用户名: 密码: 验证码:
β2-AR与Her2相互作用及在乳腺癌恶性演进中的意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
很久以来,人们就已经把慢性心理应激刺激与多种疾病的发生联系在一起,特别是恶性肿瘤。生活中的各种事件均可产生心理应激的刺激,包括创伤、不良的家庭及工作环境等。应激反应导致机体各系统的功能变化是生物进化过程中建立的一种防御反应,以防止激源对机体的损害。但是,如果个体无法适应重复性的刺激,则可导致长期而严重的后果。研究结果表明,慢性应激反应与乳腺癌的发生发展密切相关。例如,在离婚或配偶死亡的独身女性群体中,乳腺癌的发生几率为其他女性群体的3倍;长期处于极度压力并缺乏社会支持的女性罹患乳腺癌的风险是正常女性的9倍。
     应激可刺激交感神经系统和下丘脑-垂体-肾上腺轴,导致儿茶酚胺的分泌增加。最近的研究表明,长期处于慢性应激反应状态的人群体内儿茶酚胺的水平持续升高。儿茶酚胺的持续刺激不仅可导致免疫系统的功能紊乱,亦可直接影响肿瘤的生物学行为。儿茶酚胺主要通过β-肾上腺素能受体(β-AR)发挥作用,而β-AR在某些肿瘤发生发展过程中的重要作用亦已被报道,但精确的分子机制不清。
     在第一部分的研究中,我们应用免疫组化的方法,在50例临床乳腺癌组织标本中检测了Her2与β2-AR的表达。我们发现,Her2与β2-AR在乳腺癌组织中的表达具有良好的相关性。我们又通过体外实验观察到,在乳腺癌细胞MCF-7中过表达Her2可上调β2-AR的水平,提示Her2与β2-AR这两个受体分子之间存在密切的关系。
     Her2是重要的癌基因,Her2过表达可激活细胞内多条信号通路。我们的实验结果证实,在MCF-7细胞中过表达Her2可导致细胞外信号调节激酶(ERK)的组成性活化,而ERK信号通路的抑制剂PD98059可明显抑制Her2过表达介导的β2-AR表达水平上调,表明ERK通路活化参与了Her2上调β2-AR表达的过程。我们的进一步实验证明,ERK通路的活化导致乳腺癌细胞中肾上腺素合成相关酶基因转录及自分泌肾上腺素的能力显著增强。通过体外模拟肾上腺素的自分泌或旁分泌,我们发现肾上腺素刺激可诱导乳腺癌细胞β2-AR表达水平上调。同时,我们还发现β2-AR激动剂刺激亦可显著上调乳腺癌细胞中Her2的表达。β2-AR的活化可直接或间接地调控某些转录因子的活性,我们的实验研究证实,异丙肾上腺素(ISO)刺激乳腺癌细胞MCF-7及BT474可诱导STAT3的活化,且活化的STAT3可进入细胞核并结合于Her2启动子区的STAT3元件,从而在转录水平和蛋白水平增强Her2的表达。
     上述研究结果提示,β2-AR与Her2在乳腺癌细胞中形成正反馈调节环路:儿茶酚胺刺激乳腺癌细胞可诱导β2-AR信号及STAT3激活,活化的STAT3入核并结合于Her2启动子区功能性STAT3位点,增强Her2启动子的转录活性,导致Her2高表达;而Her2在乳腺癌细胞中过表达可诱导ERK磷酸化、促进肾上腺素合成酶的表达上调及活化,导致肾上腺素自分泌释放,进而上调β2-AR的表达。β2-AR及Her2信号通路的相互促进作用无疑在乳腺癌的恶性演进中具有重要的意义。在乳腺癌细胞中,这一互作机制不仅上调Her2及β2-AR的水平,而且可诱导儿茶酚胺及其他促血管生成、促转移因子的表达。过去认为Her2过表达主要归因于基因扩增,但最近的发现提示,约80%的Her2中度表达(++)的乳腺癌细胞无Her2基因扩增。本研究的深入将可能进一步揭示乳腺癌细胞中Her2过表达的新机制,并有助于阐明β2-AR与Her2协同作用在乳腺癌进展中的意义。
     在第二部分的研究中,我们通过免疫组化分析,观察到Her2和β2-AR的表达常出现于肿瘤侵袭的前缘。有趣的是,在β2-AR高表达的肿瘤组织中,Her2受体常发生明显的核定位,提示β2-AR高表达与Her2入核可能存在一定的关系,β2-AR/Her2正反馈通路以及Her2入核可能在肿瘤的侵袭、转移过程中发挥重要作用。
     研究发现,Her2 ECD的裂解可导致ICD的组成性活化及增强的信号转导,过表达Her2 ECD缺失突变体可提高酪氨酸激酶活性及细胞的转化效率。但是,在过表达Her2的肿瘤组织中Her2分子被切割的机制却不清楚。以往的多个研究表明,在Her2过表达的肿瘤细胞中,蛋白酶切割可导致Her2 ECD释放,产生含跨膜域和ICD的95 kDa片段(p95)。我们通过Western blot分析发现,在乳腺癌组织中除存在185 kDa和~100 kDa的片段外,尚可检测到~70 kDa的较小片段。裴刚研究小组在有关神经细胞和组织的研究中发现,β2-AR活化可增强γ-secretase的活性,而γ-secretase参与多种膜受体(包括CD44、Notch、E-candherin)胞内域近膜区的切割。我们通过CD44、Notch、E-candherin及Her2的序列对比发现,这些蛋白胞内域近膜区具有相似的组成特征,预测Her2分子由该处裂解恰可产生分子量~70 kDa的片段。我们通过γ-secretase活性分析,证实儿茶酚胺刺激确可导致MCF-7细胞中γ-secretase活性升高,提示Her2切割后的产物可能被γ-secretase进一步裂解。
     进一步通过免疫荧光染色及共聚焦显微镜术,我们观察到ISO刺激可诱导Her2受体内化及Her2胞内域入核。以往的研究提示,入核的Her2分子可作为转录因子上调COX-2基因(肿瘤肺转移相关基因)转录。我们的研究结果证实,ISO刺激乳腺癌及卵巢癌细胞后,均可显著增强COX-2 mRNA的表达,提示ISO可能通过诱导Her2 ICD入核,增强Her2靶基因COX-2表达。我们又通过寡核苷酸pull-down分析,证实Her2 ICD可结合于COX-2启动子的Her2结合区。我们通过体内研究,证实了儿茶酚胺持续刺激可诱导Her2高表达的卵巢癌移植瘤在裸鼠体内自发性肺转移。
     这些研究结果揭示,β2-AR活化可增强γ-分泌酶活性,诱导Her2切割及Her2胞内域入核,促进Her2靶基因COX-2的表达,进而可能在Her2高表达的卵巢癌肺转移过程中发挥重要的作用。β2-AR活化与Her2受体切割及入核相偶联的发现,揭示了Her2受体入核的全新机制,该机制的阐明不仅可能揭示Her2受体的质膜-核信号传递捷径的重要意义及跨膜受体酪氨酸激酶在核内的重要功能,而且亦将揭示β2-AR反式激活Her2在肿瘤恶性演进中的作用。
     综上所述,本研究首次报道:1.β2-AR与Her2可在乳腺癌细胞中形成正反馈调节环路;2.β2-AR信号通路的活化可导致Her2被切割及Her2胞内域入核;3.本研究结果揭示了Her2过表达的新机制以及Her2分子切割、入核的新机制;4.β2-AR/Her2信号的相互作用在肿瘤的侵袭转移过程中发挥重要的作用。
The notion that psychosocial factors can affect the progression of many diseases, especially cancer, has long been suspected. Stress response can be induced by a variety of events, including trauma, family problems and bad working conditions. Stress response, which protects people from harmful stressors, is effective defensive mechanism established in evolvement. However, failure of coping with chronic stress can lead to long term and severe consequences. The data from several studies suggested that chronic stress may associate with the progression of breast cancer. For examples, the incidence of breast cancer is a three fold higher among women who are divorced or loss spouse and even nine fold higher among women experiencing extreme stress and lacking social support than normal population.
     Stress initiates a response of the hypothalamic-pituitary-adrenal axis (HPA), resulting in increased catecholamine level. The continuously increased catecholamine levels are observed in individuals who are under chronic stress in the recent studies. Sustained stimulation of catecholamine interferes with not only the immune system but also bio-behaviors of tumor cells. Catecholamine exerts its effects via the activation ofβ-adrenergic receptors (β-AR).β-AR plays an important role in the development and progression of tumors. However, the precise mechanism by whichβ-AR acts in tumor progression is unclear.
     In the first part of this study, we collected a total of 50 paraffin embedded breast cancer tissue samples and analyzed the expression of Her2 andβ2-AR by immunohistochemical staining. The results demonstrated thatβ2-AR level correlated with Her2 status in breast cancer samples. Overexpression of Her2 in breast cancer cell line MCF-7 strikingly up-regulatedβ2-AR level, impliying an intimate relationship between Her2 andβ2-AR in breast cancer cells.
     Her2 is a very active oncogene and overexpression of Her2 can activates multiple signaling pathways. Our data demonstrated that the constitutive phosphorylation of ERK was induced by ectopic overexpression of Her2 in MCF-7 cells and blocking of ERK signaling by PD98059, which is known to selectively block the activity of ERK, markedly inhibitedβ2-AR up-regulation induced by Her2 overexpression in breast cancer cells, implicating that ERK signaling is involved in Her2-mediatedβ2-AR expression. Further study showed that the activation of ERK up-regulated the expression of the catecholamine synthesis enzymes, and promoted the release of epinephrine from breast cancer cells. By mimicking the autocrine and paracrine of catecholamine, we confirmed that epinephrine stimulation induced the up-regulation ofβ2-AR level in breast cancer cells.
     Another interesting finding in this study is thatβ2-AR agonists up-regulated remarkably Her2 expression in breast cancer cells. Activation ofβ2-AR can regulate the activities of some transcriptional factors directly or indirectly. Our data showed that isoproterenol triggered the activation and nuclear translocation of STAT3 in breast cancer cell lines BT474 and MCF-7, subsequently the activated STAT3 bound to STAT3 element in the Her2 promoter and promoted Her2 expression at transcriptional and protein levels.
     Above data support a model whereβ2-AR and Her2 comprise a positive feedback loop in human breat cancer cells: Catecholamine stimulates the activation ofβ2-AR mediated signaling, resulting in the activation, nuclear translocation and binding to a functional STAT3 site in the Her2 promoter and thus promoting Her2 transactivaton; Her2-mediated ERK signaling induces the up-regulation ofβ2-AR expression by promoting the expression of catecholamine synthesis enzymes and autocrine of epinephrine in breast cancer cells. In this way, Her2/β2-AR feedback loop plays critical roles in the progression of breast cancer. In addition to enhancing Her2 andβ2-AR expresson, the positive feedback loop also promotes the expression of catecholamine and other cytokines involved in angiogenesis and metastasis in breast cancer cells. The comprised by Her2 andβ2-AR may play an important role in the malignant progression of breast cancer. Her2 overexpression was attributed to Her2 gene amplification. However, the recent studies revealed that Her2 gene amplification was not identified in about 80% of breast cancer patients with Her2 expression at middle level. Further investigation will reveal the novel mechanism of Her2 over-expression, and be also helpful to elucidate the mechanisms of synergism betweenβ2-AR and Her2 in the progression of breast cancer.
     In the second part of this study, we found that the continuous stimulation of isoproterenol could induce spontaneous lung metastasis of ovary cancer overexpressing Her2 in nude mice. By immunohistochemical analysis, we observed that the expression ofβ2-AR and Her2 frequently localized at the leading edge of the tumor. Interestingly, the nuclear localization of Her2 was found in the region whereβ2-AR was expressed highly. It strongly suggested a close relationship betweenβ2-AR over-expression and Her2 nuclear localization. Her2/β2-AR feedback loop and Her2 nuclear translocation may play an important role in the development and metastasis of breast cancer.
     Noticeably, isoproterenol stimulation resulted in the cleavage of Her2, producing a ~70 kDa fragment derived from Her2 C terminus, suggesting thatβ2-AR-mediated signaling was involved in the process. By analyzing the activities ofγ-secretase that cleaves the juxta-membrane region of a wide variety of transmembrane receptors, the enhancedγ-secretase activities were detected in breast and ovarian cancer cells stimulated by catecholamine. The data from bioinformatics analysis revealed that there is a potentialγ-secretase cleavage site in the juxta-membrane region of Her2 intracellula domain (ICD). Using immunofleuresent staining and confocal microscopy, we demonstrated that isoproterenol treatment induced the internalization of Her2 and nuclear translocation of Her2 ICD. Her2 in the nucleus can act as a transcriptional factor, promoting the transactivation of COX-2 gene, which was related to the lung metastasis of breast carcinoma. Our data proved that isoproterenol treatment up-regulated COX-2 expression in breast and ovarian cancer cells. Importantly, we found that chronic stimulation of isoproterenol induced spontaneous lung metastasis of Her2 over-expressing ovarian caner xenograft in nude mice. These data strongly implicated that the activation ofβ2-AR triggered the expression ofγ-secretase, by which Her2 was cleaved, and that restultant Her2 ICD translocated to the nucleus, promoting COX-2 gene expression and lung metastasis of Her2 over-expressing ovarian cancer cells in nude mice. These findings may illustrate the novel mechanisms of Her2 nuclear translocation. They may also reveal the functional roles of the trans-membrane receptors in the nucleus, cytoplasm-nucleus shortcut of signalings, and Her2 transactivation byβ2-AR in tumor progression.
     In conclusion, the main findings in the present study include: 1. a positive feedback loop betweenβ2-AR and Her2 in breast cancer cells; 2. Her2 cleavage and nucleus translocation of Her2 induced byβ2-AR activation; 3. the novel mechanisms of Her2 over-expression and nucleus localization; 4. the interplay ofβ2-AR/Her2 signalings in the progression of cancer.
引文
1. Reiche EM, Nunes SO, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004 Oct;5(10):617-25.
    2. Reynolds P, Kaplan GA. Social connections and risk for cancer: prospective evidence from the Alameda County Study. Behav Med. 1990 Fall;16(3):101-10.
    3. Allison PJ, Guichard C, Fung K, Gilain L. Dispositional optimism predicts survival status 1 year after diagnosis in head and neck cancer patients. J Clin Oncol. 2003 Feb 1;21(3):543-8.
    4. Gotay CC. Behavior and cancer prevention. J Clin Oncol. 2005 Jan 10;23(2):301-10.
    5. Laconi E, Tomasi C, Curreli F, Diana S, Laconi S, Serra G, Collu M, Pani P. Early exposure to restraint stress enhances chemical carcinogenesis in rat liver. Cancer Lett. 2000 Dec 20;161(2):215-20.
    6. Padgett DA, Glaser R. How stress influences the immune response. Trends Immunol. 2003 Aug;24(8):444-8.
    7. Arranz L, de Vicente A, Mu?oz M, De la Fuente M. Impaired immune function in a homeless population with stress-related disorders. Neuroimmunomodulation. 2009;16(4):251-60.
    8. Tamim HM, Mahmud S, Hanley JA, Boivin JF, Stang MR, Collet JP. Antidepressants and risk of prostate cancer: a nested case-control study. Prostate Cancer Prostatic Dis. 2008;11(1):53-60.
    9. Sternbach H. Are antidepressants carcinogenic? A review of preclinical and clinical studies. J Clin Psychiatry. 2003 Oct;64(10):1153-62.
    10. Sharpe CR, Collet JP, Belzile E, Hanley JA, Boivin JF. The effects of tricyclic antidepressants on breast cancer risk. Br J Cancer. 2002 Jan 7;86(1):92-7.
    11. Tamim H, Boivin JF, Hanley J, Stang M, Collet JP. Risk of breast cancer in association with exposure to two different groups of tricyclic antidepressants. Pharmacoepidemiol Drug Saf. 2006 Oct;15(10):689-97.
    12. Toh S, Rodríguez LA, Hernández-Díaz S. Use of antidepressants and risk of lung cancer. Cancer Causes Control. 2007 Dec;18(10):1055-64.
    13. Dalton SO, Johansen C, Mellemkjaer L, S?rensen HT, McLaughlin JK, Olsen J, Olsen JH. Antidepressant medications and risk for cancer. Epidemiology. 2000 Mar;11(2):171-6.
    14. Stebbing J, Powles T, Mandalia S, Nelson M, Gazzard B, Bower M. Use ofantidepressants and risk of cancer in individuals infected with HIV. J Clin Oncol. 2008 May 10;26(14):2305-10.
    15. Dalton SO, Poulsen AH, N?rgaard M, McLaughlin JK, Johansen C, Friis S. Tricyclic antidepressants and non-Hodgkin lymphoma. Epidemiology. 2008 Jul;19(4):546-9.
    16. Iishi H, Tatsuta M, Baba M, Taniguchi H. Enhancement by the tricyclic antidepressant, desipramine, of experimental carcinogenesis in rat colon induced by azoxymethane. Carcinogenesis. 1993 Sep;14(9):1837-40.
    17. Milenkov K. Epidemiology and clinic for manic-depressive psychosis in People's Republic of Bulgaria. Psychiatr Neurol Med Psychol (Leipz). 1977 Jan;29(1):23-30.
    18. BarChana M, Levav I, Lipshitz I, Pugachova I, Kohn R, Weizman A, Grinshpoon A. Enhanced cancer risk among patients with bipolar disorder. J Affect Disord. 2008 May;108(1-2):43-8
    19. Payne JL, Potash JB, DePaulo JR Jr. Recent findings on the genetic basis of bipolar disorder. Psychiatr Clin North Am. 2005 Jun;28(2):481-98, ix.
    20. Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965 Nov;122(5):509-22.
    21. Jimerson DC, Nurnberger JI Jr, Post RM, Gershon ES, Kopin IJ. Plasma MHPG in rapid cyclers and healthy twins. Arch Gen Psychiatry. 1981 Nov;38(11):1287-90.
    22. Tatsuta M, Iishi H, Baba M, Nakaizumi A, Ichii M, Taniguchi H. Promotion by bombesin of gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats. Cancer Res. 1989 Oct 1;49(19):5254-7.
    23. Iishi H, Tatsuta M, Baba M, Yamamoto R, Taniguchi H. Enhancement by bombesin of colon carcinogenesis and metastasis induced by azoxymethane in Wistar rats. Int J Cancer. 1992 Mar 12;50(5):834-9.
    24. Liu NS, Spitz MR, Kemp BL, Cooksley C, Fossella FV, Lee JS, Hong WK, Khuri FR. Adenocarcinoma of the lung in young patients: the M. D. Anderson experience. Cancer. 2000 Apr 15;88(8):1837-41.
    25. Tatsuta M, Iishi H, Baba M, Uehara H, Nakaizumi A, Taniguchi H. Enhanced induction of gastric carcinogenesis by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats fed a low-protein diet. Cancer Res. 1991 Jul 1;51(13):3493-6.
    26. Tatsuta M, Iishi H, Baba M, Taniguchi H. Enhanced induction of colon carcinogenesis by azoxymethane in Wistar rats fed a low-protein diet. Int J Cancer. 1992 Jan 2;50(1):108-11.
    27. Tatsuta M, Iishi H, Baba M, Taniguchi H. Inhibition of azoxymethane-induced experimental colon carcinogenesis in Wistar rats by 6-hydroxydopamine. Int J Cancer. 1992 Jan 21;50(2):298-301.
    28. Iishi H, Tatsuta M, Baba M, Okuda S, Taniguchi H. Protection by oral phenylalanine against gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine in Wistar rats. Br J Cancer. 1990 Aug;62(2):173-6.
    29. Tatsuta M, Iishi H, Baba M. Inhibition by cysteamine of hepatocarcinogenesis induced by N-nitrosomorpholine in Sprague-Dawley rats. Int J Cancer. 1989 Sep 15;44(3):529-33.
    30. Tatsuta M, Iishi H, Baba M, Taniguchi H. Tissue norepinephrine depletion as a mechanism for cysteamine inhibition of colon carcinogenesis induced by azoxymethane in Wistar rats. Int J Cancer. 1989 Dec 15;44(6):1008-11.
    31. Vázquez SM, Mladovan AG, Pérez C, Bruzzone A, Baldi A, Lüthy IA. Human breast cell lines exhibit functional alpha2-adrenoceptors. Cancer Chemother Pharmacol. 2006 Jul;58(1):50-61.
    32. Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, Williams SM, eds. Neuroscience, 3rd edn. Sunderland, Massachusetts: Sinauer Associates, 2004. 489p.
    33. Hieble JP, Caine M, Zalaznik E. In vitro characterization of the alphaadrenoceptors in human prostate. Eur J Pharmacol 1985;107:111–17.
    34. M?ki T, Andersson LC, Kontula KK. Expression and function of beta-adrenergic receptors in human hematopoietic cell lines. Eur J Haematol. 1992 Nov;49(5):263-8.
    35. Katzung BG, ed. Basic and clinical pharmacology, 9th edn. New York: Lange Medical Books/McGraw-Hill, 2004. 86p.
    36. Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002 Sep;3(9):639-50.
    37. Neves SR, Ram PT, Iyengar R. G protein pathways. Science. 2002 May 31;296(5573):1636-9.
    38. Laag E, Majidi M, Cekanova M, Masi T, Takahashi T, Schuller HM. NNKactivates ERK1/2 and CREB/ATF-1 via beta-1-AR and EGFR signaling in human lung adenocarcinoma and small airway epithelial cells. Int J Cancer. 2006 Oct 1;119(7):1547-52.
    39. Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes cell proliferation via alpha7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells. Toxicol Appl Pharmacol. 2007 Jun 15;221(3):261-7.
    40. Shin VY, Wu WK, Chu KM, Koo MW, Wong HP, Lam EK, Tai EK, Cho CH. Functional role of beta-adrenergic receptors in the mitogenic action of nicotine on gastric cancer cells. Toxicol Sci. 2007 Mar;96(1):21-9.
    41. Yang EV, Kim SJ, Donovan EL, Chen M, Gross AC, Webster Marketon JI, Barsky SH, Glaser R. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun. 2009 Feb;23(2):267-75.
    42. Yang EV, Sood AK, Chen M, Li Y, Eubank TD, Marsh CB, Jewell S, Flavahan NA, Morrison C, Yeh PE, Lemeshow S, Glaser R. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 2006 Nov 1;66(21):10357-64.
    43. Guo K, Ma Q, Wang L, Hu H, Li J, Zhang D, Zhang M. Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol Rep. 2009 Oct;22(4):825-30.
    44. Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006 Aug;12(8):939-44.
    45. Lee JW, Shahzad MM, Lin YG, Armaiz-Pena G, Mangala LS, Han HD, Kim HS, Nam EJ, Jennings NB, Halder J, Nick AM, Stone RL, Lu C, Lutgendorf SK, Cole SW, Lokshin AE, Sood AK. Surgical stress promotes tumor growth in ovarian carcinoma. Clin Cancer Res. 2009 Apr 15;15(8):2695-702.
    46. Spiegel AM, Weinstein LS. Inherited diseases involving g proteins and g protein-coupled receptors. Annu Rev Med. 2004;55:27-39.
    47. Dang H, Elliott JJ, Lin AL, Zhu B, Katz MS, Yeh CK. Mitogen-activated protein kinase up-regulation and activation during rat parotid gland atrophy andregeneration: role of epidermal growth factor and beta2-adrenergic receptors. Differentiation. 2008 May;76(5):546-57.
    48. Daub H, Weiss FU, Wallasch C, Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 1996 Feb 8;379(6565):557-60.
    49. Gavi S, Shumay E, Wang HY, Malbon CC. G-protein-coupled receptors and tyrosine kinases: crossroads in cell signaling and regulation. Trends Endocrinol Metab. 2006 Mar;17(2):48-54.
    50. van Biesen T, Hawes BE, Raymond JR, Luttrell LM, Koch WJ, Lefkowitz RJ. G(o)-protein alpha-subunits activate mitogen-activated protein kinase via a novel protein kinase C-dependent mechanism. J Biol Chem. 1996 Jan 19;271(3):1266-9.
    51. Rao GN, Delafontaine P, Runge MS. Thrombin stimulates phosphorylation of insulin-like growth factor-1 receptor, insulin receptor substrate-1, and phospholipase C-gamma 1 in rat aortic smooth muscle cells. J Biol Chem. 1995 Nov 17;270(46):27871-5.
    52. Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A. Signal characteristics of G protein-transactivated EGF receptor. EMBO J. 1997 Dec 1;16(23):7032-44.
    53. Herrlich A, Daub H, Knebel A, Herrlich P, Ullrich A, Schultz G, Gudermann T. Ligand-independent activation of platelet-derived growth factor receptor is a necessary intermediate in lysophosphatidic, acid-stimulated mitogenic activity in L cells. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8985-90.
    54. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature. 1999 Dec 23-30;402(6764):884-8.
    55. Noma T, Lemaire A, Naga Prasad SV, Barki-Harrington L, Tilley DG, Chen J, Le Corvoisier P, Violin JD, Wei H, Lefkowitz RJ, Rockman HA. Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest. 2007 Sep;117(9):2445-58.
    56. Ma L, Pei G. Beta-arrestin signaling and regulation of transcription. J Cell Sci. 2007 Jan 15;120(Pt 2):213-8
    57. Ritter SL, Hall RA. Fine-tuning of GPCR activity by receptor-interacting proteins. Nat Rev Mol Cell Biol. 2009 Dec;10(12):819-30.
    58. Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009 Jul;9(7):463-75. Epub 2009 Jun 18.
    59. Lohrisch C, Piccart M. An overview of HER2. Semin Oncol. 2001 Dec;28(6 Suppl 18):3-11.
    60. Negro A, Brar BK, Gu Y, Peterson KL, Vale W, Lee KF. erbB2 is required for G protein-coupled receptor signaling in the heart. Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15889-93.
    61. Heffner KL, Loving TJ, Robles TF, Kiecolt-Glaser JK. Examining psychosocial factors related to cancer incidence and progression: in search of the silver lining. Brain Behav Immun. 2003 Feb;17 Suppl 1:S109-11.
    62. Spiegel D, Giese-Davis J. Depression and cancer: mechanisms and disease progression. Biol Psychiatry. 2003 Aug 1;54(3):269-82.
    63. Price MA, Tennant CC, Smith RC, Butow PN, Kennedy SJ, Kossoff MB, Dunn SM. The role of psychosocial factors in the development of breast carcinoma: Part I. The cancer prone personality. Cancer. 2001 Feb 15;91(4):679-85.
    64. Lillberg K, Verkasalo PK, Kaprio J, Teppo L, Helenius H, Koskenvuo M. Stressful life events and risk of breast cancer in 10,808 women: a cohort study. Am J Epidemiol. 2003 Mar 1;157(5):415-23.
    65. Penninx BW, Guralnik JM, Pahor M, Ferrucci L, Cerhan JR, Wallace RB, Havlik RJ. Chronically depressed mood and cancer risk in older persons. J Natl Cancer Inst. 1998 Dec 16;90(24):1888-93.
    66. Ben-Eliyahu S, Yirmiya R, Liebeskind JC, Taylor AN, Gale RP. Stress increases metastatic spread of a mammary tumor in rats: evidence for mediation by the immune system. Brain Behav Immun. 1991 Jun;5(2):193-205.
    67. Ben-Eliyahu S, Page GG, Yirmiya R, Shakhar G. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int J Cancer. 1999 Mar 15;80(6):880-8.
    68. Page GG, Ben-Eliyahu S. A role for NK cells in greater susceptibility of young rats to metastatic formation. Dev Comp Immunol. 1999 Jan-Feb;23(1):87-96.
    69. Page GG, Ben-Eliyahu S, Yirmiya R, Liebeskind JC. Morphine attenuates surgery-induced enhancement of metastatic colonization in rats. Pain. 1993 Jul;54(1):21-8.
    70. Stefanski V, Ben-Eliyahu S. Social confrontation and tumor metastasis in rats: defeat and beta-adrenergic mechanisms. Physiol Behav. 1996 Jul;60(1):277-82.
    71. Ben-Eliyahu S, Page GG, Marek P, Kest B, Taylor AN, Liebeskind JC. The NMDA receptor antagonist MK-801 blocks nonopioid stress induced analgesia and decreases tumor metastasis in the rat. Proc West Pharmacol Soc. 1993;36:293-8.
    72. Hermes GL, Delgado B, Tretiakova M, Cavigelli SA, Krausz T, Conzen SD, McClintock MK. Social isolation dysregulates endocrine and behavioral stress while increasing malignant burden of spontaneous mammary tumors. Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22393-8.
    73. McEwen BS. Sex, stress and the hippocampus: allostasis, allostatic load and the aging process. Neurobiol Aging. 2002 Sep-Oct;23(5):921-39.
    74. Masur K, Niggemann B, Zanker KS, Entschladen F. Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by beta-blockers. Cancer Res. 2001 Apr 1;61(7):2866-9.
    75. Sood AK, Bhatty R, Kamat AA, Landen CN, Han L, Thaker PH, Li Y, Gershenson DM, Lutgendorf S, Cole SW. Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res. 2006 Jan 15;12(2):369-75.
    76. Badino GR, Novelli A, Girardi C, Di Carlo F. Evidence for functional beta-adrenoceptor subtypes in CG-5 breast cancer cell. Pharmacol Res. 1996 Apr-May;33(4-5):255-60.
    77. Yuan A, Li Z, Li X, Yi S, Wang S, Cai Y, Cao H. The mitogenic effectors of isoproterenol in human hepatocellular carcinoma cells. Oncol Rep. 2010 Jan;23(1):151-7.
    78. Shang ZJ, Liu K, Liang de F. Expression of beta2-adrenergic receptor in oral squamous cell carcinoma. J Oral Pathol Med. 2009 Apr;38(4):371-6.
    79. Liu X, Wu WK, Yu L, Li ZJ, Sung JJ, Zhang ST, Cho CH. Epidermal growth factor-induced esophageal cancer cell proliferation requires transactivation of beta-adrenoceptors. J Pharmacol Exp Ther. 2008 Jul;326(1):69-75.
    80. NAGATSU T, LEVITT M, UDENFRIEND S. TYROSINE HYDROXYLASE. THE INITIAL STEP IN NOREPINEPHRINE BIOSYNTHESIS. J Biol Chem. 1964 Sep;239:2910-7.
    81. Fernstrom MH, Baker RL, Fernstrom JD. In vivo tyrosine hydroxylation rate in retina: effects of phenylalanine and tyrosine administration in rats pretreated with p-chlorophenylalanine. Brain Res. 1989 Oct 16;499(2):291-8.
    82. Ribeiro P, Pigeon D, Kaufman S. The hydroxylation of phenylalanine andtyrosine by tyrosine hydroxylase from cultured pheochromocytoma cells. J Biol Chem. 1991 Aug 25;266(24):16207-11.
    83. Iuvone PM, Galli CL, Garrison-Gund CK, Neff NH. Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science. 1978 Nov 24;202(4370):901-2.
    84. Ramberg H, Eide T, Krobert KA, Levy FO, Dizeyi N, Bjartell AS, Abrahamsson PA, Taskén KA. Hormonal regulation of beta2-adrenergic receptor level in prostate cancer. Prostate. 2008 Jul 1;68(10):1133-42.
    85. Landen CN Jr, Lin YG, Armaiz Pena GN, Das PD, Arevalo JM, Kamat AA, Han LY, Jennings NB, Spannuth WA, Thaker PH, Lutgendorf SK, Savary CA, Sanguino AM, Lopez-Berestein G, Cole SW, Sood AK. Neuroendocrine modulation of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Res. 2007 Nov 1;67(21):10389-96.
    86. Qian L, Chen L, Shi M, Yu M, Jin B, Hu M, Xia Q, Zhang X, Shen B, Guo N. A novel cis-acting element in Her2 promoter regulated by Stat3 in mammary cancer cells. Biochem Biophys Res Commun. 2006 Jun 30;345(2):660-8.
    87. Dhanasekaran N, Heasley LE, Johnson GL. G protein-coupled receptor systems involved in cell growth and oncogenesis. Endocr Rev. 1995 Jun;16(3):259-70.
    88. Faure M, Voyno-Yasenetskaya TA, Bourne HR. cAMP and beta gamma subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J Biol Chem. 1994 Mar 18;269(11):7851-4.
    89. Cakir Y, Plummer HK 3rd, Tithof PK, Schuller HM. Beta-adrenergic and arachidonic acid-mediated growth regulation of human breast cancer cell lines. Int J Oncol. 2002 Jul;21(1):153-7.
    90. Yang EV, Donovan EL, Benson DM, Glaser R. VEGF is differentially regulated in multiple myeloma-derived cell lines by norepinephrine. Brain Behav Immun. 2008 Mar;22(3):318-23.
    91. Fitzgerald PJ. Is norepinephrine an etiological factor in some types of cancer? Int J Cancer. 2009 Jan 15;124(2):257-63.
    92. Palermo-Neto J, de Oliveira Massoco C, Robespierre de Souza W. Effects of physical and psychological stressors on behavior, macrophage activity, and Ehrlich tumor growth. Brain Behav Immun. 2003 Feb;17(1):43-54.
    93. Brenner GJ, Felten SY, Felten DL, Moynihan JA. Sympathetic nervous system modulation of tumor metastases and host defense mechanisms. J Neuroimmunol.1992 Apr;37(3):191-201.
    94. Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D, Hung MC. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell. 2004 Nov;6(5):459-69.
    95. Lutgendorf SK, Weinrib AZ, Penedo F, Russell D, DeGeest K, Costanzo ES, Henderson PJ, Sephton SE, Rohleder N, Lucci JA 3rd, Cole S, Sood AK, Lubaroff DM. Interleukin-6, cortisol, and depressive symptoms in ovarian cancer patients. J Clin Oncol. 2008 Oct 10;26(29):4820-7.
    96. Pyter LM, Pineros V, Galang JA, McClintock MK, Prendergast BJ. Peripheral tumors induce depressive-like behaviors and cytokine production and alter hypothalamic-pituitary-adrenal axis regulation. Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):9069-74.
    97. Magnifico A, Albano L, Campaner S, Campiglio M, Pilotti S, Ménard S, Tagliabue E. Protein kinase Calpha determines HER2 fate in breast carcinoma cells with HER2 protein overexpression without gene amplification. Cancer Res. 2007 Jun 1;67(11):5308-17.
    98. Smythies J. Section III. The norepinephrine system. Int Rev Neurobiol. 2005;64:173-211.
    99. Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY, Bourguignon L, Hung MC. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol. 2001 Sep;3(9):802-8.
    100. Ni CY, Murphy MP, Golde TE, Carpenter G.gamma -Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science. 2001 Dec 7;294(5549):2179-81.
    101. Offterdinger M, Sch?fer C, Weipoltshammer K, Grunt TW. c-erbB-3: a nuclear protein in mammary epithelial cells. J Cell Biol. 2002 Jun 10;157(6):929-39.
    102. Wang SC, Lien HC, Xia W, Chen IF, Lo HW, Wang Z, Ali-Seyed M, Lee DF, Bartholomeusz G, Ou-Yang F, Giri DK, Hung MC. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell. 2004 Sep;6(3):251-61.
    103. Chen L, Qian L, Zhang Z, Shi M, Song Y, Yuan G, Zhang H, Hu M, Yu M, Zhang X, Shen B, Guo N. Mutational analysis of ErbB2 intracellular localization. Histochem Cell Biol. 2007 Nov;128(5):473-83.
    104. Giri DK, Ali-Seyed M, Li LY, Lee DF, Ling P, Bartholomeusz G, Wang SC,Hung MC. Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol. 2005 Dec;25(24):11005-18.
    105. Codony-Servat J, Albanell J, Lopez-Talavera JC, Arribas J, Baselga J. Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res. 1999 Mar 15;59(6):1196-201.
    106. Pupa SM, Ménard S, Morelli D, Pozzi B, De Palo G, Colnaghi MI. The extracellular domain of the c-erbB-2 oncoprotein is released from tumor cells by proteolytic cleavage. Oncogene. 1993 Nov;8(11):2917-23.
    107. Leitzel K, Teramoto Y, Konrad K, Chinchilli VM, Volas G, Grossberg H, Harvey H, Demers L, Lipton A. Elevated serum c-erbB-2 antigen levels and decreased response to hormone therapy of breast cancer. J Clin Oncol. 1995 May;13(5):1129-35.
    108. Christianson TA, Doherty JK, Lin YJ, Ramsey EE, Holmes R, Keenan EJ, Clinton GM. NH2-terminally truncated HER-2/neu protein: relationship with shedding of the extracellular domain and with prognostic factors in breast cancer. Cancer Res. 1998 Nov 15;58(22):5123-9.
    109. Baselga J, Albanell J, Molina MA, Arribas J. Mechanism of action of trastuzumab and scientific update. Semin Oncol. 2001 Oct;28(5 Suppl 16):4-11.
    110. Drell TL 4th, Joseph J, Lang K, Niggemann B, Zaenker KS, Entschladen F. Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res Treat. 2003 Jul;80(1):63-70.
    111. Wong HP, Yu L, Lam EK, Tai EK, Wu WK, Cho CH. Nicotine promotes colon tumor growth and angiogenesis through beta-adrenergic activation. Toxicol Sci. 2007 Jun;97(2):279-87.
    112. Li P, Wu WK, Wong HP, Zhang ST, Yu L, Cho CH. Chloroform extract of cigarette smoke induces proliferation of human esophageal squamous-cell carcinoma cells: modulation by beta-adrenoceptors. Drug Chem Toxicol. 2009;32(3):175-81.
    113. Felten DL. Direct innervation of lymphoid organs: substrate for neurotransmitter signaling of cells of the immune system. Neuropsychobiology. 1993;28(1-2):110-2.
    114. Entschladen F, Drell TL 4th, Lang K, Joseph J, Zaenker KS. Tumour-cellmigration, invasion, and metastasis: navigation by neurotransmitters. Lancet Oncol. 2004 Apr;5(4):254-8.
    115. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10356-61.
    116. Fredriksson JM, Lindquist JM, Bronnikov GE, Nedergaard J. Norepinephrine induces vascular endothelial growth factor gene expression in brown adipocytes through a beta -adrenoreceptor/cAMP/protein kinase A pathway involving Src but independently of Erk1/2. J Biol Chem. 2000 May 5;275(18):13802-11.
    117. Liu X, Wu WK, Yu L, Sung JJ, Srivastava G, Zhang ST, Cho CH. Epinephrine stimulates esophageal squamous-cell carcinoma cell proliferation via beta-adrenoceptor-dependent transactivation of extracellular signal-regulated kinase/cyclooxygenase-2 pathway. J Cell Biochem. 2008 Sep 1;105(1):53-60.
    118. Murai T, Miyazaki Y, Nishinakamura H, Sugahara KN, Miyauchi T, Sako Y, Yanagida T, Miyasaka M. Engagement of CD44 promotes Rac activation and CD44 cleavage during tumor cell migration. J Biol Chem. 2004 Feb 6;279(6):4541-50.
    119. Nagano O, Murakami D, Hartmann D, De Strooper B, Saftig P, Iwatsubo T, Nakajima M, Shinohara M, Saya H. Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca(2+) influx and PKC activation. J Cell Biol. 2004 Jun 21;165(6):893-902.
    120. Stoeck A, Keller S, Riedle S, Sanderson MP, Runz S, Le Naour F, Gutwein P, Ludwig A, Rubinstein E, Altevogt P.A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem J. 2006 Feb 1;393(Pt 3):609-18.
    121. Paris D, Quadros A, Patel N, DelleDonne A, Humphrey J, Mullan M. Inhibition of angiogenesis and tumor growth by beta and gamma-secretase inhibitors. Eur J Pharmacol. 2005 May 2;514(1):1-15.
    122. van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature. 2005 Jun 16;435(7044):959-63.
    123. van Es JH, Clevers H. Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol Med. 2005 Nov;11(11):496-502
    124. Dyczynska E, Sun D, Yi H, Sehara-Fujisawa A, Blobel CP, Zolkiewska A. Proteolytic processing of delta-like 1 by ADAM proteases. J Biol Chem. 2007 Jan 5;282(1):436-44.
    125. Six E, Ndiaye D, Laabi Y, Brou C, Gupta-Rossi N, Israel A, Logeat F. The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gamma-secretase. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7638-43.
    126. Hartmann D, de Strooper B, Serneels L, Craessaerts K, Herreman A, Annaert W, Umans L, Lübke T, Lena Illert A, von Figura K, Saftig P. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet. 2002 Oct 1;11(21):2615-24.
    127. Ni Y, Zhao X, Bao G, Zou L, Teng L, Wang Z, Song M, Xiong J, Bai Y, Pei G. Activation of beta2-adrenergic receptor stimulates gamma-secretase activity and accelerates amyloid plaque formation. Nat Med. 2006 Dec;12(12):1390-6.
    128. Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, Gomis RR, Manova-Todorova K, MassaguéJ. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature. 2007 Apr 12;446(7137):765-70.
    129. Schmidt C, Kraft K. Beta-endorphin and catecholamine concentrations during chronic and acute stress in intensive care patients. Eur J Med Res. 1996 Sep 20;1(11):528-32.
    130. Lara HE, Dorfman M, Venegas M, Luza SM, Luna SL, Mayerhofer A, Guimaraes MA, Rosa E Silva AA, Ramírez VD. Changes in sympathetic nerve activity of the mammalian ovary during a normal estrous cycle and in polycystic ovary syndrome: Studies on norepinephrine release. Microsc Res Tech. 2002 Dec 15;59(6):495-502.
    131. Liu PC, Liu X, Li Y, Covington M, Wynn R, Huber R, Hillman M, Yang G, Ellis D, Marando C, Katiyar K, Bradley J, Abremski K, Stow M, Rupar M, Zhuo J, Li YL, Lin Q, Burns D, Xu M, Zhang C, Qian DQ, He C, Sharief V, Weng L, Agrios C, Shi E, Metcalf B, Newton R, Friedman S, Yao W, Scherle P, Hollis G, Burn TC. Identification of ADAM10 as a major source of HER2 ectodomain sheddase activity in HER2 overexpressing breast cancer cells. Cancer Biol Ther. 2006 Jun;5(6):657-64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700