用户名: 密码: 验证码:
微污染原水处理过程中溴代/碘代消毒副产物形成特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于大量的污染物,尤其是有机污染物通过不同的方式进入水体,使饮用水水源受到日趋广泛的微污染,且污染程度呈增加趋势,因而微污染原水中浓度更高、种类更多的污染物致使消毒副产物(disinfection byproducts, DBPs)的前驱物从过去的腐殖酸(humic acid, HA)和富里酸(fulvicacid, FA),目前已扩大到藻细胞物质、藻类胞外分泌有机物(extra-cellular organic matters, EOMs)以及其他一些重要来源的潜在有机物。本文具体针对微污染原水中生物源有机前驱物的存在特征和沿海地区水源易受咸潮入侵影响的特征,全面探讨微污染原水处理过程中溴代/碘代DBPs的生成特性,从而为建立饮用水厂风险控制技术和工程示范提供大量可供参考的技术指标。
     本论文以微污染原水甲和微污染内河水乙为研究切入点,于国内首次对两类代表性微污染原水及其经饮用水常规处理工艺(A水厂)和生物深度处理工艺(B水厂)各处理单元段内碘代DBPs的已有种类及生成潜能种类进行定性分析研究,首次于B水厂氯胺消毒、砂滤两单元段及出水中分别检测到CHCl2I和CHBrClI两种碘代DBPs。并在此基础上,重点针对无机前驱物溴或碘的影响变化,进一步探讨两类微污染原水在不同处理工艺内溴代/碘代DBPs的生成规律。经研究发现,在溴离子浓度不断升高过程中,A水厂各单元段THM4的生成浓度受溴离子浓度影响较大。原水、混凝沉淀、砂滤及出水中CHCl3的浓度为2.02-4.58μg/L, CHCl2Br浓度为3.53-9.93μg/L, CHClBr2浓度为15.31-35.03μg/L, CHBr3为94.95-158.35μg/L;当溴离子浓度为1mg/L时,各段内CHBr3浓度均已超出国家饮用水卫生标准规定的限值;而B水厂各段内THM4的生成水平受溴离子浓度影响较少,各DBPs浓度均低于A水厂且无超标风险。在碘离子浓度不断升高过程中,两水厂各段均以CHCl2I和CH2I2为主要DBPs。A水厂各段内CHCl2I的生成水平在6.06-20.83μg/L范围,始终高于CH2I2的2.36-10.06μg/L浓度水平;当碘离子浓度为3mg/L时,微污染原水甲生成的CHCl2I和CH2I2浓度达最高,即分别为20.83μg/L和10.06μg/L。B水厂情况刚好相反,各段内CH2I2的生成水平在1.01-9.781μg/L范围,略高于CHCl2I的1.27-6.19μg/L浓度水平,且氯胺消毒段生成CHCl2I和CH2I2的浓度最高。此外,碘离子浓度升高过程中,两水厂各段THM4的浓度一直维持在较低水平,且呈逐渐下降趋势;B水厂氯胺消毒、砂滤和出水各段内CHCl2Br,CHClBr2和CHBr3的生成水平不仅高于其他单元段,且高于A水厂各段内这三种溴代DBPs的浓度。
     以牛血清蛋白(BSA)、淀粉、腐殖酸(HA)、鱼油和DNA分别模拟微污染原水中生物源有机物的五种主要成分,即蛋白质、多糖、HA、脂肪和DNA,研究其与海洋性无机前驱物溴或碘经氯化消毒后,溴代/碘代DBPs的生成情况。研究表明,在溴离子浓度升高过程中,各模拟生化成分生成CHC13浓度逐渐降低,CHCl2Br和CHClBr2浓度呈先升高后降低的趋势,CHBr3生成浓度则不断升高。五种模拟生化成分中,DNA对氯代/溴代DBPs生成量的影响最小;牛血清蛋白(BSA)模拟的蛋白质成分更易生成CHCl3,生成浓度最高为100.19μg/L;鱼油和HA生成的CHCl3分别为63.72μg/L和55.58μg/L,浓度水平次之。而HA模拟的腐殖酸成分更易生成CHBr3,生成浓度最高为356.05μg/L; BSA和鱼油生成CHBr3分别为258.22μg/L和193.72μg/L,浓度次之。碘离子浓度升高过程中,鱼油模拟的脂肪成分是最易生成CHCl2I的前驱物,即浓度范围为13.63-16.98μg/L。五种模拟生化成分对CHCl2I生成量的影响顺序为:鱼油>HA≈淀粉>BSA≈DNA此外,研究还发现溴离子存在时,铜绿微囊藻胞内外总有机物氯化消毒生成的DBPs种类与BSA模拟生化成分完全相同;而铜绿微囊藻EOMs生成的DBPs种类与HA模拟生化成分完全吻合;而碘离子存在时,铜绿微囊藻胞内外总有机物与EOMs氯化消毒生成DBPs的种类均为CHCl3, CHCl2I和CH2I2。
     对四种代表性微污染原水,即微污染原水甲(A水厂原水)、微污染内河水乙(B水厂原水)、微污染江水丙(C水厂原水)和D水库水经氯胺和氯消毒生成溴代/碘代DBPs的情况进行研究,结果表明微污染江水丙经氯消毒生成的总三卤甲烷(Total trihalomethanes, TTHMs)浓度高达51.61μg/L,是四种微污染原水氯消毒时生成浓度最高的水源,并且是其氯胺消毒时生成浓度的50倍。B水厂生物预处理和BAC段出水经氯胺消毒生成DBPs的种类多于氯消毒时(仅生成CHC13)的种类,且该段内TTHMs生成浓度呈升高趋势变化,致使后续砂滤段TTHMs生成浓度虽有降低,但仍与该厂原水生成水平相当;C水厂BAC段经氯胺消毒生成TTHMs浓度也同样高于该厂原水生成水平,并且BAC段不仅生成CHC13,还生成CHCl2Br, CHClBr2和CHBr3, DBPs种类也更多。D水库水经氯消毒不仅生成溴代DBPs,还生成0.42μg/L的CHCl2I;虽然生成的碘代DBPs浓度较低,但由于其具有更高的遗传毒性,因此D水库水具有碘代DBPs的生成风险仍不可忽视。
Since drinking water sources were micro-polluted by the increasingly wide range of pollutants, especially organic pollutants into the water in different ways, disinfection by-products (DBPs) precursors in micro-polluted source water have been gradually extended from humic acid (HA) and fulvic acid (FA) to the algal cells, algal extra-cellular organic matters (EOMs) and some other potential organic matters of important sources. In view of microbially-derived precursors in micro-polluted source water and inorganic precursors such as bromide and iodide due to seawater intrusion, the characterization of brominated and iodinated DBPs generated from micro-polluted source water during water treatment process are comprehensively discussed in this paper, which could provide quantities of reference for establishing drinking water risk control technology and engineering demonstration.
     The species of brominated and iodinated DBPs were investigated in two types of micro-polluted source water and in the effluents of each unit after the conventional drinking water treatment process (A plant) and the advanced drinking water treatment process (B plant). The CHCl2I and CHBrClI were identified for the first time in chloramine disinfection process, sand filtration and effluents of B plant. Furthermore, the effect of bromide and iodide on brominated and iodinated DBPs formation was explored in A and B plants. It was found that THM4 formation was largely affected by the concentrations of bromide ion in A plant. The concentrations of CHCl3 of raw water, sedimentation, filtration and effluent of A plant ranged from 2.02μ/L to 4.58μg/L, CHCl2Br ranged from 3.53μg/L to 9.93μg/L, CHClBr2 of 15.31μg/L-35.03μg/L, and CHBr3 of 94.95μg/L-158.35μg/L. When bromide ion was 1mg/L, the concentration of CHBr3 generated from A plant treatment process exceeded the national standards for drinking water limits. While THM4 level of B plant treatment process was less affected by bromide ion, and the concentrations of the specific DBPs were lower than those of A plant. With the iodide ion concentrations increased, CHCl2I and CH2I2 were the main species in effluents of A and B plants treatment process. The CHCl2I of A plant treatment process which ranged from 6.06μg/L to 13.55μg/L was higher than that of CH2I2 (2.36-10.06μg/L), while the CH2I2 from B plant treatment process which ranged from 1.01μg/L to 9.78μg/L was higher than that of CHCl2I (1.27-6.19μg/L). THM4 from A and B plants treatment process were maintained at low levels, but the concentrations of CHcl2Br, CHClBr2 and CHBr3 of chloramine disinfection process, filtration and effluent of B plant, were higher than not only other process of B plants but also the corresponding process of A plant.
     In this experiment, Bovine serum albumin, starch, humic acids, fish oil and DNA were chosen as the surrogate model compounds of microbial protein, carbohydrate, HA, lipid and DNA respectively. The brominated and iodinated DBPs formation from the model compounds in the presence of bromide or iodide were investigated. With increasing bromide ion concentration, CHCl3 decreased continuously, CHCl2Br and CHClBr2 increased initially and then decreased, and CHBr3 increased continuously. DNA produced the least chlorinated and brominated DBPs among these five model biomolecules. BSA appeared to be the most reactive precursor to produce CHCl3 (100.19μg/L), while fish oil and HA generated lower concentration of CHC13 (63.72μg/L and 55.58μg/L respectively) than BSA. HA was the most reactive to produce CHBr3 (356.05μg/L), while BSA and fishoil produced 258.22μg/L和193.72μg/L of CHBr3 respectively. However, with increasing iodide ion concentration (0-2mg/L), fish oil appeared to be important precursor of CHCl2I (13.63μg/L-16.98μg/L), and the specific contribution order to CHcl2I as follow:fish oil> HA≈starch>BSA≈DNA. Moreover, it showed that Microcystis aeruginosa cell and its EOMs generated the same DBPs species as BSA, while EOMs produced the same species as HA. With the iodide ion concentration increased, CHCl3, CHCl2I and CH2I2 were generated from both the Microcystis aeruginosa (including algal cell and its EOMs) and EOMs.
     Finally, the formation of brominated and iodinated DBPs resulting from chlorination and chloramine in various source water, including the raw water of A, B, and C drinking water treatment plants and D reservoir were investigated. The results showed that the raw water of C plants produced 50 times higher levels of TTHMs upon chlorination than those from chloramine, and the most highest concentration of TTHMs upon the chlorination among the four raw water. The DBPs species from BAC and biological pretreatment of B plants during the chloramine were more than those from the chlorination, and the concentration of TTHMs upon the chloramine increased continuously. Similarly, the levels of TTHMs from BAC of C plants were higher than that from the raw water. Not only CHCl3 was generated from BAC, but also CHClBr, CHClBr2 and CHBr3 were generated. In addition to the brominated DBPs,0.42μg/L of CHCμ2I was produced from the raw water of D reservoir. Although the levels of the iodinated DBPs was low, the risk of iodinated DBPs formation from D reservoir can not be ignored because of its higher toxicity.
引文
[1]曲久辉.饮用水安全保障技术原理.北京:科学出版社,2007.
    [2]陈萍萍.杭州市饮用水消毒副产物的分布规律及控制技术研究[D].杭州:浙江大学,2006.
    [3]Dvaid B E, Francoise A, Pascale S. Analysis of haloacetic acids in water by a novel technique:simultaneous extraction-derivatization [J]. Water Researeh,1998, 32(9):2798-2806.
    [4]Richardson S D. Water analysis:emerging contaminants and current issuses [J]. Analytical chemistry,2009,81(12):4645-4647.
    [5]Onstad G D, Winberg H S, Kransner S W. Occurrence of halogenated furanones in US drinking waters [J]. Environmental Science & Technology,2008, 42(9):3341-3348.
    [6]Richardson, S D. Formation and occurrence of disinfection by-products [J]. Environmental and Molecular Mutagenesis,2008,49(7):531-538.
    [7]吴艳.配水管网系统中消毒副产物的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [8]董丽华.香港饮用水源(东江)水氯化消毒副产物产生的特征[D].广州:暨南大学,2004.
    [9]中华人民共和国环境保护部.2008中国环境状况公报http://www.zhb.gov.cn/ 2009.
    [10]谢磊.复合铝混凝剂CPAC处理微污染原水及其卫生性能研究[J].广东化工2009,36(8):156-158.
    [11]程家迪,刘锐,陈吕军,李伟,高良敏,陈群伟.膜生物反应器处理微污染水源水的研究与应用现状[J].环境污染与防治,2009,31(4):66-71.
    [12]Noot D K, Anderson W B, Daignault S A, Williams D T, Huck P M. Evaluating treatment process with the Ames mutagenicity assay [J]. Journal of American Water Works Association,1989,81(9):87-102.
    [13]Lehtola M J, Torvinen E, Kusnetsov J, Pitkanen T, Maunula L, von Bonsdorff C H, Martikainen P J, Wilks S A, Keevil C W, Miettinen IT. Survival of Mycobacterium avium, Legionella pneumophila, Escherichia coli, and caliciviruses in drinking water-associate biofilms grown under high-shear turbulent flow [J]. Applied and Environmental Microbiology,2007,73(9):2854-2859.
    [14]September S M, Els F A, Venter S N, Brozel V S. Prevalence of bacterial pathogens in biofilm of drinking water distribution systems [J]. Journal of Water and Health,2007,5(2):219-227.
    [15]Li L, Xie S G, Zhang H, Wen D H. Field experiment on biological contact oxidation process to treat polluted river water in the Dianchi Lake watershed [J]. Frontiers of Environmental Science and Engineering in China,2009,3(1):38-47.
    [16]Li D, Zhang J, Wang H T, Chen L X, Wang H. Application of biological process to treat the groundwater with high concentration of iron and manganese [J]. Journal of Water Supply Research and Technology-Aqua,2006,55(5):313-320.
    [17]叶旭全,谢汉强,张辉,黄兴南.东深原水生物硝化工程试运行小结[J].给水排水,2000,26(2):1-5.
    [18]Siddiqui M S, Amy G L, Rice R G. Bromate ion formation:a critical review [J]. Journal of American Water Works Association,1995,87(10):58-70.
    [19]Zhai X D, Liu J F, Zhu X P. Trihalomethane formation of Macao water supply contaminated by seawater intrusion [J]. Journal of Harbin University of Commerce (Natural Sciences Edition),2006,22(l):24-27.
    [20]Luong T V, Peters C J, Perry R. Influence of bromide and ammonia upon the formation of trihalomethanes under water-treatment conditions [J]. Environmental Science & Technology,1982,16(8):473-479.
    [21]American Public Health Association, American Water Works Association, Water Environment Federation. Standard Methods for the Examination of Water and Wastewater [M]. American Public Health Association, Washington, D.C,2005.
    [22]王祖琴,李田.含溴水臭氧化过程中溴酸盐的形成与控制[J].净水技术,2001,20(2):7-11.
    [23]Cowman G, Singer P C. Effect of bromide ion on haloacetic acid speciation: resulting from chlorination and chloramination of aquatic humic substances [J]. Environmental Science & Technology,1996,30(1):16-24.
    [24]Shukairy H M, Miltner R J, Summers R S. Bromide's effect on DBP formation, speciation and control:part I, ozonation [J]. Journal of American Water Works Association,1994,86(6):72-87.
    [25]Rooka J J, Grasa A A, van der Heijdena B G, Weea J de. Bromide oxidation and organic substitution in water treatment [J]. Journal of Environmental Science and Health,1978, A13(2):91-116.
    [26]Cooper W J, Zika R G, Steinhauer M S. Bromide-oxidant interactions and THM formation:a literature review [J]. Journal of American Water Works Association,1985, 77(4):116-121.
    [27]张华,曲久辉等. 中水消毒中溴代副产物在总消毒副产物中的比例及其影 响因素[J].中国科学,2008,38(8):728-736.
    [28]Ichihashi K, Teranishi K, Ichimura A. Brominated trihalomethane formation in halogenation of humic acid in the coexistence of hypochlorite and hypobromite ions[J]. Water Research,1999,33(2):477-483.
    [29]Chang E E, Lin Y P, Chiang P C. Effects of bromide on the formation of THMs and HAAs [J]. Chemosphere,2001,43(8):1029-1034.
    [30]刘兆民,展宗城.氯胺消毒在给水中的应用[J].西北民族大学学报,2006,27(63):28-31.
    [31]Amy G, Douville C, Daw B, Sohn J, Galey C, Gatel D, Cavard J. Bromate formation under ozonation conditions to inactivate Cryptosporidium [J]. Water Science and Technology,2000,41(7):61-66.
    [32]Gretchen A, Singer P C. Effects of bromide ion on haloacetic acid speciation resulting from chlorination and chloramination of aquatic humic substances [J]. Environmental Science & Technology,1996,30(1):16-24.
    [33]Cooper W J, Zika R G, Steinhauer M S. Bromide-oxidant interactions and THM formation:a literature review [J]. Journal of American Water Works Association,1985, 77(4):116-121.
    [34]Richardson S D, Thruston A D, Rav-Acha C, Groisman L, Popilevsky I, Juraev O, Glezer V, McKague A B, Plewa M J, Wagner E D. Tribromopyrrole, brominated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide [J]. Environmental Science & Technology,2003,37(17):3782-3793.
    [35]朱世文,段存槟,程鹏.高溴湖水氯处理中卤化物的生成及分析[J].青岛建筑工程学院学报,2000,21(1):62-65.
    [36]林立,孙卫玲,倪晋仁.天然水中离子对消毒过程中挥发性卤代烃生成的影响[J].环境化学,2004,23(4):413-419.
    [37]Pourmoghaddas H, Stevens A A, Kinman R N. Effect of Bromide Ion on Formation of HAAs During Chlorination [J]. Journal of American Water Works Association,1993,85(1):82-87.
    [38]Selcuk H, Vitosoglu Y, Ozaydin S, Bekbolet M. Optimization of ozone and coagulation processes for bromate control in Istanbul drinking waters [J]. Desalination,2005,176(2):211-217.
    [39]王伟,蒋颂辉.溴酸盐的遗传毒性[J].环境与健康杂志,2003,20(3):137-138.
    [40]王晓昌.臭氧处理的副产物[J].给水排水,1998,24(12):75-77.
    [41]Westerhoff P, Song R G, Amy G, Minear R. NOM's role in bromine and bromate formation during ozonation [J]. Journal of American Water Works Association,1998, 90(2):82-94.
    [42]焦中志,陈忠林,卢伟强.氯胺消毒对三卤甲烷类消毒副产物的控制研究[J],环境污染治理技术与设备,2006,7(6):43-45.
    [43]Hofmann R, Andrew R C. Ammoniacal bromamines:A review of their influence on bromate formation during ozonation [J]. Water Research,2001,35(3):599-604.
    [44]Siddiqui M, Amy G. Factors affecting DBP formation during ozone bromide reactions [J]. Journal of American Water Works Association,1993,85(1):63-72.
    [45]Michalowicz J, Duda W, Stufka-Olczyk J. Transformation of phenol, catechol, guaiacol and syringol exposed to sodium hypochlorite [J]. Chemosphere,2007, 66(4):657-663.
    [46]Rathbun R E. Bromine incorporation factors for trihalomethane formation for the Mississippi, Missouri, and Ohio Rivers [J]. Science of the Total Environment,1996, 192(1):111-118.
    [47]Reckhow D A, Singer P C. Chlorination by-products in drinkingwaters-from formation potentials to finished water concentrations [J]. Journal of American Water Works Association,1990,82(4):173-180.
    [48]Sohn J, Amy G, Yoon Y. Bromide ion incorporation into brominated disinfection by-products [J]. Water Air and Soil Pollution,2006,174(1-4):265-277.
    [49]Rook J J. Chlorination reactions of fulvic acids in natural waters [J]. Environmental Science & Technology,1977, 11(5):478-482.
    [50]朱志良,王静,葛元新等.Fe3+和Br-对饮用水氯消毒过程中挥发性卤代烃生成的影响[J].环境科学,2007,28(6):1264-1267.
    [51]Haas C N, Jacangelo J G, Bishop M M, Cameron C D. Survey of water utility disinfection practices [J]. Journal of American Water Works Association,1992, 84(11):121-128.
    [52]Sohn J, Amy G, Cho J W, Lee Y, Yoon Y. Disinfectant decay and disinfection by-products formation model development:chlorination and ozonation by-products [J]. Water Research,2004,38(10):2461-2478
    [53]王占生,刘文君.微污染水源饮用水处理[M].中国建筑工业出版社,1999:269-270.
    [54]Munson A E, Sain L E, Sanders V M, Kauffmann B M, White K L, Barnes D W, Borzelleca J F. Toxicology of organic drinking water contaminants:trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane [J]. Environmental Health Perspectives,1982,46(12):117-126.
    [55]George M H, Olson G R, Doerfler D, Moore T, Kilburn S, De Angelo A B. Carcinogenicity of bromodichloromethane administered in drinking water to male F344/N rats and B6C3F(1) mice [J]. International Journal of Toxicology,2002, 21(3):219-230.
    [56]Balster R L, Borzelleca J F. Behavioral toxicity of trihalomethane contaminants of drinking water in mice [J]. Environmental Health Perspectives,1982, 46(12):127-136.
    [57]Andrews J E, Nichols H P, Schmid J E, Mole L M, Hunter E S, Klinefelter G R. Developmental toxicity of mixtures:the water disinfection by-products dichloro-, dibromo- and bromochloro acetic acid in rat embryo culture [J]. Reproductive Toxicology,2004,19(1):111-116.
    [58]方城,王玉鹏.饮用水中二溴乙酸遗传毒性研究[J].卫生研究,2001,30(5):266-269.
    [59]Weber N M, Higuchi T T, Tessari J D, Veeramachaneni D N R. Evaluation of the effects of water disinfection by-products, bromochloroacetic and dibromoacetic acids, on frog embryogenesis [J]. Journal of Toxicology and Environmental Health, Part A, 2004,67(12):929-939.
    [60]Kurokawa Y, Takayama S, Konishi Y, Hiasa Y, Asahina S, Takahashi M, Maekawa A, Hayashi Y. Long-term invivo carcinogenicity tests of potassium bromate, sodium hypochlorite, and sodium chlorite conducted in Japan [J]. Environmental Health Perspectives,1986,69(11):221-235.
    [61]Hansson R C, Henderson M J, Jack P T. Iodoform taste complaints in chloramination [J]. Water Research,1987,21(10):1265-1271.
    [62]Leitner N K V, Vessella J, Dore M, Legube B. Chlorination and formation of organoiodinated compounds:the important role of ammonia [J]. Environmental Science & Technology,1998,32(11):1680-1685.
    [63]Fuge R, Johnson C C. The geochemistry of iodine-a review [J]. Environmental Geochemistry Health,1986,8(2):31-54.
    [64]Collins A G, Egleson G C. Iodine abundance in oilfield brines in Oklahoma [J]. Science,1967,156(37):934-935.
    [65]Von Gunten U. Ozonation of drinkingwater:Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine [J]. Water Research,2003, 37(7):1469-1487.
    [66]Krasner S W, Weinberg H S, Richardson S D, Pastor S J, Chinn R, Sclimenti M J, Onstad G D, Thruston A D. Occurrence of a new generation of disinfection byproducts [J]. Environmental Science & Technology,2006,40(23):7175-7185.
    [67]Hua G, Reckhow D A, Kim J. Effect of bromide and iodide ions on the formation and speciation of disinfection byproducts during chlorination [J]. Environmental Science & Technology,2006,40(9):3050-3056.
    [68]Plewa M J, Muellner M G, Richardson S D, Fasanot F, Buettner K M, Woo Y T, Mckague A B, Wagner E D. Occurrence, synthesis and mammalian cell water disinfection byproducts [J]. Environmental Science & Technology,2008, 42(3):955-961.
    [69]Richardson S D, Plewa M J, Wagner E D, Schoeny R, DeMarini D M, David M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water:A review and roadmap for research [J]. Mutation Research,2007,636(1-3):178-242.
    [70]Thomas R F, Weisner M J, Brass H J. The fifth trihalomethane: dichloroiodomethane, its stability and occurrences in chlorinated drinking water. In: Water Chlorination:Environmental Impact and Health Effects. Ann Arbor Science, Ann Arbor, MI,1980:161-168.
    [71]Cancho B, Ventura F, Galceran M, Diaz A, Ricart S. Determination, synthesis and survey of iodinated trihalomethanes in water treatment processes [J]. Water Research,2000,34(13):3380-3390.
    [72]Bichsel Y, von Gunten U. Formation of iodo-trihalomethanes during disinfection and oxidation of iodide-containing waters [J]. Environmental Science & Technology, 2000,34(13):2784-2791.
    [73]Kurokawa Y, Aoki S, Matsushima Y, Takamura N, Imazawa T, Hayashi Y. Dose-response studies on the carcinogenicity of potassium bromate in F344 rats after long-term oral administration [J]. Jounal of National Cancer Institute,1986, 77(4):977-982.
    [74]Brass H J, Feige M A, Halloran T. The national organic monitoring survey: samplings and analyses for purgeable organic compounds. In R B Pojasek, ed. Drinking water quality enhancement through source protection [M]. Michigan:Ann Arbor Science Publishers,1977:398
    [75]Bichsel Y, von Gunten U. Oxidation of iodide and hypoiodous acid in the disinfection of natural waters [J]. Environmental Science & Technology,1999, 33(22):4040-4045.
    [76]Garland J A, Elzerman A W, Penkett S A J. The mechanism for dry deposition of ozone to seawater surfaces [J]. Journal of Geophysical Research-Oceans and Atmospheres,1980,85(C12):7488-7492.
    [77]Nagy J C, Kumar K, Margerum D W. Non-metal redox kinetics-oxidation of iodide by hypochlorous acid and by nitrogen trichloride measured by the pulsed-accelerated-flow method [J]. Inorganic Chemistry,1988,27(16):2773-2780.
    [78]Kumar K, Day R A, Margerum D W. Atom-transfer redox kinetics general-acid-assisted oxidation of iodide by chloramines and hypochlorite [J]. Inorganic Chemistry,1986,25(24):4344-4350.
    [79]Fabian I, Gordon G. The kinetics and mechanism of the chlorine dioxide-iodide ion reaction [J]. Inorganic Chemistry,1997,36(12):2494-2497.
    [80]Bichsel Y, von Gunten U. Hypoiodous acid:kinetics of the buffer-catalyzed disproportionation [J]. Water Research,2000,34(12):3197-3203.
    [81]Hong H C, Reckhow D A. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants [J]. Water Research,2007,41(18):1667-1678.
    [82]Gittelman T S, Yohe T L. Treatment of the iodinated haloform medicinal odors in drinking water. In:Denver, CO. AWWA Water Quality Technology Conference [M], 1989:105-123.
    [83]Hong H C, Reckhow D A. Characterization of Disinfection Byproduct Precursors Based on Hydrophobicity and Molecular Size [J]. Environmental Science & Technology,2007,41(9):3309-3315.
    [84]Gallard H, Allard S, Nicolau R, von Gunten U, Croue J P. Formation of Iodinated Organic Compounds by Oxidation of Iodide-Containing Waters with Manganese Dioxide [J]. Environmental Science &. Technology,2009,43(18):7003-7009.
    [85]Richardson S D. Disinfection by-products and other emerging contaminants in drinking water [J]. Trac-Trends in Analytical Chemistry,2003,22(10):666-684.
    [86]Woo Y T, Lai D, McLain J L, Manibusan M K, Dellarco V. Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products [J]. Environment Health Perspectives,2002,110 (Suppl 1):75-87.
    [87]Roldan-Arjona T, Pueyo C. Mutagenic and lethal effects of halogenated methanes in the Ara test of Salmonella typhimurium:quantitative relationship with chemical reactivity [J]. Mutation Research,1993,8(2):127-131.
    [88]Hikiba H, Watanabe E, Barrett J C, Tsutsui T. Ability of fourteen chemical agents used in dental practice to induce chromosome aberrations in Syrian hamster embryo cells [J]. Journal of Pharmacological Science,2005,97(1):146-152.
    [89]Richardson S D, Fasano F, Ellington J J, Crumley, F G, Buettner K M, Evans J J, Blount B C, Silva L K, Waite T J, Luther G W, McKague A B, Miltner R J, Wagner E D, Plewa M J. Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water [J]. Environmental Science & Technology,2008, 42(22):8330-8338.
    [90]Plewa M J, Wagner E D, Richardson S D, Thruston A D, Woo Y T, McKague A B. Chemical and biological characterization of newly discovered iodoacid drinking water disinfection byproducts [J]. Environmental Science & Technology,2004, 38(18):4713-4722.
    [91]Hunter E S III, Tugman J A. Inhibitors of glycolytic metabolism affect neurulation-staged mouse conceptuses in vitro [J]. Teratology,1995,52(6):317-323.
    [92]World Health Organization, Guidelines for Drinking-Water Quality, SECOND ADDENDUM TO THIRD EDITION [M]. Geneva:WHO,2008:43-66.
    [93]Taurog A, Howells E M, Nachimson H I. Conversion of iodate to iodide in vivo and in vitro [J]. Journal of Biology Chemistry,1966,241(20):4686-4693.
    [94]World Health Organization, Guidelines for Drinking Water Quality,3rd ed.,2004 hrtp://www.who.int/water_sanitation_health/dwq/gdwq3rev/en.
    [95]Muellner M G, Wagner E D, McCalla K, Richardson S D, Woo Y T, Plewa M J. Haloacetonitriles vs. regulated haloacetic acids:are nitrogen containing DBPs more toxic? [J]. Environmental Science & Technology,2007,41(2):645-651.
    [96]Hong H C, Mazumder A, Wong M H, Liang Y. Yield of trihalomethanes and haloacetic acids upon chlorinating algal cells, and its prediction via algal cellular biochemical composition [J]. Water Research,2008,42(20):4941-4948.
    [97]Paim A P S, Souza J B, Adorno M A T, Moraes E M. Monitoring the trihalomethanes present in water after treatment with chlorine under laboratory condition [J]. Environmental Monitoring and Assessment,2007,125(1-3):265-270.
    [98]Nguyen M L, Westerhoff P, Baker L, Hu Q, Esparza S M, Sommerfeld M. Characteristics and reactivity of algae-produced dissolved organic carbon [J]. Journal of Environmental Engineering,2005,131(11):1574-1582.
    [99]Jack J, Sellers T, Bukaveckas P A. Algal production and trihalomethane formation potential:an experimental assessment and inter-river comparison [J]. Canadian Journal of Fisheries and Aquatic Sciences,2002,59(9):1482-1491.
    [100]Plummer J D, Edzwald J K. Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production [J]. Environmental Science & Technology,2001,35(18):3661-3668.
    [101]Oliver B G, Shindler D B. Trihalomethanes from the chlorination of aquatic algae [J]. Environmental Science & Technology,1980,14(12):1502-1505
    [102]Huang J, Graham N, Templeton M R, Zhang Y, Collins C, Nieuwenhuijsen M. A comparison of the role of two blue-green algae in THM and HAA formation [J]. Water Research,2009,43(12):3009-3018.
    [103]Chen C, Zhang X J, Zhu L X, Liu J, He W J, Han H D. Disinfection by-products and their precursors in a water treatment plant in North China:Seasonal changes and fraction analysis[J]. Science of the Total Environment,2008,397 (1-3):140-147.
    [104]Chui C A, Wang G S. Pre-Chlorination Induced DOC and DBPs Formation from Microcystis aeruginosa in Treatment Processes [J]. Disinfection By-Products in Drinking Water:Occurrence, Formation, Health Effects, and Control,2008,99(5): 141-156.
    [105]方晶云,马军,王立宁等.臭氧预氧化对藻细胞及胞外分泌物消毒副产物生成势的影响[J].环境科学.2006,27(6):1127-1132.
    [106]Hong H C, Wong M H, Mazumder A, Liang Y. Trophic state, natural organic matter content, and disinfection by-product formation potential of six drinking water reservoirs in the Pearl River Delta, China [J]. Journal of Hydrology,2008,359 (1-2):164-173.
    [107]Sun Y C, Chen X C, Kong H N, Liang Y, Wu D Y, Li C J. Study on algae proliferation potential in yangtze river estuary reservoir. China Water & Wastewater, 2007,23(17):99-102.
    [108]Grahama N J D, Wardlawa V E, Perrya R, Jianga J Q. The significance of algae as trihalomethane precursors. Water Science & Technology,1998,37(2):83-89.
    [109]Wachter J K, Andelman J B. Organohalide formation on chlorination of algal extracellular products. Environmental Science & Technology,1984,18(11):811-817
    [110]APHA. Standard Methods for the Examination of Water and Wastewater,20th [M]. Washington D C, USA:American Public Health Association/American Water Works Association/Water Environment Federation,1998.
    [111]U.S. Environmental Protection Agency,2003. Method 552.3:Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Microextraction, Derivatization, and Gas Chromatography with Electron Capture Detection. EPA 815-B-03-002. Revision 1.0.
    [112]Jang A, Kim S M, Kim S Y, Lee S G, Kim I S. Effect of heavy metals (Cu, Pb, and Ni) on the compositions of EPS in biofilms [J]. Water Science and Technology, 2001,43(6):41-48.
    [113]Comte S, Guibaud G, Baudu M. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and complexation properties of Pb and Cd with EPS Part Ⅱ. Consequences of EPS extraction methods on Pb2+and Cd2+complexation [J]. Enzyme and Microbial Technology,2006, 38(1-2):246-252.
    [114]Gaudy A F. Colorimetric determination of protein and carbohydrate [J]. Ind Water Wastes,1962,7(4):17-22.
    [115]刘勇,牟世芬,林爱武,崔建华,杜兵.北京市饮用水中溴酸盐、卤代乙酸及高氯酸盐研究[J].环境科学,2004,25(2):51-55
    [116]Hoigne J, Bader H, Haag W R, Staehelin J. Rate constants of ozone with organic and inorganic compounds in water-I. Inorganic compounds and radicals [J]. Water Research,1985,17(8):993-1004.
    [117]Norwood D L, Johnson J D, Christman R F, Hass J R, Bobenrieth M J. Reactions of chlorine with selected aromatic models of aquatic humic material [J]. Environmental Science & Technology,1980,14(2):187-190.
    [118]Hua G H, Reckhow D A. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants [J]. Water Research,2007,41(8):1667-1678.
    [119]Gould J P, Fitchorn L E. Formation of brominated trihalomethane:extent and kinetics [A]. In:Water chlorination:environmental impact and health effects [M]. Vol.4. Ann Arbor, MI:Ann Arbor Science,1983.
    [120]Kristiana I, Gallard H, Joll C, Croue J P. The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates [J]. Water Research,2009,43(17):4177-4186.
    [121]Gazda M, Dejarme L E, Choudhury T K, R. Cooks G, Margerum D W. Mass spectrometric evidence for the formation of bromochloramine and N-bromo-N-Chloromethylamine in aqueous solution [J]. Environmental Science & Technology,1993,27(3):557-561.
    [122]吴维,刘旭,吕宝和,韩砚齐.天津城市供水系统中卤乙酸含量的研究[J].中国给水排水,2009,25(3):92-94
    [123]Troy R C, Margerum D W. Non-metal redox kinetics:hypobromite and hypobromous acid reactions with iodide and with sulfite and the hydrolysis of bromosulfate [J]. Inorganic chemistry,1991,30(18):3538-3543.
    [124]Smith E M, Plewa M J, Lindell C L, Richardson S D, Mitch W A. Comparison of byproduct formation in waters treated with chlorine and iodine:relevance to point-of-use treatment [J]. Environmental Science & Technology,2010, 44(22):8446-8452.
    [125]Cowman G A, Singer P C. Effect of bromide ion on haloacetic acid speciation resulting from chlorination and chloramination of aquatic humic substances [J]. Environmental Science & Technology,1995,30(1):16-24.
    [126]张倩,杨晓波,周达诚.加氯消毒过程中纯细菌物质生成消毒副产物研究[J].环境科学学报,2010,30(2):314-320.
    [127]Plewa M J, Simmons J E, Richardson S D, Wagner E D. Mammalian cell cytotoxicity and genotoxicity of the Haloacetic acids, a major class of drinking water disinfection by-products [J]. Environmental and Molecular Mutagenesis,2010, 51(8-9):871-878.
    [128]Jung C W, Son H J, The relationship between disinfection by-products formation and characteristics of natural organic matter in raw water [J]. Korean Journal of Chemical Engineering,2008,25(4):714-720.
    [129]Singer P C. Humic substances as precursors for potentially harmful disinfection by-products [J]. Water Science and Technology,1999,40(9):25-30.
    [130]Young M S, Uden P C. Byproducts of the Aqueous Chlorination of Purines and Pyrimidines [J]. Environmental Science & Technology,1994,28(9):1755-1758.
    [131]Iskandarani M A, Boussaoud A, Duc G, Ait-ichou Y, Petit-ramel M. Effect of the bromide and iodide ions on the chemical uracil chlorination [J]. Water Research,1997, 31(2):229-236.
    [132]White D M, Garland D S, Narrb J, Woolardc C R. Natural organic matter and DBP formation potential in Alaskan water supplies [J]. Water Research,2003, 37(4):939-947
    [133]Reckhow D A, Singer P C, Malcolm R L. Chlorination of humic materials: byproduct formation and chemical interpretations [J]. Environmental Science & Technology,1990,24(11):1655-1664.
    [134]Reckhow D A, Singer P C. Chlorination by-products in drinking waters:from formation potentials to finished water concentrations [J]. Journal of American Water Works Association,1990,82(4):173-180.
    [135]Kumar K, Margerum D W. Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid [J]. Inorganic Chemistry, 1987,26(16):2706-2711.
    [136]Westerhoff P, Chao P, Mash H. Reactivity of natural organic matter with aqueous chlorine and bromine [J]. Water Research,2004,38(6):1502-1513.
    [137]Lengyel I, Li J, Kustin K, Epstein I R. Rate Constants for Reactions between Iodine- and Chlorine-Containing Species:A Detailed Mechanism of the Chlorine Dioxide/Chlorite-Iodide Reaction [J]. Journey of the American Chemical Society, 1996,118(15):3708-3719.
    [138]Krasner S W, McGuire M J, Jacangelo J G. The occurrence of disinfection byproducts in U.S. drinking water [J]. Journal of American Water Works Assocation, 1989,81(8):41-53.
    [139]Cemeli E, Wagner E D, Anderson D, Richardson S D, Plewa M J. Modulation of the cytotoxicity and genotoxicity of the drinking water disinfection byproduct iodoacetic acid by suppressors of oxidative stress[J]. Environmental Science & Technology,2006,40(6):1878-1883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700