧阳文石.植物WRKY转录因子[J].生命的化学,2001,2(3):27-28.
    [66]赫 林,徐 昕.植物转录因子WRKY家族的结构及功能[J].植物生理学通讯,2004,40(2):260-265;
    [67]Karam B Singh,Rhonda C Foley,Lius OnateSanchez.Transcription factors in plant defense and stress response[J].Cell Signaling and Gene Regulation,2002,(5):430-436;
    [68]陈俊,王宗阳.植物MYB类转录因子研究进展[J].植物生理与分子生物学学报,2002,28(2):81-88;
    [69]Cathie Martin,Javier Paz-ares.MYB transcription factors in plants[J].Reviews,1997,13(2):225-229;
    [70]王希庆,陈伯君,印莉萍.植物中MYB转录因子[J].生物技术通报,2003,(2):22-25;
    [71]Rabinowicz P D,Braun E L,Wolfe A D,et al.Maize R2R3 Myb gene:Sequence analysis reveals amplification in the higher plants[J].Genetics,1999,153:427-444;
    [72]Payne C T,Zhang F,Lioyd A M.GL3 encodes a Bhlh protein that regulates trichome decelopment in Arabidopsis through interaction with GL1 and TTG [J].Genetics,2000,156:1349-1362;
    [73]Ohme-Takagi,Masaru,Hideaki Shishi.Ethylene-inducible DNA binding proteins that interact with an ethyleneresponsive element[J].The Plant Cell,1995,(7):173-182;
    [74]Okamuro J K,Caster B,Villarroel R,et al.The AP2 domain of APETACA2defines a large new family of DNA binding proteins inArabidopsis[J].Proc Natl caid Sci USA,1997,94:7076-7081;
    [75]Gu Y Q,Yang C,Thara V K,et al.Pti4 is induced by ethylene and salicylic acid,and its product is phosphorylated by the Pto Kinase[J].Plant Cell,2000(12):771-781;
    [76]Stocking EJ,Gilmour SJ,Thomashow M T.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE,a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J].Proc Natl Acaid Sci USA,1997,94:1035-1040;
    [77]Van der Fits L,Memelink J.The jasmonate-inducible AP2/ERF-domain transcription factors ORCA3 activates gene expression via interaction with a jasmonateresponsive promotor element[J].Plant,2001,25:43-53;
    [78]刘 强,赵南明,Yamaguch-Shinozaki K,等.DREB转录因子在提高植物抗逆性中的作用[J].科学通报,2000,45(1):11-16:
    [79]Park J M,Park C J,Lee S B,et al.Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco[J].Plant Cell,2001,13:1035-1046;
    [80]黄泽军,黄荣峰,黄大防.ERF转录因子及其在植物防卫反应中的作用[J].植物病理学报,2004,34(3):193-198;
    [81]萨其拉,李文彬,孙勇如.植物病程相关蛋白的基因表达调控[J].高技术通讯,2001,100-103;
    [82]罗赛男,杨国顺,石雪晖等.转录因子在植物抗逆性上的应用研究[J].湖南农业大学学报,2005,31(2):219-223;
    [83]Zhou J,Tang X,Martin GB.The Pto Kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes[J].EMBOJ,1997,16:3207-3218;
    [84]Tournier B,Sanchez-Ballesta MT,Jones B,et al.New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element[J].2003,550(1-3):149-145;
    [85]Wang H,Huang Z,Chen Q,Zhang Z,Zhang H,Wu Y,Huang D,Huang R.Ectopic overexpression of tomato JERF3 in tomato activates downstream gene expression and enhances salt tolerance[J].Plant Mol Biol,2004,55:183-192;
    [86]Butner M,Singh KB.Arabidopsis thaliana ethylene-responsive element binding protein(AtEBP) an ethylene-inducible GCC-binding protein interacts with an ocs element binding protein[J].Proc Natl Sci USA,1997,94:5961-5966;
    [87]Solano R,Stepanova A,Chao Q,et al.Nuclear events in ethylene signaling:a transcriptional cascade mediated by ethylene-insensitive3 and ethylene- response-factor l [J].Genes Dev,1998,12:3703-3714;
    [88] Fujimoto S Y, Ohta M, Usui A, Shishi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression[J]. Plant Cell,2004,12:393-404;
    [89] Hongbo Zhang, Dabing Zhang, Jia Chen, et al. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum[J]. Plant Molecular Biology,2004(55): 825-834;
    [90] Xiulin Zhang, Zhijin Zhang, Jia Chen, et al. Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development [J]. Planta, 2005 , 222(3):494-501;
    
    [91] Menke FLH, Champion A, Kijne JW, et al. A novel jasmonate- and elicitor-responsive element in the perivinkle secondary metabolite biosynthetic gene str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor ORCA2[J]. EMBOJ,1999,18:4455-4463;
    
    [92] Haake V, Cook D, Riechmann J L, Pineda O, ThomashowM F, Zhang J Z. Transcrip tion factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant physiology, 2002, 130(2): 639-648.
    
    [93] Chio D W, Rodriguez E M, Cbse T J, Barley Cbf3 gene identification expression pattern and map location[J]. Plant Physiol, 2002,129(4): 1781-1787;
    [94] Shen YG, Zhang WK, He SJ, et al. An EREBP/AP2-type protein in Triticum aesticum was a DRE-binding transcription factor induced by cold dehydration and ABA stress[J]. Theor Appl Genet 2003,106(5):923-930;
    
    [95] Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor(ERF domain) in plants[J]. Jour Biol Chem, 1998,273:26857-26861;
    
    [96] Dubouzet J G, Sakuma Y, Ito Y ,et al. OsDREB gene in rice encode transcription activators that function in drought- high- salt- and cold-responsive gene expression [J]. Plant J,2003,33(4):751-763;
    
    [97] Riechmann J L, Heard J, Martin G, et al. Arabidopisis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290: 2105-2110.
    [98]Zejun Huang,Zhijin Zhang,Xiuling Zhang,et al.Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes[J].Febs Letters 2004(573):110-116;
    [99]Jaglo-ottosen K R,Gilmour S J,Zarka D G,et al.Arabidopsis CBF1overexpression induces COR genes and enhances freezing tolerance[J].Science,1998,280:104-106;
    [100]甄 伟,陈 溪,孙思洋等.冷诱导基因的转录因子CBF1转化油菜和烟草及抗寒性鉴定[J].自然科学进展,2000,10(12):1104-1108;
    [101]Viswanathan C,Masam O,Jian-Kang Zhu,et al.ICE:A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J].Gene and Development,2003,14:1043-1054;
    [102]梁慧敏,夏阳.王太明.植物抗寒、抗旱、耐盐基因工程的研究进展[J].草业学报,2003.12(3):1-7;
    [103]Somerville C,Somerville S.Plant functional genomics[J].Science,1999,285:380-383;
    [104]苏 金,朱汝财.渗透胁迫调节的转基因表达对植物抗旱、耐盐性的影响[J].植物学通报,2000,18(12):129-136;
    [105]刘文奇,陈旭君,徐晓晖,等.ERF类转录因子OPBP1基因的超表达提高烟草的耐盐能力[J].植物生理与分子生物学学报,2002,28(6):473-478;
    [106]Gu Y Q,Wildermuth M C,Chakravarthy S,et al.Tomato transcription factors Pti4,Pti5 and Pti6 activate defense responses when expressed in Arabidopsis[J].Plant Cell,2002,14:817-831;
    [107]王忠.植物生理学[M].北京:中国农业出版社,2003;
    [108]陈大成,李志勇,胡桂兵等.“塔1”芦柑无核机理探讨[J].华南农业大学学报,1998,19(2):36-40;
    [109]Mariani C,Beduckeleer M.D.and Truettner J.,et al.Induction of male sterility in plants by a chimaeric gene.Nature,1990,347:737-741;
    [110]Van der Meer I.M.,Stam M.E.and van Tunen A.J.Antisense inhibiton of flavonoid biosynthesis in Petunia anthers results in male sterility[J].Plant Cell,1992,4(3):253-262;
    [111]Schmulling T.,Rohrig H.,and Pilz S.,et al.Restoration of gertility by antisenese RNA in genetically engineered male sterile tobacco plants[J].Mol.Gen.Genet.,1993,237:385-394;
    [112]Spena A.E.,Struch J.J.and Prinsen E.,et al.Anther-specific expression of the rol B gene ofAgrobacterium rhizogenes increases IAA content in anthers and alters anther development and whole flower growth[J].Theor.Appl.Genet.,1992,84:520-527;
    [113]倪迪安,许智宏.生长素的生物合成、代谢、受体和极性运输[J].植物生理学通讯,2001,37,4:346-352;
    [114]倪迪安,于晓红,王凌健,许智宏.IaaM基因在烟草花粉中的表达及其在花粉发育中的作用[J].实验生物学报,2002,35(1):1-6;
    [115]Guglielmo Donzella,Angelo Spena,Guseppe L.Rotino.Transgenic parthenocarpic eggplant:superior germplasm for increased winter production[J].Molecular Breeding,2000,6(1):79-86;
    [116]Nadia Ficcadenti,Sara Sestili,Tiziana Pandolfini,et al.Genetic engineering of parthenocarpic fruit development in tomato[J].Molecular Breeding,1999,5(5):463-470;
    [117]Tiziana Pandolfini,Giuseppe L Rotino,Serena Camerini,et al.Optimisation of transgene action at the post-transcriptional level:high quality parthenocarpic fruits in industrial tomatoes[J].BMC Biotechnology 2002,2:1;
    [118]Bruno Mezzetti,Lucia Landi,Tiziana Pandolfini,et al.The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry[J].BMC Biotechnology,2004,4:4;
    [119]Bruno Mezzetti,Lucia Landi,Scortichini L,et al.Genetic engineering of parthenocarpic fruit development in strawberry[J].Acta Hortic 2002,567:101-104;
    [120]Bruno Mezzetti,Tiziana Pandolfini,Oriano Navacchi,Lucia Landi.Genetic transformation of Vitis vinifera via organogenesis[J].BMC Biotechnology 2002,2:18;
    [121]Rotiono G L,Perd E,Zottini M.Genetic engineering of parthenocarpic plants[J].Nature Biotechnology,1997,15:1398-1401;
    [122]石云鹭,丁在松,黄荣峰.转TERFl和LeERF2双价基因早稻及其逆境光合特性研究[J].作物学报,2007,33(9):1488-1494;
    [123]林顺权,宋刚,马英等.果树转基因研究进展[J].园艺学报,2001,28:589-596.;
    [124]张进仁.我国柑橘生物技术研究进展[J].果树科学.1999,16(2):140-148;
    [125]Changhe Yu,Shu Huang,Chunxian Chen,et al.Factors affecting Agrobacterium-mediated transformation and regeneration of sweet orange and citrange[J].Plant Cell,Tissue and Organ Culture,2002,71:147-155;
    [126]谢玉明,邓子牛,郭琛等.农杆菌介导甜橙遗传转化的初步研究[J].湖南农业大学学报,2005,31(6):627-630;
    [127]吴耀军,杜晓莉,韩美丽,黄华艳.农杆菌介导的甜橙基因转化系统建立研究[J].广西林业科学研究院,2004,2:57-59;
    [128]韩美丽,陆荣生,朱积余,丘小军,黄华艳.影响农杆菌介导的柑橘基因转化因素研究[J].云南植物研究,1999,21(4):491-496.;
    [129]陈善春,张进仁,黄自然.根癌农杆菌介导柞蚕抗菌肽D基因转化柑橘的研究[J].中国农业科学,1997,30(3):7-13;
    [130]杜国强,章文才.植物基因转化方法及在果树上的应用[J].河北农业大学学报,1997,20(3):74-79;
    [131]Hidaka T,OmuraM,U gak iM,et al.A grobacterium-mediated transformation and regeneration of Citrus spp.from suspension cells[J].Japan J Breed,1990,40:199-207;
    [132]Kobayashi S,N akamura Y,Kaneyoshi J,et al.Transformation of kiwifruit(A ctinidia chinensis) and trifoliate orange(Poncirus trifoliata) with a synthetic gene encoding the human epidermal growth factor(HEGF)[J].J J p n S oc H ortic S ci,1996,64:763-769;
    [133]Moore G A,Jacono C C,N eidigh J L,et al.Transformation in citrus[A].Bajaj YPS.Biotechnology in agriculture and forestry.Plant Protoplasts and Genetic Engineering Ⅳ[C].1993,123.194-208;
    [134]Pe(?)a L,CerveraM,Juarez J,et al.Genetic transformation of lime(Citrus au rantif olia Swing.):factors affecting transformation and regeneration[J].Plant Cell Rep,1997,16:731-737;
    [135]胡春华,谢玉明,黄训才,等.转rolA、B、C基因枳橙快繁技术[J].果树学报,2006,23(1):142-144;
    [136]韩美丽,陆荣生,李耿光.柠檬组织培养研究初探[J].广西林业科学,1996,25(2):104-106;
    [137]黄家权,邬志荣,孙中海.影响上胚轴再生不定芽的几个生理因素[J].植物生理学通讯,2005,41(1):37-40;
    [138]王任翔,梁倩华,陈腾土等.酸柚的组织培养[J].植物学通报,1996,13:70-71;
    [139]贺红,韩美丽,李耿光,等.红江橙不同外植体离体培养的研究[J].热带亚热带植物学报,1997,5(2):85-88;
    [140]贺红,潘瑞炽,何亚文,等.蕉柑组织培养与植抹再生的研究[J].华南师范大学学报(自然科学版),1997(4):63-66;
    [141]贺红,潘瑞炽,何亚文,等.影响四季桔器官发生的因素[J].热带亚热带植物学报,1997,5(3):53-56;
    [142]董高峰,黄淘,李耿光,等.沙田柚不同外植体离体培养与植株再生的研究[J].武汉植物研究,2001,19(5):440-444;
    [143]高峰,华学军,范六云等,用根癌农杆菌离体转化柑橘[J].中国柑橘,1990,19(4):3-4:
    [144]T.Hidaka,M.Omura,M.Ugaki,et al.Agrobacterium-mediated transformation and regeneration of Citrus spp.from suspension cells[J].Jpn J.Breed.1990,40:199-207;
    [145]M.Cervera,C.Ortega,A.Navarro,et al.Generation oftransgenic citrus plants with the tolerance-tosalinity gene HAL2 from yeast[J].J.Hortic.Sci.Biotechnol.2000,75:26-30.
    [146]Z.N.Yang,I.L.Ingelbrecht,E.Louzada,et al.Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red(Citrus paradisi Macf.)[J].Plant Cell Rep.2000,19:1203-1211;
    [147]L.Pe(?)a,M.Cervera,J.Juarez,A.Navarro,et al.Agrobacterium -mediated transformation of sweet orange and regeneration of transgenic plants[J].Plant Cell Rep,1995,14:616-619;
    [148]何永睿,邹修平,彭爱红等.根癌农杆菌介导的柑橘遗传转化技术[J].热带作物学报,2004,25(1):11-16;
    [149]Huang Jia-quan,YIN Li-yan.In vitro Plant Regeneration from the Mature Tissue of Navel Orange(Citrus sinensis L.Osbeck) by Direct Organogenesis[J].Agricultural Sciences in China,2005,4(3):236-240;
    [150]王子成,李忠爱,邓秀新.柑橘成年态茎段外植体消毒方法研究[J].河南大学学报,2005,35(2):57-60;
    [151]Antonio Dominguez,Magdalena Cervera,Rosa M.et al.Characterisation of regenerants obatained under selective conditions after Agrobacterium-meidated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequnencies[J].Molecular Breeding,2004,14:171-183;
    [152]Cervera M.,Juarez J.,Navarro A.,et al.Genetic transformation and regeneration of mature tissues of woody fruit plants by passing the juvenile stage[J].Transgenic Research,1998,7,51-59;
    [153]姜玲,万蜀渊.提高柑橘茎尖微芽嫁接成活率的研究[J].湖北农业科学,1994:26-28;
    [154]姜玲,万蜀渊,王映红,刘维昌.柑橘 茎尖嫁接操作方法的改进及研究[J].华中农业大学学报.1995,14(4):381-385;
    [155]Gustafson F G.The cause of natural parthenocarpy[J].Amerot,1939,26:135-138;
    [156]曹碚生,缪旻珉,陈学好等.黄瓜子房(幼果)中内源激素含量和过氧化物酶活形变化及其与单性结实的关系[J].植物生理学通讯,1998,34(5):347-349;
    [157]戴惠学.番茄单性结果与内源激素的关系[J].长江蔬菜,1998,(7):23-25;
    [158]Pozol V.Endogenous hormonal status in citrus flowers and fruitlets:relationship with post bloom fruit drop[J].Scientia Horticulturae,2001,91:251-260;
    [159]Kojima K,Yamamoto M,Goto A,Matsumoto R.Changes of ABA,IAA and GA_3 content in reproductive organs of Satsuma Mandarin[J].J Japan Soc Hort Sci,1996,65:237-243;
    [160]张上隆,陈昆松,叶庆富,陈大明,刘春荣.柑橘授粉处理和单性结实子房(幼果)内源IAA、ABA和ZT含量的变化[J].园艺学报,1994,21(2):117-123;
    [161]肖家欣,彭抒昂.柑橘开花前后子房(幼果)钙、硼营养与IAA、GA_3动态研究[J].果树学报,2004,21(2):132-135;
    [162]Garcia-Papi M A,Garcia-Martubez J L.Endogenous plant growth substances content in young fruits of seeded and seedless Clementia Mandarin as related to fruit set and development[J].Scientia Horticulturae,1984,22:265-274;
    [163]傅荣昭,孙勇如,贾士荣.植物遗传转化技术手册[M].北京:中国科学技术出版社,1994;
    [164]Luth D,Moore G.Transgenic grapefruit plants obtained by Agrobacterium tumefaciens - mediated transformation[J].Plant Cell,Tissue and Organ Culture,1999,57(3):219-222;
    [165]Perez Molphe Balch E,Ochoa Alejo N.Regeneration of transgenic plants of Mexican lime from Agrobacterium rhizogenes - transformed tissues[J].Plant Cell Reports,1998,17(8):591-596;
    [166]Cervera M,Lopez M,Navarro L,et al.Virulence and superviruulence of Agrobacterium tumefactems in woody fruit plants[J].Physiol Mol Plant Pathol,1998,52:67-78;
    [167]闫新甫.转基因植物[M].科学出版社,2003:166-168;
    [168]Ghorbel R,Dominguez A,Navarro L,Pe(?)a L,Efficiency genetic transformation of sour orange(Citrus aurantium L.) and production of transgenic trees containing the coat protein gene of citrus tfisteza virus[J].Tree Physiol,2001,58(3):103-110;
    [169]Ghorhel R.,Juarez J.,Navarro L.,et al.Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants[J].Theor Appl Genet,1999,99:350-358;
    [170]Kei-Ichiro M,Keiko I,Osamu T,et al.Efficient transformation of lavender(Lavandula latifolia Medicus) mediated by Agrobacterium[J].Horti Sci &Biotech,2000.78(3):287-292;
    [171]舒广平.柑橘炭疽病的研究[J].中国南方果树,1983,2:8-10;
    [172]石云鹭,丁在松,黄荣峰.转TERF1和LeERF2双价基因早稻及其逆境光合特性研究[J].作物学报,2007,33(9):1488-1494;
    [173]方中达.植病研究方法(第三版)[M].北京:中国农业出版社,1998,192-194;
    [174]雷新涛,赵艳龙,姚全胜,等.芒果抗炭疽病种质资源的鉴定与分析[J].果树学报,2006,23(6):83-84;
    [175]曹如槐,梁克恭,王晓岭,等.农作物抗病虫性鉴定方法[M].北京:农业出版社,1992,105-106:
    [176]Gottwald T R,Timmer L W.The efficacy of windbreaks in reducing the spread of citrus canker caused by Xanthomonas campestris pv.citri[J].Trop.Agilc.,1995(72):194-201;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700