用户名: 密码: 验证码:
产多糖根瘤菌Q32对硅酸盐矿物的风化作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物与矿物的相互作用是自然界中普遍存在的一种地质作用,可分为直接作用和间接作用两种方式,直接作用是指微生物与矿物直接接触时,在细菌-矿物界面形成有利于矿物风化的微环境,间接作用是指微生物的代谢产物对矿物的化学降解作用。本文研究的主要是微生物与矿物的直接作用,对微生物与矿物相互作用的作用机理进行探讨,尤其是微生物多糖在矿物分解中所起的作用。
     供试菌株为实验室保存的一株产胞外多糖根瘤菌Q32,本文在摇瓶培养的条件下,研究了菌株Q32对不同结构硅酸盐矿物的风化作用。结果表明,在0-21d的培养过程中,Q32对钾长石、黑云母、金云母和伊利石均有一定的风化效应。培养21d,接活菌处理发酵液中硅离子含量达到最高,比接灭活菌对照增加138-162%。菌株Q32在以上述硅酸盐矿物为唯一钾源的培养基中生长可形成较多的胞外多糖,且在细菌培养的第7d多糖含量最高,达9.46 g.L-1。
     通过扫描电镜(SEM)观察,发现Q32对矿粉颗粒发生了溶蚀作用,矿物表面变得凹凸不平,有腐蚀坑出现,在矿物表面有生物膜形成;能谱(EDS)分析表明,接菌21d后矿物表面的Si、Al含量分别比原始矿物的Si、Al含量低,可以看出矿物上的金属离子被释放出来,Q32对矿物有一定的风化作用。
     不同培养条件下Q32所产胞外多糖的分析表明,在培养基加供试矿物的条件下菌株所产多糖与培养基不加矿物所产多糖相比,多糖的含量增加5.8-17.3%,说明矿物能够刺激细菌产糖。气相色谱分析表明,菌株所产多糖为杂多糖,主要是由鼠李糖、木糖、甘露糖、葡萄糖和半乳糖五种单糖组成,从红外图谱上可以找到多糖的特征吸收峰,多糖的红外光谱和单糖组分分析结果表明,在不同条件下所产多糖的结构没有发生明显变化。
     纯化后的胞外多糖对不同硅酸盐矿物的溶解试验表明,酸性多糖对矿物有风化作用,主要是因为羧基等酸性基团的螯合作用。多糖中吸附的有机酸有葡萄糖酸,酒石酸和苹果酸,有机酸的浓度分别仅为0.31 mM、0.27 mM和0.29 mM,但低浓度的有机酸并不足以对矿物产生风化作用,本研究表明供试矿物的风化作用主要是由Q32分泌的胞外多糖的溶解作用引起的。
The interaction between minerals and microorganisms is a common geological process in nature. Microorganisms can promote the dissolution of minerals by direct and indirect mechanisms. The direct mechanism refers to the formation of microenvironment in bacteria-mineral interface when microbes and minerals contract directly, which can promote the dissolution of minerals. The indirect mechanism means the chemical degradation effect of metabolites of microbes on minerals. In this study, the role of microbial polysaccharides produced by Rhizobium sp. Q32 in the silicate mineral weathering was investigated.
     In this paper, the effect of polysaccharide-producing Rhizobium sp. Q32 on silicate minerals weathering was studied in shaking-flask condition. The result showed that during 21 days of culturing, Rhizobium sp. Q32 could promote the dissolution of K-feldspar, biotite, phlogopite and illite. After 21 days of incubation, the concentration of silicon in solution was increased by 138-162% compared with the control, indicating that the strain Q32 could promote the tested silicate mineral weathering. By using the media containing silicate mineral as the only potassium source, the strain Q32 excreted expolysaccharide, which reached the highest concentration-9.46 mg/L on the 7th day of incubation.
     The mineral samples were collected and analzyzed by means of scanning electron microscope (SEM), it was observed that the surfaces of minerals were coated with biofilm and corroded pits were formed on mineral surfaces. Energy dispersive spectronmeter (EDS) images showed that the relative concentrations of Si and Al on the mineral surfaces were lower than those on raw mineral after 21 days of incubation, which demonstrated that metal ions were released from silicate minerals surfaces.
     Isolation, purification and analysis of the monosaccharide compositions of expolysaccharide were carried out by the means of UV, IR and GC. The concentration of expolysaccharide produced by strain Q32 in the mineral-containing medium increasd by 5.8-17.3% compared with those in the mineral-free medium, which indicated that minerals can stimulate the the production of expolysacchrides. Rhamnose, Xylose, Galactose, Mannose and Glucose constituted the monosaccharide composition of the expolysacchrides. Characteristic absorption peaks of the polysaccharides could be found from the IR spectra. Analysis of monosaccharide composition of expolysaccharides showed that the structure of the expolysaccharide produced under different contions had not changed.
     Purified expolysaccharide could dissolve silicate minerals, mainly due to chelation caused by acid group of the expolysaccharide such as carboxyl. Organic acids such as gluconic acid, tartaric acid and malic acid were aborbed in the expolysaccharide, the concentration of them were only 0.31 mM、0.27 mM and 0.29 mM, respectively. But mineral weathering could not occurred with low concentrations of organic acids, so it indicated that extracellular polysaccharides produced by the strain Q32 played the main role in the mineral weathering in this study.
引文
1. Baker W W and Banfilield J F. Biologically versus inorganically medicated weathering reactions: Relationships between minerals and extracellular microbial polymers in lithobiontic communities [J]. Chemical Geology,1996,132:5-69.
    2. Baker W W and hurst V J. Bacterial trace fossils in Eocene kaolin of the Huber Formation of Georgia [J]. Phyloderma microsphaerorides,1992,2:55-60.
    3. Banfild J, Baker W, Welch S, Taunton A. Biological impact on mineral dissolution:application of the lichen model to understanding mineral weathering in the rhizosphere [J]. Proceeding of National Academy of Sciences,1999,96:3404-3411.
    4. Barker W W, Welch S A, Chu S, Banfield J F. Experimental obzervation of the effects of bacteria on aluminosilicate weathering [J]. American Mineralogist,1998,83:1551-1563.
    5. Bennett P C, Rogers J R, Choi W J and Hiebert F K.. Silicates, silicate weathering, and microbial ecology [J]. Geomicrobiology Journal,2001,18:3-19.
    6. Beveridge T J. Role of cellular design in bacterial metal accumlation and mineralization [J]. Annual Review Microbiology,1989,43:147-171.
    7. Bitton G and Friehofer V. Influence of extracellular polysaccharides on the toxicity of copper and cadmium toward klesiella aerogenes [J]. Microbial Ecology,1978,4:119-128.
    8. Blum A, Lasaga A C. Role of surface speciation in the low temperature dissolution of minerals [J]. Nature,1988,331:431-433.
    9. Blake R E, Walter L M. Kinetics of feldspar and quartz dissolution at 70-80℃ and near-neutral pH: Effects of organic acids and NaCl [J]. Geochimica Cosmochimica Acta,1999,63:2043-2059.
    10. Burne R V, Moore I S. Microbialites:Organosedimentary deposits of benthic microbial communities [J]. Palaios,1987,2:241-254.
    11. Chan C S, De S G, Welch S A, Girasole M, Frazer B H, Nesterova M V, Fakra S, Banfield F J. Microbial polysaccharides template assembly of nanocrystal fibers [J]. Science,2004,303: 1656-1658.
    12. Comte S, Guibaud G, Baudu M. Relationship between protocol for activated sludge extracellular polymeric substance (EPS) and EPS complexation properties Part I. Comparison of the efficiency of eright EPS extraction methods [J]. Enzyme and Microbial Technology,2006,38:237-245.
    13. Decho A. W. Microbial biofilms in intertidal systems:an interview [J]. Continental Shelf Research, 2000,20:1257-1253.
    14. Del Gallo M and Haegi A. Characterization and quantification of exoceliular polysaccharides in Azospirillum brasilense and Azospirillum lipoferum [J]. Symbiosis,1990,9:155-161.
    15. Deo N, Natarajan K A. and Somasundaran P. Mechanisms of adhesion of paenibacillus polymyxa onto hematite, corundum and quartz [J]. International Journal of Mineral Processing,2001,62: 27-39.
    16. Drever J I and Vance G F. Role of soil organic acids in mineral weathering processes [J]. Springer, 1994,138-161.
    17. Ehrlich H L.2002. Geomicrobiology [M]. Marcel Dekker, Inc., New York.
    18. Ehrlich H L. Geomicrobiology:its significance for geology [J]. Earth Science Reviews,1998,45: 45-60.
    19. Ehrlich H L. How microbe influence mineral growth and dissolution [J]. Chemical Geology,1996, 132:1-3.
    20. Ferris F G., Fyfe W S, Beveridge T J. Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment [J]. Chemical Geology,1987,63:225-232.
    21. Fortin D, Farris F G, Beveridge T J. Surface mediated mineral development by bacteria [A]. Geomicrobiology:Interactions Between Microbes and Minerals [M]. Washington D C: Mineralogical Society of America,1997:161-180.
    22. Friedrich S, Platonova N P, Karavaiko G I. Chemical and microbiological solution of silicates [J]. Acta Biotechnologica,1991,3:187-196
    23. Garcia B,Lemelle L,Perriat P, Tillement O, Gillet P H. Olivine surface dissolution with Escherichia coli cells [J].Geochimica et Cosmochimica Acta,2004,68:A152.
    24. Geesey G. G. and Jang L. Interactions between metal ions and capsular polymers. In:T.J. Beveridge and R.J. Doyle (Editors), Metal Ions and Bacteria, Wiley, New York, N.Y.,1989:325-357.
    25. Gehrke T, Telegdi J, Thierry D, Sand W. Importance of extracellular polymeric substance from Thiobacillus ferrooxidans for bioleaching [J]. Applied and Environmental Microbiology,1998,59: 2743-2747.
    26. Glowa K R, Arocena J M, Massicotte H B. Extraction of potassium and/or magnesium from selected soil minerals by piloderma [J]. Geomicrobiology Journal,2003,20:99-111.
    27. Gorbushina A A, Boettcher M, Brumsack H J, Wolfgang E, Krumbein and Marius V S. Biogenic forsterite and opal as a product of biodeterioration and Lichen tromatolite Formation in Table Mountain Systems(Tepuis) of Venezuela [J]. Geomicrobiology Journal,2001,18:117-132.
    28. Gregor J E, Fenton E, Van Den Brink P, and O,Sullivan B. Interactions of calcium and aluminum ions with alginate [J]. Water Reseatch,1996,30:1319-1324.
    29. Gutierrez A, Prieto A, and Martinez A T. Structural characterization of extracellular polysacchrides produced by fungi from the genus Pleurotus [J]. Carbohydrate Research.,1996,281:143-154.
    30. Ⅲmer P, Schinner F. Solubilization of inorganic calcium phosphates solubilization mechanisms [J]. Soil Biology and Biochemistry,1995,27:257-263.
    31. Khraisheh, M A M, Al-Ghouti M A, Allen S J and Ahmad M N. Effect of OH and silanol groups in the removal of dyes from aqueous sullution using diatomite [J]. Water Research,2005,39: 922-932.
    32. KuznetsovS I, InanovM V, Lyalikova M N. Introduction to Geomicrobiogy [M].New York:Mc Grag Hill,1963.
    33. Li J, Xu R, Tiwari D and Ji G. Effect of low-molecular-weight organic acids on the distribution of mobilized A1 between soil solution and solid phase [J]. Applied Geochemistry,2008,21:1750-1759.
    34. Lian B. Study on the potassium releasing from minerals by silite bacteria [M]. Guiyang:Guizhao Science and Technology Press,1998 (in Chinese).
    35. Lindberg B. Components of bacterial polysaccharides [J]. Advances in Carbohydrate chemistry and biochemistry,1990,48:279-318.
    36. Malinovskaya I M, Kosenko L V, Votselko S K and Podgorskii V S. Role of Bacillus mucilaginosus polysaccharide in degradation of silicate minerals [J]. Mikrobiologiya,1990,59: 49-55.
    37. Myers C R, Nealson N H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor [J]. Science,1988,240:1319-1321.
    38. Rogers J R, Bennett P C. Mineral stimulation of subsurface microorganisms:Release of limiting nutrients from silicates [J]. Chemical Geology,2004,203:91-108.
    39. Rogers J R, Bennett P C, Chor W J. Feldspars as a source of nutrients for microorganisms [J]. American Mineralogist,1998,83:1532-1540.
    40. Schultz-Lam S, Harauz G, and Beveridge T J. Participation of a bacterial S layer in fine-grain mineral formation [J]. Journal of Bacteriology,1992,174:7971-7981.
    41. Shortridge P G, Harris P J, Bradshaw D J, Koopal L K. The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc [J]. International Journal of Mineral Processing,2000,29:215.
    42. Sutherland I W. Bacterial exopolysaccharides [J]. Advance in Microbial Physiology,1972,6: 142-213.
    43. Sutherland I W. Biotechnology of microbial exopolysaccharides [J]. Cambridge University press,1990,163.
    44. Thompson J B and Ferris F G. Cyanobacterial precipitation of gypsum, calcite and magnesite from natural alkaline lake water [J]. Geology,1990,18:995-998.
    45. Urritia M M and Beveridge T J. Formation of fine-grained metal and silicate precipitates on a bacterial surface(Bacillus subtilis) and organic ligands [J]. Geoderma,1994,65:149-165.
    46. Vandevivere P and Kirchman D L. Attachment stimulates exopolysaccharide synthesis by a bacterium [J]. Applied and Environmental Microbiology,1993,59:1181-1186.
    47. Wallace W H, Fleming J T, White D C, and Sayler G S. An algD-bioluminescent reporter plasmid to moniter alginate production in biofilms [J]. Microbial Ecology,1994a,27:225-239.
    48. Wallace W H, Rice J F, White D C and Sayler G S. Distribution of alginate genes in bacterial isolates from corroded metal surfaces [J]. Microbial Ecology,1994b,27:213-223.
    49. Welch S A, Barker W W, Banfield J F. Microbial extracellular polysaccharide sand plagioclase dissolution [J].Geochimica et Cosmochimica Acta,1999,63:1405-1419.
    50. Welch S A, Ullman W J. The effect of organic acids on plagioclase dissolution rates and stoichiometry [J]. Geochim. Cosmochim. Acta,1993,57:2725-2736.
    51. Welch S A, Taunton A E. and Banfield J F. Effect of microorganisms and microbial metabolites on apatite dissolution [J]. Geomicrobiology Journal,2002,19:343-367.
    52. Sheng X F, Zhao F, He L Y, Qiu G and Chen L. Isolation and charaterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar [J]. Canadian Journal of Microbiology,2009,54:1064-1068.
    53. Zhang H, Bloom P R. Dissolution kinetics of hornblende in organic acid solutions [J]. Soil Science Society of America Journal,1999,63:815-822.
    54.陈骏,姚索平,季峻峰,等.微生物地球化学及其研究发展[J].地质评论,2004,50(6):620-631.
    55.陈骏,姚索平.地质微生物学及其发展方向[J].高校地质学报,2005,11(2):154-166.
    56.崔艳红,黄现青.微生物胞外多糖的研究进展[J].生物技术通报,2006,2:25-28.
    57.戴金凤,李磊.紫萁多糖单糖组成及摩尔比GC分析[J].江西农业大学学报.2001,23(4):492-494.
    58.戴永定,宋海明,沈继英.河北宣龙铁矿化石细菌[J].中国科学(D辑),2003,33(8):751-759.
    59.董洪新.阿魏侧耳多糖的分离纯化与抗肿瘤活性的研究[D].华中农业大学,2001.
    60.杜叶,周雪萤,连宾.胶质芽孢杆菌的胞外分泌物与细菌的解钾作用[J].地质前缘,2008,6:107-111.
    61.黄赵刚,李绍平,夏泉,刘志荣,张平.不同产地黄精中糖醛酸含量的比较[J].中国医药,2004,7(6):433-434.
    62.李静.一株多糖高产菌株的研究与应用[D].贵州大学,2006.
    63.连宾.硅酸盐细菌GY92对伊利石的解钾作用[J].矿物学报.1998,18(2):234-237.
    64.连宾,傅平秋,莫德明,刘从强.硅酸盐细菌解钾作用机理的综合效应[J].矿物学报.2002,22(2):179-183.
    65.陆引罡,钱晓刚,龙键.硅酸盐细菌对含钾矿物的解钾作用[J].贵州农业科学,1999,27(3):26-28.
    66.刘五星,徐旭士,杨启银,等.胶质芽孢杆菌对土壤矿物的分解作用及机理研究[J].土壤,2004,35(5):547-550.
    67.吕俊,杨阳.三种微生物多糖的研究进展[J].中国食品添加剂,2007,1:117-121.
    68.仇刚.高效硅酸盐矿物分解细菌的分离筛选及其与硅酸盐矿物相互作用机制研究[D].南京农业大学,2008.
    69.仇刚,何琳艳,陈亮,赵飞,黄智,盛下放.一株分解硅酸盐矿物芽孢杆菌的筛选及其生物学特性的研究[J].土壤,2009,41(4):676-679.
    70.宋绍富,崔吉,罗一菁,雷光伦,张忠智.微生物多糖的研究进展[J].油田化学,2004,21(1):91-96.
    71.盛下放,黄为一.硅酸盐细菌NBT菌株解钾机理初探[J].土壤学报,2002,39(6):863-871.
    72.孙德四,张贤珍,张强.硅酸盐细菌代谢产物对硅酸盐矿物的浸溶作用研究[J].矿冶工程,2006,26(3):27-34.
    73.孙玉军,陈彦,王洵,李燕斐.密环菌胞外多糖的分离纯化及其性质分析[J].安徽大学学报(自然科学版),2005,29(5):87-91.
    74.孙元琳.当归多糖的制备、结构分析和抗辐射效应研究[D].江南大学,2006.
    75.王鹏.新型胞外多糖产生菌phyllobacterium sp. nov.921F及其多糖结构的研究[D].中国海洋大学,2006.
    76.王瑞琼,张红星,熊利霞,易欣欣,刘慧.乳酸菌胞外多糖分离纯化方法研究进展[J].食品科学,2008,29(8):700-703.
    77.王文华,王东升,姜戈.低分子量有机酸对钾长石中结构钾释放的影响研究[J].辽宁农业科学,2005(3):9-11.
    78.王习达.苯酚对铜绿微微囊藻生长的影响及铜绿微囊藻酸性多糖的分离与结够、功能分析[D].南京师范大学,2004.
    79.吴涛,陈骏,连宾.微生物对硅酸盐矿物风化作用研究进展[J].矿物岩石地球化学通报,2007,26(3):263-273.
    80.徐桂云,陈汝贤,常理文.用毛细管气相色谱法测定多糖中单糖的组成[J].分析测试学报,2000,19(3):71.
    81.张艳萍,俞远志.气相色谱法分析羊栖菜多糖的单糖组成及其含量[J].粮油食品科技,2006,14(2):50-52.
    82.张在海,胡岳华,邱冠周,等.从细菌学角度探讨硫化矿物的细菌浸出[J].矿冶工程,2000,20(2):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700