用户名: 密码: 验证码:
肝癌癌蛋白p28~(GANK)正反馈调节β-catenin信号通路的作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分肝癌癌蛋白p28~(GANK)正反馈调节β-catenin信号通路的作用和机制研究
     研究背景
     肝细胞性肝癌(简称肝癌,Hepatocellular Carcinoma,HCC)是我国最常见的高发肿瘤之一,其发生发展是由体内多基因参与、多步骤协同的复杂过程。目前,尽管已经鉴定了一些肝癌相关的抑癌基因,如p53和p16~(INK4a),并明确了它们在肝癌中的特异性失活,但是在肝癌发生中特异性激活的癌基因却少见报道。2000年日本科学家Fujita等人应用消减杂交法从人肝细胞癌组织高表达的基因中筛选出一条编码重复ankyrin(ANK)序列的新基因,命名为gankyrin。我们检索基因库后发现gankyrin基因与1998年Hori等人发现的p28(Nas6p)基因序列完全一致,遂将其命名为p28~(GANK)。癌基因p28~(GANK)编码的蛋白是人26S蛋白酶体(26S proteasome)调节亚单位19S/PA700复合物的一种非ATP酶亚基,其核酸序列中含有5个串联排列的ANK重复单位,其保守的ankyrin序列介导蛋白与蛋白间的相互作用。26S蛋白酶体中的20S蛋白小体是降解体内某些错误折叠蛋白或细胞周期蛋白的场所,目前尚不清楚癌蛋白p28~(GANK)在26S蛋白酶体降解蛋白过程中的具体分子作用机制。前期研究发现癌蛋白p28~(GANK)参与CDK4/CyclinD1/p16~(INK4a)/Rb1/E2F-1信号传导通路的调节,此通路的失调控在肝癌的发生发展过程中具有相当重要的作用;外源性转入癌基因p28~(GANK)使其高表达后的NIH/3T3细胞株可以使裸鼠荷瘤。Nagao等人通过酵母双杂交发现黑色素瘤抗原MAGE-A4能与癌蛋白p28~(GANK)特异性的结合并抑制p28~(GANK)成瘤活性。
     β-连环蛋白(β-catenin)是一种重要的肿瘤相关基因,除了在细胞粘附中有重要作用外,还是Wnt信号通路的重要功能分子。通过在不同时间、空间上的差异表达调节一系列下游基因c-myc和cyclin-d1等的表达水平,参与细胞增殖、凋亡以及器官发育。近来研究发现,β-catenin在肝癌发生早期呈现异常聚集,并能够促进肝癌的发生以及早期肝癌细胞的快速生长。因此探讨β-catenin在肝癌发生发展中的作用具有重要价值。已有研究表明提高野生型p53水平可以明显下调β-catenin蛋白水平。结合新近研究发现p28~(GANK)能与泛素蛋白连接酶MDM2相互作用,介导野生型p53蛋白的泛素化及降解,提示在肝细胞癌的发生发展中可能存在着癌蛋白p28~(GANK)与β-catenin的相互联系。因此我们探讨了Wnt/β-catenin信号通路激活对p28~(GANK)表达的影响以及p28~(GANK)对β-catenin信号通路的调节作用。
     实验方法:
     1.采用Genomatix在线分析软件分析p28~(GANK)启动子区并构建p28~(GANK)报告基因质粒;
     2.运用双荧光素酶报告基因系统检测生长因子刺激对p28~(GANK)转录活性的影响;采用瞬时转染方法观察Ras对p28~(GANK)转录活性的影响;应用报告基因系统结合ERK与PI3K信号通路抑制剂确定生长因子与Ras对p28~(GANK)表达的调节通路;采用瞬时转染β-catenin和c-Myc表达质粒确定它们对p28~(GANK)表达的影响;
     3.通过Luciferase报告基因质粒pGL-OT(含有β-catenin/TCF4复合物特异结合区)与不同剂量p28~(GANK)质粒细胞共转染实验,确定p28~(GANK)对β-catenin/TCF4转录活性的影响;
     4.运用western blot及核浆分离技术,检测HEK293细胞瞬转p28~(GANK)后,β-catenin在胞核胞浆中的分布变化;
     5.运用western blot和转染技术研究生长因子、Ras、AKT、β-catenin、c-Myc对p28~(GANK)蛋白表达调节作用;应用RT-PCR技术研究生长因子、Ras、AKT、β-catenin、c-Myc等对p28~(GANK)表达的调节作用;
     6.运用染色质免疫共沉淀(ChIP)技术研究β-catenin和c-Myc与28~(GANK)启动子区相互作用关系;
     7.应用腺病毒介导的RNA干扰技术下调表达肝癌细胞系中p28~(GANK)的水平,探讨其对β-catenin转录活性的作用,并进一步研究了p28~(GANK)对自身转录水平的影响。
     8.应用临床肝癌组织标本应用western blot和免疫组织化学方法检测β-catenin、c-Myc、cyclinD1表达水平与p28~(GANK)蛋白表达水平之间的关系。
     结果:
     1.肝细胞生长因子和表皮生长因子刺激明显上调饥饿处理后的HEK293和HepG2细胞中p28~(GANK)表达水平;瞬时转染Ras表达质粒显著上调p28~(GANK)mRNA和蛋白水平;
     2.PI3K抑制剂处理显著抑制细胞本底水平p28~(GANK)的表达,也能够阻断生长因子或Ras激活对p28~(GANK)表达的上调作用;瞬时转染PI3Kp85质粒和野生或持续激活的AKT表达质粒均能够上调p28~(GANK)的表达水平;
     3.报告基因、RT-PCR或western blot实验证明瞬时转染表达β-catenin和c-Myc都能够在转录和蛋白水平上调p28~(GANK)表达;染色质免疫沉淀实验发现β-catenin可以与p28~(GANK)启动子区相互结合;
     4.HEK293细胞瞬时转染p28~(GANK)质粒可显著增强β-catenin/TCF4转录活性,而在HepG2、3B中抑制p28~(GANK)表达则可显著降低其转录活性;
     5.HEK293细胞中瞬时转染p28~(GANK)表达质粒可提高β-catenin入核蛋白水平,并在一定程度上稳定细胞中β-catenin总蛋白水平;腺病毒介导的干扰p28~(GANK)表达明显降低β-catenin蛋白水平,从而抑制了其下游的c-Myc和cyclinD1的表达水平;
     6.Western blot和免疫组化实验分析表明p28~(GANK)的蛋白水平在肝癌组织样品中与β-catenin、c-Myc和cyclinD1呈同向性表达;
     7.在HEK293和Hep3B中p28~(GANK)正向调节自身表达。
     结论:
     生长因子刺激或Ras激活可以上调肝癌癌蛋白p28~(GANK)的表达,这种激活作用可能是通过激活PI3K-AKT通路完成的。β-catenin和c-Myc的上调表达都能够促进p28~(GANK)的表达,并且染色质免疫沉淀实验证实β-catenin/TCF4可以与p28~(GANK)启动子直接结合。进一步实验表明上调的p28~(GANK)可以反过来进一步促进β-catenin蛋白的稳定从而上调β-catenin/TCF4转录活性。在肝癌组织样品中p28~(GANK)的蛋白水平与β-catenin、c-Myc和cyclinD1呈同向性表达。上述结果支持我们提出的p28~(GANK)正反馈调节β-catenin信号通路的结论。
     第二部分信号调节蛋白α负性调节Ⅰ型干扰素产生的作用和机制研究
     研究背景
     信号调节蛋白α(signal regulatory proteinα,SIRPα)是一种广泛存在的抑制性受体,属于免疫球蛋白受体超家族。其胞外区具有三个Ig样结构域和多个糖基化位点,胞内区带有免疫受体酪氨酸抑制基元(ITIMs),其中含四个酪氨酸残基,被磷酸化后能够募集含SH2结构域的蛋白磷酸酶SHP-1和SHP-2。
     干扰素(interferon IFN)是一类广泛表达具有潜在抗病毒感染的细胞因子。但是过度失控的诱导产生IFN还将易导致自身免疫性疾病的发生。所以,对于IFN表达系统的调控对于维持机体内稳态相当重要。IFN的诱导产生依赖于机体模式识别(pattern recognition receptors PRRs)受体的激活。天然免疫系统识别病毒双链RNA可以通过两条途径:TOLL样受体(toll like receptors,TLR)3和胞浆途径(RIG-I/MDA5)。TLR3作为一种重要的模式识别受体,主要表达于巨噬细胞和树突状细胞内涵体内,能够识别细胞吞噬进入的dsRNA。RIG-I/MDA5能够识别病毒复制过程中产生的dsRNA。TLR3和RIG-I/MDA5都能够与dsRNA的类似物poly(I:C)(polyriboinosinic:polyribocytidylic acid)结合,从而介导Ⅰ型IFN产生。本课题主要探讨了SIRPα对poly(I:C)活化巨噬细胞的调节作用和机制。
     SIRPα在免疫细胞只选择性地表达在巨噬细胞和树突状细胞等非淋巴细胞。我们研究发现poly(I:C)刺激巨噬细胞SIRPα蛋白表达水平下降,提示该蛋白对巨噬细胞激活及Ⅰ型IFN产生可能存在抑制作用。为进一步了解该蛋白在天然免疫功能中的作用和机制,本课题通过转染并筛选克隆建立稳定高低表达该蛋白的巨噬细胞系及瞬时干扰小鼠体内分离的巨噬细胞中的SIRPα表达,探讨了SIRPα对poly(I:C)诱导的小鼠巨噬细胞活化的影响,全面探讨了SIRPα对TLR3和胞浆途径介导的Ⅰ型IFN产生的调节作用;并探讨SIRPα对巨噬细胞MAPKs信号分子,分泌细胞因子的影响,并进一步探讨了SIRPα发挥上述作用的可能机制,确定了SIRPα在Ⅰ型干扰素诱导产生中的重要调节作用,并为尚未阐明的抑制性受体家族胞内信号转导机制提供新的线索。
     实验方法
     1.建立稳定转染空载体,高表达Myc-SIRPα及稳定干扰SIRPα的巨噬细胞系:RAW-VT,RAW-OV,RAW-KD,设计,合成并鉴定具有干扰效果的stealthRNA,分别干扰SIRPα,和SHP-2;
     2.采用磷酸化特异性抗体检测不同SIRPα表达对poly(I:C)刺激后p38,JNK,ERK,IRF3及AKT磷酸化水平的变化的影响来反映SIRPα对通路活化的影响;
     3.运用荧光素酶报告基因系统检测SIRPα对ISRE、PRDⅡ、PRDⅢ-Ⅰ、RANTES和NF-κB转录活性的作用;
     4.采用Real-time PCR方法检测sirpa基因转录水平变化和RT-PCR检测ifn-β及其相关诱导基因变化;
     5.通过ELISA检测细胞因子变化;
     6.采用免疫沉淀的方法确定与SIRPα相互作用的蛋白。
     7.采用瞬时干扰SHP-2后检测其对巨噬细胞释放细胞因子和对信号通路磷酸化的影响确定这个蛋白在巨噬细胞激活中的作用。
     8.采用免疫共沉淀的方法检测SIRPα不同表达是否影响SHP-2和下游相互作用蛋白的结合。
     结果
     1.Poly(I:C)刺激后对SIRPα表达的影响:不同的小鼠巨噬细胞系和小鼠体内分离的巨噬细胞给予不同剂量的poly(I:C)和不同时程的poly(I:C)刺激后均可见SIRPα表达明显下调,Real-time PCR结果表明poly(I:C)引起的SIRPα表达下调主要是转录水平的下调。
     2.SIRPα对poly(I:C)刺激后IRF3磷酸化及IFN相关转录因子活性的影响:研究发现SIRPα高表达可显著抑制poly(I:C)诱导的巨噬细胞细胞IRF3磷酸化水平,并抑制IFN相关转录因子结合位点PRDⅡ、PRDⅢ-Ⅰ及ISRE活性。SIRPα低表达则可显著提高巨噬细胞IRF3磷酸化水平和IFN相关转录因子活性。
     3.SIRPα对TLR3激活的IFN-β及诱导基因表达的影响:报告基因,PCR分析和细胞因子测定结果表明,SIRPα对TLR3激活的Trif通路诱导IFN-β及其诱导基因的表达和其他促炎因子都有明显的抑制作用。
     4.SIRPα对poly(I:C)刺激后的MAPK、NF-κB和JAK-STAT信号途径的作用:SIRPα低表达可显著提高poly(I:C)引起的MAPK信号通路的激活,ERK、JNK和p38磷酸化水平都显著增强。SIRPα低表达组IκBα磷酸化增强,NF-kB活性明显高于对照组。SIRPα表达抑制组巨噬细胞STAT1磷酸化水平显著高于对照组,iNOS活性及诱导产生的NO水平明显高于对照组。
     5.SIRPα对poly(I:C)激活的胞浆信号途径影响:HEK293细胞中瞬时表达SIRPα可显著抑制瞬转poly(I:C)引起的IRF3的磷酸化水平;SIRPα高表达显著抑制瞬转poly(I:C)引起的IFN-β的表达;HEK293中SIRPα表达显著抑制poly(I:C)引起STAT1磷酸化水平;RT-PCR分析表明SIRPα高表达显著抑制瞬转poly(I:C)引起的IFN-β及其诱导基因的转录。
     6.SIRPα的抑制作用依赖于ITIM基序的磷酸化及与SHP2的结合:报告基因分析表明不同剂量SIRPα表达不能抑制Trif或TBK1激活的IFN-β表达。SIRPαITIM突变体不能抑制poly(I:C)引起的IFN-β的表达,证明这种抑制作用依赖于ITIM基序的磷酸化并可能有SHP2的参与。
     7.SIRPα对TLR3和胞浆途径IFN-β表达的影响机制:P13K抑制剂可显著抑制TLR3和胞浆途径介导的ISRE活性及IFN-β表达水平。说明PI3K信号途径可能在IFN表达中有正性调节作用。SIRPα的表达可抑制TLR3和胞浆途径介导的poly(I:C)引起AKT的磷酸化水平。免疫共沉淀实验发现SIRPα可以与PI3Kp85亚基形成复合体,并且这种结合是依赖于poly(I:C)刺激的。所以SIRPα发挥抑制作用可能正是通过磷酸化后募集PI3K,引起AKT不完全活化,这直接导致了IRF3的磷酸化水平降低,从而减少了IFN-β的表达。
     结论
     本研究从分子水平全面深入研究了信号调节蛋白SIRPα对TLR3和胞浆途径介导的Ⅰ型干扰素表达的调节作用,发现SIRPα对poly(I:C)诱导的Ⅰ型干扰素及其它细胞因子分泌等生物学行为具有负向调控能力,详细探讨了其影响相关信号转导通路的作用机制,证明其可能部分通过抑制PI3K-AKT信号通路调节作用而发挥负向调控作用。
PartⅠThe oncoprotein p28~(GANK) establishes a positive feedback loop inβ-catenin signalling
     Hepatocelluar carcinoma(HCC) is one of the most prevalent malignant cancers in our country.The development and progression of HCC is a complicated process involving multiple genes and multiple steps in human bodies.Up to now,though some suppressors in HCC were identified such as p53 and p16~(INK4a),and confirmed their specific inactivation,few specific activated oncogenes in HCC was found and reported.In 2000,a novel gene named gankyrin with repeated sequences coding "ankyrin" motif was cloned in human HCC by Japanese scientists Fujita and his colleagues using subtractive hybridization method.We found this gankyrin gene was identical to the p28(Nas6p) gene reported by Hori in 1998 by searching the GenBank data,thus named it as p28~(GANK) in our work.
     p28~(GANK)(also known as PSMD10,p28,Nas6p,and Gankyrin),a non-ATPase subunit of the 19S/PA700 complex from the 26S proteasome,contains five ankyrin repeats mediating proteins interaction.20S proteasome is a protease degrading some incorrectly folding proteins or cell cycle regulators.Little is known about the mechanism how oncoprotein p28~(GANK) relates with proteins degradation by 26S proteasome,p28~(GANK) regulates the CDK4/CyclinD1/p16~(INK4a)/Rb1/E2F-1 pathway which connects with tumor development and progression,and p28~(GANK)-transfected cells are tumorigenic in nude mice.Recently,Nagao et al has identified MAGE-A4 binds to gankyrin and suppresses its oncogenic activity through yeast two-hybrid screen,p28~(GANK) also directly binds to MDM2,which increases p53-MDM2 association,inducing the ubiquitylation and degradation of p53.
     Theβ-catenin signalling pathway has a critical role in cell-fate determination,tissue homeostasis and tumorigenesis.In unstimulated cells,the cytoplasmic concentration ofβ-catenin is kept very low owing to phosphorylation by CK1 and GSK3βkinases. Activation of the Wnt pathway blocksβ-catenin degradation so thatβ-catenin accumulates and translocates to the nucleus,where it interacts with T-cell factor (TCF)/lymphoid enhancer factor(LEF) transcription factors.About 50%-70%of all HCC examined showed an abnormalβ-catenin protein accumulation in the cytoplasm and nucleus.However,in HCC theβ-catenin mutation rate is 13%-26%,the Axin mutation rate is 5%-10%and rare mutation of APC has been reported so far.This led us to speculate that other factors might be involved in the regulatingβ-catenin in HCC.
     To investigate the factors which might influence p28~(GANK) expression,we cloned a 1226 bp fragment of the 5'-flanking region of human p28~(GANK) gene into pGL3 luciferase reporter vector,which analyzed using Gene2Promoter(Genomatix) online software.To elucidate whether p28~(GANK) upregulation was correlated with cell cycle progression in normal or HCC cell lines,we examined the potential cell-cycle-dependence of p28~(GANK) expression in HepG2 and HEK293 cells after mitogenic stimulation.We found that EGF or HGF stimulation significantly increased p28~(GANK) report gene activity after the stimulation with different doses of either EGF or HGF.We also demonstrated that Ras activation could upregulate p28~(GANK) expression.Use of the PI3K inhibitor LY294002 abolishing the ability of growth factors and Ras activation induced PI3K-Akt cascade irritation and use of PD98059 or U0126 to inhibit ERK kinase cascade activation,we then approached p28~(GANK) expression by detection its promoter activation in HEK293 cells.The results show that PI3K inhibitor LY294002 significantly suppressed EGF or HGF induced p28~(GANK) reporter gene activities,while the ERK inhibitors PD98059 and U0126 show some enhancement instead of any inhibition.Reporter gene assays were performed on HEK293 ceils with introduced exogenousβ-catenin and c-Myc expression on p28~(GANK) expression.To our surprise,they both can significantly increased p28~(GANK) promoter activity.Furthermore,we found that theβ-cantenin/TCF could directly bind to the p28~(GANK) promoter in vivo.Then we asked whether p28~(GANK) expression could affectβ-catenin/TCF-dependent transcription.We found that introduced expression of p28~(GANK) induced activation ofβ-catenin/TCF-mediated transactivation in a concentration-dependent manner.Studies have revealed that elevating levels of wild-type p53 will downregulateβ-catenin in a variety of cell types.It was reported that p28~(GANK) could bind to Mdm2,facilitating p53-Mdm2 binding,and increased ubiquitylation and degradation of p53.To elucidate whether the effect dependent on p53,we detected theβ-catenin-OT activity in p53-negative Hep3B cells.The reporter activities were decreased with declined expression of p28~(GANK) and the RT-PCR assay also indicated that p28~(GANK) reduction resulted in a substantial decrease inβ-catenin-OT reporter activity which was accompanied by the downregulation of c-Myc,as well as cyclinD1.We assessed the correlation betweenβ-catenin signaling and the expression of p28~(GANK) in human primary hepatic turnouts.We found that there was a remarkable correlation between the activationβ-catenin signalling and the expression of p28~(GANK),c-Myc and cyclinD1,which indicated thatβ-catenin signaling-induced p28~(GANK) expression might be an important mechanism for promoting cell cycles in human liver cancers.In order to confirm the positive feedback regulating effect,we examined the effect of p28~(GANK) expression on its own promoter activity in HEK293 and Hep3B cells.To our prediction,p28~(GANK) significantly increased its own expression in HEK293 cells.After endogenous p28~(GANK) knockdown in Hep3B cells,p28~(GANK) promoter activities decreased.
     In conclusion,we show that growth factors stimulation or Ras activation could upregulate p28~(GANK) expression through activationβ-catenin signalling.Inaddtion,β-cantenin was transcriptional activator of p28~(GANK) and the induced p28~(GANK) subsequently regulated theβ-canenin/TCF transcription activation.Thus the oncoprotein p28~(GANK) established a positive feedback loop inβ-catenin signaling and involved in tumorigenesis and progression in HCC.
     PartⅡSIRPαNegatively Regulates Both TLR3 and Cytoplasmic Pathways in TypeⅠIFN Induction
     Signal regulatory proteinα(SIRPα) was originally identified in rat cells by its association with cytoplasmic tyrosine phosphatase Src homology region 2 domain-containing phosphatase SHP-2 and was later shown to be highly conserved in other mammals,including human,mouse,and cattle.The cytoplasmic region of SIRPαcontains two immunoreceptor tyrosine-based inhibitory motifs(ITIMs) with four tyrosine residues that are phosphorylated in response to a variety of growth factors and ligand binding.This phosphorylation enables recruitment and activation of SHP-1 and SHP-2 that in turn dephosphorylates specific protein substrates involved in mediating various physiological effects.SIRPαis especially abundant in innate immune cells including macrophages and dendritic cells although it is also expressed in other cell types such as neurons and fibroblasts.
     Host antiviral responses are initiated through the detection of viral components by host pattern recognition receptors(PRRs).Upon recognition,PRRs activation results in expression of typeⅠinterferon(IFN-α/β),IFN-stimulated genes,and inflammatory cytokines that suppress viral replication and facilitate the adaptive immune responses. Double-stranded RNA(dsRNA),which is produced during replication of many viruses,is one of the viral components recognized by several PRRs,including Toll-like receptor(TLR)3 and the RNA helicases,namely retinoic acid-inducible geneⅠ(RIG-Ⅰ) and melanoma-differentiation-associated gene 5(MDA5).It is accepted that TLR3 detects extra-cellular viral dsRNA internalized into the endosomes,whereas RIG-Ⅰ/MDA5 detects intracellular viral dsRNA.Engagement of these receptors triggers the rapid production of typeⅠIFN and thus activates the innate immune response against infectious virus.
     SIRPαhas been shown to negatively or positively regulate MAPKs signaling initiated either by tyrosine kinase-coupled receptors for growth factors or by cell adhesion to extracellular matrix.Moreover,the expression of dominant negative form of SIRPαstimulates NF-κB activity and makes the cells resistant to TNF specific apoptosis.In our previousely study,we demonstrated the role of SIRPαin regulating TLR4-mediated signaling during innate immune responses.However,it is not known whether SIRPαis involved in regulating typeⅠIFN induction signaling.In the present study,we found that SIRPαexpression was lost after stimulation with polyriboinosinic:polyribocytidylic acid(poly(I:C)),a synthetic analogue of dsRNA. We also provide evidence that SIRPαfunctions as a specific inhibitor of dsRNA-activated signaling,transcription factor activation and gene induction in both the TLR3 and the cytoplasmic pathways in cells.Furthermore,the phosphorylation on the tyrosine residues of ITIM motifs in SIRPαand its binding to the p85 subunit of PI3K in a ligand-dependent fashion are required for its inhibitory function.Thus,we demonstrate an important function for SIRPαas an inhibitory protein in both TLR3 and cytoplasmic pathways in typeⅠIFN induction.
     To explore the involvement of SIRPαin regulating the induction of typeⅠIFN,we examined SIRPαprotein and mRNA levels after poly(I:C) treatment in mouse macrophage cell line(RAW 264.7) as well as in mouse peritoneal washout macrophages(PWCs).The results show that poly(I:C) treatment triggered a dosage-dependent decline in expression of SIRPαin protein extracts from RAW 264.7 and PWCs.Moreover,poly(I:C) treatment at 5μg/ml resulted in a decline in expression of SIRPαafter 6 hr(2-fold by densitometry),and SIRPαremained lower than control levels after 24 hr.quantitative real-time PCR analysis showed that there was nearly a 1.5-fold reduction of SIRPαmRNA expression after 30 min of exposure to poly(I:C) and treatment.Stimulation of TLR3 with poly(I:C) leads to IRF3 phosphorylation on multiple phosphorylation acceptor(phospho-acceptor) sites.We therefore investigated the possible involvement of SIRPαin regulating the activity of IRF3.We first synthesized small interfering RNAs(siRNA) targeting mouse SIRPαin order to suppress the endogenous SIRPαexpression in PWCs.We also constructed a shRNA vector that specifically downregulated SIRPαand then stably transfected it into RAW264.7 macrophage cells.The transfections were referred to here as SIRPI-KD(knockdown),OV(overexpression) and VT(vector) macrophages respectively.In response to poly(I:C),SIRPα-siRNA macrophages exhibited an enhanced phosphorylation of IRF3 whereas cells transfected with negative-control oligonucleotides had a much lower IRF3 activation in PWCs.There was an enhanced phosphorylation of IRF3 in SIRPα-KD compared to VT treated with poly(I:C). Therefore,we examined the effects of knockdown of SIRPαexpression on the activation of reporter genes of the ISRE,PRDⅢ-Ⅰand PRDⅡ.We found that all reporter genes were strongly activated in SIRPα-KD macrophages as compared with SIRPα-VT cells.To examine whether IFN-βand IFN-βinducible gene expression was indeed suppressed by SIRPα,we stimulated with poly(I:C) and analyzed the expression of IFN-βand IFN-βinducible genes,including ifit-1(encoding IFIT-1), ccl-5(encoding RANTES) and mip-1α(encoding MIP-1α).As expected, poly(I:C)-induced expression of these genes were higher in SIRPα-KD macrophages, whereas overexpression of SIRPαresulted in a reduction of the expression of these genes.We also analyzed the production of IFN-β,TNF-αand IL-6 after poly(I:C) treatment.All the three cytokines were significantly enhanced in SIRPα-siRNA PWCs compared to negative-control PWCs,as measured by ELISA.To further investigate the direct involvement of SIRPαin virus-induced typeⅠIFN production, we examined the effects of SIRPαknockdown on MAPK,NF-κB and STAT1 pathways which are all required for cytokine production during TLR3 signaling. SIRPα-siRNA macrophages displayed enhanced phosphorylation of p38,JNK and ERK,whereas negative-control macrophages displayed impaired activation.Because the phosphorylation of IκBαwas essential for the activation of NF-κB,we then examined the phosphorylation status of IκBαand NF-κB activity in macrophages with SIRPαknockdown.There was enhanced phosphorylation of IκBαand NF-κB activity in SIRPα-KD macrophages after poly(I:C) stimulation,which was consistent with the higher NF-κB activity,responsible PRDⅡactivity in SIRPα-KD macrophages.Furthermore,tyrosine phosphorylation of STAT1 was also displayed enhanced phosphorylation in PWCs transfected with SIRPα-siRNA.
     TypeⅠIFN and inflammatory cytokines are induced when poly(I:C) is administrated into the cytoplasm by lipofection.Notably,this induction is independent of TLR3 and dependent on RIG-Ⅰ/MDA5.To determine the effects of SIRPα,we used HEK293 cells lacking TLR3 expression.HEK293 cells were transfected with a SIRPαexpression plasmid or an empty plasmid and 24 hr later cells were re-transfected with poly(I:C) at different time points.Cells transfected with SIRPαexpression plasmids were found to exhibit decreased phosphorylation of IRF3 compared with cells transfected with empty plasmids.We next examined the effects of SIRPαon RIG-Ⅰ/MDA5-dependent gene induction at the level of promoter activation.We co-transfected cells with different doses of SIRPαexpression plasmids together with ISRE,PRDⅢ-Ⅰ,IFN-βor RANTES reporter genes for 24 hr and then re-transfected with poly(I:C) for another 6 hr.Consistent with the effect of SIRPαon RIG-Ⅰ/MDA5-dependent IRF3 activation,ISRE,PRDⅢ-Ⅰ,IFN-βand RANTES gene reporter activities were severely impaired in SIRPα-transfected cells in a dose-dependent manner.Impaired tyrosine-phosphorylated STAT1 was also observed in HEK293 cells transfected with SIRPαexpression plasmid.
     To further investigate whether the inhibition of typeⅠIFN induction by SIRPαwas dependent on the tyrosine phosphorylation in its ITIM motif,we adopted a SIRPα-4Y expression plasmid.HEK293 cells were co-transfected with different doses of SIRPα-WT or SIRPα-4Y expression plasmids together with ISRE,PRDⅢ-Ⅰ, RANTES or IFN-βreporter genes and then transfected with poly(I:C).Only SIRPα-WT inhibited poly(I:C) transfection-induced activation of ISRE,PRDⅢ-Ⅰ, RANTES and IFN-βreporter genes,while the SIRPα-4Y exhibited no inhibitory effects.Activation of PI3K plays a key role in the recruitment and activation of a wide variety of lipid and protein kinase-signaling cascades.The activity of PI3K has also been reported to be essential for IRF3-induced gene induction by dsRNA.Hence we investigated whether SIRPαmediated its negative regulatory effects via coupling PI3K.The requirement of phosphoinositide 3-kinase(PI3K) activity for the induction of IFN-βand IFN-β-inducible genes by dsRNA is supported by the observation that a PI3K inhibitor failed to activate IFN-βand IFN-β-inducible gene expression.Moreover,the activity of PI3K downstream kinase AKT was downregulated in the SIRPα-overexpression RAW264.7 and HEK293 cells.Given the observations that SIRPαwas tyrosine-phosphorylated in response to dsRNA stimulation and PI3K was required for gene induction in the production of typeⅠIFN-β,we investigate whether PI3K could interact with SIRPα.Our results demonstrated that PI3K was recruited to SIRPαafter poly(I:C) stimulation, suggesting that the recruitment was dependent on the phosphorylation of the tyrosine residue in the cytoplasmic domain of SIRPα.
     In conclusion,we have shown here that SIRPαplays a critically negative role in typeⅠIFN induction.SIRPαmay accomplish its inhibitory function in typeⅠIFN induction,in part,through its association and sequestration of the signal transducer PI3K.Therefore SIRPαmay be an extremely beneficial and potentially exploitable molecule to inhibit immune responses such as autoimmunity or to enhance the immune response during viral infections.
引文
1. Yuen, M. F., Wu, P. C., Lai, V. C., Lau, J. Y. & Lai, C. L. Expression of c-Myc, c-Fos, and c-jun in hepatocellular carcinoma. Cancer 91, 106-112 (2001).
    
    2. Chung, Y. H. et al. Expression of transforming growth factor-alpha mRNA in livers of patients with chronic viral hepatitis and hepatocellular carcinoma. Cancer 89, 977-982 (2000).
    
    3. Kawate, S., Fukusato, T., Ohwada, S., Watanuki, A. & Morishita, Y. Amplification of c-myc in hepatocellular carcinoma: correlation with clinicopathologic features, proliferative activity and p53 overexpression. Oncology 57, 157-163(1999).
    
    4. Genda, T. et al. Cell motility mediated by rho and Rho-associated protein kinase plays a critical role in intrahepatic metastasis of human hepatocellular carcinoma. Hepatology 30, 1027-1036 (1999).
    
    5. Ogata, N., Kamimura, T. & Asakura, H. Point mutation, allelic loss and increased methylation of c-Ha-ras gene in human hepatocellular carcinoma. Hepatology 13,31-37(1991).
    
    6. Higashitsuji, H. et al. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat. Med. 6, 96-99 (2000).
    
    7. Michaely, P. & Bennett, V. The ANK repeat: a ubiquitous motif involved in macromolecular recognition. Trends Cell Biol. 2, 127-129 (1992).
    
    8. Hori, T. et al. cDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits of the 26S proteasome. Gene 216, 113-122(1998).
    
    9. Fu, X. Y. et al. Overexpression of p28/gankyrin in human hepatocellular carcinoma and its clinical significance. World J. Gastroenterol. 8, 638-643 (2002).
    
    10. Nagao, T. et al. MAGE-A4 interacts with the liver oncoprotein gankyrin and suppresses its tumorigenic activity. J. Biol. Chem. 278, 10668-10674 (2003).
    
    11. Higashitsuji, H. et al. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 8, 75-87 (2005).
    
    12. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781-810 (2004).
    
    13. Cheon, S. S., Nadesan, P., Poon, R. & Alman, B. A. Growth factors regulate beta-catenin-mediated TCF-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Exp. Cell Res. 293, 267-274 (2004).
    
    14. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422-426 (1999).
    
    15. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 6, 635-645 (2005).
    
    16. Kondo, Y. et al. Beta-catenin accumulation and mutation of exon 3 of the beta-catenin gene in hepatocellular carcinoma. Jpn. J. Cancer Res. 90, 1301-1309(1999).
    
    17. de La, C. A. et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc. Natl. Acad. Sci. U. S. A 95, 8847-8851 (1998).
    
    18. Suzuki, T., Yano, H., Nakashima, Y, Nakashima, O. & Kojiro, M. Beta-catenin expression in hepatocellular carcinoma: a possible participation of beta-catenin in the dedifferentiation process. J. Gastroenterol. Hepatol. 17, 994-1000(2002).
    
    19. Wong, C. M., Fan, S. T. & Ng, I. O. beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer 92, 136-145(2001).
    
    20. Levina, E., Oren, M. & Ben-Ze'ev, A. Downregulation of beta-catenin by p53 involves changes in the rate of beta-catenin phosphorylation and Axin dynamics. Oncogene 23, 4444-4453 (2004).
    
    21. Sadot, E., Geiger, B., Oren, M. & Ben-Ze'ev, A. Down-regulation of beta-catenin by activated p53. Mol. Cell Biol. 21, 6768-6781 (2001).
    
    22. Li, H. et al. Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology 128, 2029-2041 (2005).
    
    23. Spencer, V. A., Sun, J. M., Li, L. & Davie, J. R. Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 31, 67-75 (2003).
    
    24. Roberts, P. J. & Der, C. J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310 (2007).
    
    25. McCormick, F. Signalling networks that cause cancer. Trends Cell Biol. 9, M53-M56(1999).
    
    26. Bader, A. G., Kang, S., Zhao, L. & Vogt, P. K. Oncogenic PI3K deregulates transcription and translation. Nat. Rev. Cancer 5, 921-929 (2005).
    27. Hughes-Fulford, M., Li, C. F., Boonyaratanakornkit, J. & Sayyah, S. Arachidonic acid activates phosphatidylinositol 3-kinase signaling and induces gene expression in prostate cancer. Cancer Res. 66, 1427-1433 (2006).
    
    28. Skolnik, E. Y. et al. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65, 83-90(1991).
    
    29. Frame, S. & Cohen, P. GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1-16 (2001).
    
    30. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843-850 (2005).
    
    31. Polakis, P. The oncogenic activation of beta-catenin. Curr. Opin. Genet. Dev. 9, 15-21 (1999).
    
    32. Zucman-Rossi, J. et al. Differential effects of inactivated Axin1 and activated beta-catenin mutations in human hepatocellular carcinomas. Oncogene 26, 774-780 (2007).
    
    33. Giles, R. H., van Es, J. H. & Clevers, H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta 1653, 1-24 (2003).
    
    34. Taipale, J. & Beachy, P. A. The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349-354 (2001).
    
    35. Taniguchi, K. et al. Mutational spectrum of beta-catenin, AXIN1. and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 21, 4863-4871 (2002).
    
    36. Satoh, S. et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat. Genet. 24, 245-250 (2000).
    
    37. Higashitsuji, H., Liu, Y., Mayer, R. J. & Fujita, J. The oncoprotein gankyrin negatively regulates both p53 and RB by enhancing proteasomal degradation. Cell Cycle 4, 1335-1337(2005).
    
    38. Kolligs, F. T., Hu, G., Dang, C. V. & Fearon, E. R. Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol. Cell Biol. 19, 5696-5706 (1999).
    
    39. Holnthoner, W. et al. Fibroblast growth factor-2 induces Lef/Tcf-dependent transcription in human endothelial cells. J. Biol. Chem. 277, 45847-45853 (2002).
    
    40. sbois-Mouthon, C. et al. Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene 20, 252-259 (2001).
    41. Lozano, G. & Zambetti, G. P. Gankyrin: an intriguing name for a novel regulator of p53 and RB. Cancer Cell 8, 3-4 (2005).
    
    42. Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241 (1997).
    
    43. Eastman, Q. & Grosschedl, R. Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr. Opin. Cell Biol. 11, 233-240 (1999).
    
    44. Buendia, M. A. Genetics of hepatocellular carcinoma. Semin. Cancer Biol. 10, 185-200(2000).
    
    45. Inagawa, S. et al. Expression and prognostic roles of beta-caten in in hepatocellular carcinoma: correlation with tumor progression and postoperative survival. Clin. Cancer Res. 8, 450-456 (2002).
    
    46. Umemura A, Itoh Y, Itoh K, et al. Association of gankyrin protein expression with early clinical stages and insulin-like growth factor-binding protein 5 expression in human hepatocellular carcinoma. Hepatology. 47, 493-502 (2007).
    1.Barclay,A.N.& Brown,M.H.The SIRP family of receptors and immune regulation.Nat.Rev.Immunol.6,457-464(2006).
    2.Liu,Y.et al.Signal regulatory protein(SIRPalpha),a cellular ligand for CD47,regulates neutrophil transmigration.J.Biol.Chem.277,10028-10036(2002).
    3.Cambier,J.C.Inhibitory receptors abound? Proc.Natl,Acad.Sci.U.S.A 94,5993-5995(1997).
    4.Kharitonenkov,A.et al.A family of proteins that inhibit signalling through tyrosine kinase receptors.Nature 386,181-186(1997).
    5.Oshima,K.,Ruhul Amin,A.R.,Suzuki,A.,Hamaguchi,M.& Matsuda,S.SHPS-1,a multifunctional transmembrane glycoprotein.FEBS Lett.519,1-7(2002).
    6.Fujioka,Y.et al.A novel membrane glycoprotein,SHPS-1,that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion.Mol.Cell Biol.16,6887-6899(1996).
    7.Timms,J.F.et al.Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages.Mol.Cell Biol.18,3838-3850(1998).
    8.Takada,T.et al.Roles of the complex formation of SHPS-1 with SHP-2 in insulin-stimulated mitogen-activated protein kinase activation.J.Biol.Chem.273,9234-9242(1998).
    9.Takeda,K.& Akira,S.Toll-like receptors in innate immunity.Int.Immunol.17,1-14(2005).
    10.Inagaki,K.et al.SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility.EMBO J.19,6721-6731(2000).
    11.Wu,C.J.,Chen,Z.,Ullrich,A.,Greene,M.I.& O'Rourke,D.M.Inhibition of EGFR-mediated phosphoinositide-3-OH kinase(PI3-K) signaling and glioblastoma phenotype by signal-regulatory proteins(SIRPs).Oncogene 19,3999-4010(2000).
    12.Neznanov,N.et al.Dominant negative form of signal-regulatory protein-alpha (SIRPalpha/SHPS-1) inhibits,tumor necrosis factor-mediated apoptosis by activation of NF-kappa B.J.Biol.Chem.278,3809-3815(2003).
    13.Beutler,B.Tlr4:central component of the sole mammalian LPS sensor.Curr.Opin.Immunol.12,20-26(2000).
    14.Kawai,T.& Akira,S.TLR signaling.Cell Death.Differ.13,816-825(2006).
    15.Honda,K.& Taniguchi,T.IRFs:master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors.Nat.Rev.Immunol.6,644-658(2006).
    16.Honda,K.,Yanai,H.,Takaoka,A.& Taniguchi,T.Regulation of the type ⅠIFN induction:a current view.Int.Immunol.17,1367-1378(2005).
    17.Yoneyama,M.et al.Direct triggering of the type Ⅰ interferon system by virus infection:activation of a transcription factor complex containing IRF-3 and CBP/p300.EMBO J.17,1087-1095(1998).
    18.Banchereau,J.& Pascual,V.Type Ⅰ interferon in systemic lupus erythematosus and other autoimmune diseases.Immunity.25,383-392(2006).
    19.Theofilopoulos,A.N.,Baccala,R.,Beutler,B.& Kono,D.H.Type Ⅰinterferons(alpha/beta) in immunity and autoimmunity.Annu.Rev.Immunol.23,307-336(2005).
    20.Alexopoulou,L.,Holt,A.C.,Medzhitov,R.& Flavell,R.A.Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3.Nature 413,732-738(2001).
    21.Yoneyama,M.et al.The RNA helicase RIG-Ⅰ has an essential function in double-stranded RNA-induced innate antiviral responses.Nat.Immunol.5, 730-737(2004).
    22.Veillette,A.,Thibaudeau,E.& Latour,S.High expression of inhibitory receptor SHPS-1 and its association with protein-tyrosine phosphatase SHP-1in macrophages.J.Biol.Chem.273,22719-22728(1998).
    23.Adams,S.et al.Signal-regulatory protein is selectively expressed by myeloid and neuronal cells.J.Immunol.161,1853-1859(1998).
    24.Fitzgerald,K.A.et al.IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway.Nat.Immunol.4,491-496(2003).
    25.Ganster,R.W.,Taylor,B.S.,Shao,L.& Geller,D.A.Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B.Proc.Natl.Acad.Sci.U.S.A 98,8638-8643(2001).
    26.Hsu,L.C.et al.The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4.Nature 428,341-345(2004).
    27.Sakaguchi,S.et al.Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock.Biochem.Biophys.Res.Commun.306,860-866(2003).
    28.Maniatis,T.et al.Structure and function of the interferon-beta enhanceosome.Cold Spring Harb.Symp.Quant.Biol.63,609-620(1998).
    29.Sarkar,S.N.et al.Novel roles of TLR3 tyrosine phosphorylation and PI3kinase in double-stranded RNA signaling.Nat.Struct.Mol.Biol.11,1060-1067(2004).
    30.Kong,X.N.et al.LPS-induced down-regulation of signal regulatory protein contributes to innate immune activation in macrophages.J.Exp.Med.204,2719-2731(2007).
    1. Akira S, Takeda K and Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2: 675-680
    
    2. Lemaitre B, Nicolas E, Michaut L, Reichhart JM and Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973-983
    
    3. Hoffmann JA (2003) The immune response of Drosophila. Nature 426: 33-38
    
    4. Medzhitov R, Preston-Hurlburt P and Janeway CJ (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394-397
    
    5. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B and Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085-2088
    
    6. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K and Akira S (1999) Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162: 3749-3752
    
    7. Takeda K and Akira S (2005) Toll-like receptors in innate immunity. Int. Immunol. 17:1-14
    
    8. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K and Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gramnegative and gram-positive bacterial cell wall components. Immunity 11: 443-451
    
    9. Takeuchi O, Kaufmann A, Grote K, Kawai T, Hoshino K, Morr M, Muhlradt PF and Akira S (2000) Preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164: 554-557
    
    10. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL and Akira S (2002) Role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169: 10-14
    
    11. Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K and Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13:933-940
    
    12. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L and Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 97: 13766-13771
    
    13. Alexopoulou L, Holt AC, Medzhitov R and Flavell RA(2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732-738
    
    14. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM and Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099-1103
    
    15. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA and Ghosh S (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303: 1522-1526
    
    16. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S and Sher A (2005) TLR11 activation of dendritic cells by a protozoan - 94 -ignaling-like protein. Science 308: 1626-1629
    
    17. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K and Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3: 196-200
    
    18. Diebold SS, Kaisho T, Hemmi H, Akira S and Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303: 1529-1531
    
    19. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H and Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303: 1526-1529
    
    20. Heil F, Ahmad-Nejad P, Hemmi H, Hochrein H, Ampenberger F, Gellert T, Dietrich H, Lipford G, Takeda K, Akira S, Wagner H and Bauer S (2003) The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7 8 and 9 subfamily. Eur. J. Immunol. 33: 2987-2997
    21. Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G and Bauer S (2002) Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3: 499
    
    22. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A and Flavell RA (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 101: 5598-5603
    
    23. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S and Hartmann G (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11: 263-270
    
    24. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K and Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408: 740-745
    
    25. Krug A, French AR, Barchet W, Fischer JA, Dzionek A, Pingel JT, Orihuela MM, Akira S, Yokoyama WM and Colonna M (2004) TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21:107-119
    
    26. Lund J, Sato A, Akira S, Medzhitov R and Iwasaki A (2003) Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198:513-520
    
    27. Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, Horii T and Akira S (2005) Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J. Exp. Med. 201: 19-25
    
    28. Iwasaki A and Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5: 987-995
    
    29. Akira S and Takeda K (2004) Toll-like receptor - 95 -ignaling. Nat. Rev. Immunol. 4:499-511
    
    30. Karin M and Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5: 749-759
    
    31. Shaulian E and Karin M (2002) AP-1 as a regulator of cell life and death. Nat. Cell. Biol. 4: 131-136
    
    32. Kobayashi K, Hernandez LD, Galan JE, Janeway Jr. CA, Medzhitov R and Flavell RA (2002) IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110: 191-202
    
    33. Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C, Takada H, Wakeham A, Itie A, Li S, Penninger JM, Wesche H, Ohashi PS, Mak TW and Yeh WC (2002) Severe impairment of interleukin-1 and Toll-like receptor - 96 -ignaling in mice lacking IRAK-4. Nature 416: 750-756
    
    34. Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K, Soudais C, Dupuis S, Feinberg J, Fieschi C, Elbim C, Hitchcock R, Lammas D, Davies G, Al-Ghonaium A, Al-Rayes H, Al-Jumaah S, Al-Hajjar S, Al-Mohsen IZ, Frayha HH, Rucker R, Hawn TR, Aderem A, Tufenkeji H, Haraguchi S, Day NK, Good RA, Gougerot-Pocidalo MA, Ozinsky A and Casanova JL (2003) Pyogenip bacterial infections in humans with IRAK-4 deficiency. Science 299: 2076-2079
    
    35. Chen ZJ (2005) Ubiquitin - 96 -ignaling in the NF-kappaB pathway. Nat. Cell Biol. 7: 758-765
    
    36. Sun L and Chen ZJ (2004) The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol. 16: 119-126
    
    37. Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O and Akira S (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 6: 1087-1095
    
    38. Huang Q, Yang J, Lin Y, Walker C, Cheng J, Liu ZG and Su B (2004) Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat. Immunol. 5:98-103
    
    39. Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, Lin JH, Patriotis C, Jenkins NA, Copeland NG, Kollias G and Tsichlis PN (2000) TNFalpha induction by LPS is regulated posttranscriptionally via a Tp12/ERKdependent pathway. Cell 103: 1071-1083
    
    40. Sugimoto K, Ohata M, Miyoshi J, Ishizaki H, Tsuboi N, Masuda A, Yoshikai Y, Takamoto M, Sugane K, Matsuo S, Shimada Y and Matsuguchi T (2004) A serine/threonine kinase Cot/Tpl2 modulates bacterial DNA-induced IL-12 production and Th cell differentiation. J. Clin. Invest. 114: 857-866
    
    41. Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S, Kaisho T, Hoshino K, Takeuchi O, Kobayashi M, Fujita T, Takeda K and Akira S (2002) Essential role for TIRAP in activation of the - 96 -ignaling cascade shared by TLR2 and TLR4. Nature 420: 324-329
    
    42. Horng T, Barton GM, Flavell RA and Medzhitov R (2002) The adaptor molecule TIRAP provides - 97 -ignaling specificity for Toll-like receptors. Nature 420: 329-333
    
    43. Kawai T, Takeuchi O, Fujita T, Inoue J, Muhlradt PF, Sato S, Hoshino K and Akira S (2001) Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167: 5887-5894
    
    44. Hacker H, Vabulas R.M, Takeuchi O, Hoshino K, Akira S and Wagner H (2000) Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J. Exp. Med. 192:595-600
    
    45. Schnare M, Holt A.C, Takeda K, Akira S and Medzhitov R (2000) Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88.Curr.Biol. 10: 1139-1142
    
    46. Kawai T, Adachi O, Ogawa T, Takeda K and Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115-122
    
    47. Theofilopoulos AN, Baccala R, Beutler B and Kono DH (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu. Rev. Immunol. 23: 307-336
    
    48. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K and Akira S (2002) A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J. Immunol. 169:6668-6672
    
    49. Oshiumi H, Matsumoto M, Funami K, Akazawa T and Seya T (2003) TICAM-1 an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4: 161-167
    
    50. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K and Akira S (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301: 640-643
    
    51. Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J and Beutler B (2003) Identification of Lps2 as a key transducer of MyD88-independent TIR - 97 -ignaling. Nature 424:743-748
    52. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K and Akira S (2003) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4: 1144-1150
    
    53. Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M and Tschopp J (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappaB activation. Nat. Immunol. 5: 503-507
    
    54. Cusson-Hermance N, Lee TH, Fitzgerald KA and Kelliher MA (2005) Rip1 mediates the Trif-dependent toll-like receptor 3 and 4-induced NF-kappa B activation but does not contribute to IRF-3 activation. J. Biol. Chem. 280: 36560-36566
    
    55. Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K and Akira S (2003) Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1 and activates two distinct transcription factors NF-kappa B and IFN-regulatory factor-3 in the Toll-like receptor signaling. J. Immunol. 171: 4304-4310
    
    56. Gohda J, Matsumura T and Inoue J (2004) TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domaincontaining adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J. Immunol. 173: 2913-2917
    
    57. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R and Hiscott J (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148-1151
    
    58. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM and Maniatis T (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4: 491-496
    
    59. McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT and Maniatis T (2004) IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc. Natl. Acad. Sci. USA 101: 233-238
    
    60. Hemmi H, Takeuchi O, Sato S, Yamamoto M, Kaisho T, Sanjo H, Kawai T, Hoshino K, Takeda K and Akira S (2004) The roles of two IkappaB kinaserelated kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199: 1641-1650
    
    61. Perry AK, Chow EK, Goodnough JB, Yeh WC and Cheng G (2004) Differential requirement for TANK-binding kinase-1 in type I interferon responses to Tolllike receptor activation and viral infection. J. Exp. Med. 199: 1651-1658
    
    62. Colonna M, Trinchieri G and Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5: 1219-1226
    
    63. Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23: 275-306
    
    64. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N and Taniguchi T (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434: 772-777
    
    65. Kawai T, Sato S, Ishii K.J, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O and Akira S (2004) Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5: 1061-1068
    
    66. Honda K, Yanai H, Mizutani T, Negishi H, Shimada N, Suzuki N, Ohba Y, Takaoka A, Yeh WC and Taniguchi T (2004) Role of a transductionaltranscriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc. Natl. Acad. Sci. USA 101: 15416-15421
    
    67. Hemmi H, Kaisho T, Takeda K and Akira S (2003) The roles of Toll-like receptor 9 MyD88 and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J. Immunol. 170: 3059-3064
    
    68. Coccia EM, Severa M, Giacomini E, Monneron D, Remoli ME, Julkunen I, Cella M, Lande R and Uze G (2004) Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur. J. Immunol. 34: 796-805
    
    69. Dai J, Megjugorac NJ, Amrute SB and Fitzgerald-Bocarsly P (2004) Regulation of IFN regulatory factor-7 and IFN-alpha production by enveloped virus and lipopolysaccharide in human plasmacytoid dendritic cells. J. Immunol. 173: 1535-1548
    
    70. Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H, Takeshita F, Matsuda M, Coban C, Ishii KJ, Kawai T, Takeuchi O and Akira S (2005) Interleukin-1 receptor-associated kinase-1 (IRAK-1) plays an essential role for TLR7- and TLR9-mediated interferon-a induction. J. Exp. Med. 201: 915-923
    
    71. Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, Kano SI, Honda K, Ohba Y, Mak TW and Taniguchi T (2005) Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434: 243-249
    
    72. Lin R, Yang L, Arguello M, Penafuerte C and Hiscott J (2005) A CRM1 -dependent nuclear export pathway is involved in the regulation of IRF-5 subcellular localization. J. Biol. Chem. 280: 3088-3095
    
    73. Schoenemeyer A, Barnes BJ, Mancl ME, Latz E, Goutagny N, Pitha PM, Fitzgerald KA and Golenbock DT (2005) The interferon regulatory factor IRF5 is a central mediator of TLR7 signaling. J. Biol. Chem. 280: 17005-17012
    
    74. Tsujimura H, Tamura T, Kong HJ, Nishiyama A, Ishii KJ, Klinman DM and Ozato K (2004) Toll-like receptor 9 signaling activates NF-kappaB through IFN regulatory factor-8/IFN consensus sequence binding protein in dendritic cells. J. Immunol. 172: 6820-6827
    
    75. Hornung V, Schlender J, Guenthner-Biller M, Rothenfusser S, Endres S, Conzelmann KK and Hartmann G (2004) Replication-dependent potent IFNalpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus. J. Immunol. 173:5935-5943
    
    76. Krug A, Luker GD, Barchet W, Leib DA, Akira S and Colonna M (2004) Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103: 1433-1437
    
    77. Edelmann KH, Richardson-Burns S, Alexopoulou L, Tyler KL, Flavell RA and Oldstone MB (2004) Does Toll-like receptor 3 play a biological role in virus infections? Virology 322: 231-238
    
    78. Lopez CB, Moltedo B, Alexopoulou L, Bonifaz L, Flavell RA and Moran TM (2004) TLR-independent induction of dendritic cell maturation and adaptive immunity by negative-strand RNA viruses. J. Immunol. 173: 6882-6889
    
    79. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S and Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5: 730-737
    
    80. Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T, Takeuchi O and Akira S (2005) Cell type specific involvement of RIG-I in antiviral response. Immunity 23: 19-28
    
    81. Kang DC, Gopalkrishnan RV, Wu Q, Jankowsky E, Pyle AM and Fisher PB (2002) mda-5: An interferon-inducible putative RNA helicase with doublestranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc. Natl. Acad. Sci. USA 99: 637-642
    
    82. Kovacsovics M, Martinon F, Micheau O, Bodmer JL, Hofmann K and Tschopp J (2002) Overexpression of Helicard a CARD-containing helicase cleaved during apoptosis accelerates DNA degradation. Curr. Biol. 12: 838-843
    
    83. Andrejeva J, Childs KS, Young DF, Carlos TS, Stock N, Goodbourn S and Randall RE (2004) The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase mda-5 and inhibit its activation of the IFN-beta promoter. Proc. Natl. Acad. Sci. USA 101: 17264-17269
    
    84. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale MJ, Akira S, Yonehara S, Kato A and Fujita T (2005) Shared and unique functions of the DexD/H-Box helicases RIG-I MDA5 and LGP2 in antiviral innate immunity. J. Immunol. 175: 2851-2858
    
    85. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O and Akira S (2005) IPS-1; an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6: 981-988
    
    86. Seth RB, Sun L, Ea CK and Chen ZJ (2005) Identification and characterization of MAVS a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF3. Cell 122: 669-682
    
    87. Xu LG, Wang YY, Han KJ, Li LY, Zhai Z and Shu HB (2005) VISA Is an adapter protein required for virus-triggered IFN-beta signaling. Mol. Cell 19: 727-740
    
    88. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R and Tschopp J (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167-1172
    
    89. Balachandran S, Thomas E and Barber GN (2004) A FADD-dependent innate immune mechanism in mammalian cells. Nature 432: 401-405

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700