用户名: 密码: 验证码:
新型重组蛋白TAT/54R/KDEL的构建和表达及其对CXCR4的表型敲除活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究表明,趋化因子受体CXCR4(CXC chemokine receptor 4)与其特异性配体,基质细胞衍生因子-1(stromal cell-derived factor-1,SDF-1)相互作用在多种恶性肿瘤转移过程中起着关键作用。因而,CXCR4被认为是有效防治肿瘤转移的重要靶点。本课题组曾对SDF-1进行遗传改造,获得了一种CXCR4竞争性拮抗剂:SDF-1/54R,研究证实:SDF-1/54R可通过诱导CXCR4内吞,使细胞膜表面CXCR4迅速消失。但由于内吞进细胞的CXCR4又回到质膜表面重新利用,导致SDF-1/54R对CXCR4介导细胞迁移的抑制效应也随之消失[1]。因此,欲获得真正具有临床抗肿瘤转移应用价值的CXCR4拮抗剂,尝试持久性阻断CXCR4的技术路线是十分必要的。鉴于胞内因子(intrakine)分子量小,特异性强,靶向性高等优点,将胞内因子表型敲除技术用于持久性阻断肿瘤细胞CXCR4的表达不失为一种新思路。为此,课题组进一步尝试将SDF-1/54R与内质网定位片段KDEL嵌合,从而构建了胞内因子SDF-1/54R/KDEL的真核载体和腺病毒载体。体外实验证实,转染SDF-1/54R/KDEL基因的MOLT-4细胞膜表面CXCR4的表达量显著降低,其转移受到持久性抑制。然而,考虑到转基因技术操作复杂,在整体应用上安全性无法保证等局限,我们有必要进一步尝试直接向胞内递送趋化因子蛋白,在蛋白水平上实现CXCR4表型敲除以抑制肿瘤转移的可能性。为此,本课题借鉴穿膜肽的最新研究成果,再次对SDF-1/54R/KDEL进行基因改造,将其与高效穿膜载体TAT (47~57)连接,从而构建了一种新的嵌合蛋白:TAT/54R/KDEL。拟利用TAT(47~57)的高效穿膜能力和KDEL的内质网定位作用,将CXCR4的特异性拮抗剂SDF-1/54R导入肿瘤细胞,在蛋白水平上实现对其细胞膜表面CXCR4的敲除,进而实现抑制肿瘤细胞转移的目的。本研究结果将为证实这一防治肿瘤转移新策略的可行性和有效性提供直接的实验依据,并为其它以CXCR4为靶点的肿瘤基因治疗提供有益的参考价值。
     目的:
     对SDF-1/54R进行二次基因改造,将其与高效穿膜载体TAT (47~57)和内质网定位片段KDEL连接,构建一种新的嵌合蛋白:TAT/54R/KDEL,并在细胞水平上证实其CXCR4表型敲除功能以及评价其在体内对肿瘤转移的抑制作用。
     方法:
     ①以本室构建的GFP/pET-28a(+)和54R/pET-28a(+)为模板,采用PCR方法扩增GFP/KDEL和54R/KDEL基因,PCR产物酶切后插入pTAT-HA原核表达载体TAT编码区下游的多克隆位点,即获得含有目的基因的重组质粒TAT/GFP/KDEL/pTAT-HA和TAT/54R/KDEL/pTAT-HA。
     ②将鉴定正确的重组质粒TAT/GFP/KDEL/pTAT-HA和TAT/54R/KDEL /pTAT-HA转化表达菌株BL21,用0.5μM IPTG诱导表达,表达产物采用Western blot法进行鉴定。并利用表达产物N-端所带的6×His-Tag融合标签,采用镍柱亲和层析和HPLC纯化目的蛋白,由于嵌合蛋白TAT/GFP/KDEL为可溶表达,纯化后的蛋白只需简单的透析、浓缩即可得到有活性的蛋白。而嵌合蛋白TAT/54R/KDEL以包涵体形式表达,纯化后的蛋白需要联合采用稀释、透析和超滤的方法进行复性。
     ③体外实验,首先检测TAT/GFP/KDEL对MOLT-4细胞的穿膜能力和内质网定位情况以考察本课题设计方案的可行性,然后分别利用荧光显微镜和荧光酶标仪检测TAT/54R/KDEL对高表达CXCR4的MOLT-4细胞和不表达该受体的CNE2细胞的穿膜能力和靶向性,并利用激光共聚焦显微镜检测TAT/54R/KDEL的内质网定位情况。TAT/54R/KDEL的CXCR4表型敲除能力是其体外活性研究的重点,为此,我们首先采用流式细胞仪检测TAT/54R/KDEL对MOLT-4细胞膜表面CXCR4表达量的影响;然后利用趋化实验考察TAT/54R/KDEL对SDF-1诱导的MOLT-4细胞转移的抑制作用;最后通过Western blot实验进一步评价TAT/54R/KDEL对细胞表面CXCR4表型敲除的作用效果。此外,还利用台盼蓝排斥实验和MTT法检测了TAT/54R/KDEL的细胞毒性及其对细胞增殖的影响。
     ④将高表达CXCR4的小鼠乳腺癌细胞4T1,原位接种于BALB/c小鼠第2对乳房脂肪垫以建立小鼠乳腺癌转移模型,并利用该模型考察TAT/54R/KDEL对移植部位乳腺癌细胞生长和转移的抑制效应。进一步采用RT-PCR和流式细胞仪检测乳腺癌原发灶及转移灶的CXCR4和SDF-1表达量的变化,以探讨TAT/54R/KDEL对乳腺癌转移的抑制效应与其CXCR4表型敲除能力之间的相互关系,从而初步阐明TAT/54R/KDEL在体内的作用机制。
     结果:
     ①以本室构建的GFP/pET-28a(+)和54R/pET-28a(+)为模板,PCR扩增出目的基因GFP/KDEL和54R/KDEL,并采用PCR、酶切和测序方法证实目的基因已正确地插入pTAT-HA载体。
     ②用Western blot法证实含有目的基因的重组质粒TAT/GFP/KDEL/pTAT-HA和TAT/54R/KDEL/pTAT-HA在BL21菌株中成功实现了高表达,采用镍柱亲和层析和HPLC纯化得到了纯度大于95 %的目的蛋白TAT/GFP/KDEL和TAT/54R/KDEL。TAT/54R/KDEL经稀释、透析和超滤等处理后实现了复性。
     ③分别利用荧光显微镜、流式细胞仪和荧光酶标仪证实TAT/GFP/KDEL具有高效的穿膜能力,并能准确地定位于内质网,从而初步证实了本课题设计方案的可行性。与不表达CXCR4的CNE2细胞相比,TAT/54R/KDEL对高表达该受体的MOLT-4细胞具有更高的穿膜能力和靶向性,并且也能准确地定位于内质网为其进一步实现CXCR4表型敲除奠定了基础。通过流式细胞术的方法证实TAT/54R/KDEL对MOLT-4细胞表面CXCR4具有持续地表型敲除能力。趋化实验表明TAT/54R/KDEL能够有效地抑制SDF-1诱导的肿瘤细胞迁移,Western blot实验进一步证实与SDF-1/54相比较,TAT/54R/KDEL对肿瘤细胞CXCR4的表型敲除效果更完全。台盼蓝排斥实验和MTT法证实TAT/54R/KDEL没有细胞毒性,不影响CNE2细胞的增殖,而对MOLT-4细胞的增殖具有抑制作用。
     ④将高表达CXCR4的乳腺癌细胞4T1,原位接种于BALB/c小鼠第2对乳房脂肪垫成功建立了小鼠乳腺癌转移模型,并利用该模型证实TAT/54R/KDEL对移植部位乳腺癌细胞的生长和转移具有抑制效应。进一步采用RT-PCR和流式细胞术证实乳腺癌的转移与细胞膜表面CXCR4及转移组织SDF-1的高表达密切相关,TAT/54R/KDEL通过蛋白水平上CXCR4的表型敲除在一定程度上抑制了乳腺癌的转移。
     结论:
     ①成功构建了TAT/54R/KDEL的大肠杆菌表达系统,并且表达、分离纯化出具有生物活性的TAT/54R/KDEL蛋白。
     ②TAT/54R/KDEL具有高效的穿膜能力,并能准确地定位于内质网,初步证实了本课题设计方案的可行性。
     ③体外实验证实TAT/54R/KDEL对MOLT-4细胞膜表面的CXCR4具有持续地表型敲除能力,并且能够有效抑制SDF-1诱导的细胞迁移。
     ④通过小鼠乳房脂肪垫移植4T1细胞,成功建立了小鼠乳腺癌转移模型。
     ⑤体内实验证实TAT/54R/KDEL可在一定程度上抑制乳腺癌的转移。
It has been shown that interaction between CXCR4 (CXC chemokine receptor 4) and its specific ligand SDF-1(Stromal cell-derived factor-1) plays an important role in the metastasis of many malignant tumors. Therefore, it may be of great significance to effectively prevent tumor metastasis by targeting CXCR4 and blocking interaction between CXCR4 and SDF-1. Therefore, a competitive antagonist of CXCR4, named SDF-1/54R, was constructed by gene reconstruction of SDF-1 in our previous research, and it has been proved that SDF-1/54R could eliminate CXCR4 on cell surface by induction of internalization of CXCR4 quickly, however, the inhibitory effect of SDF-1/54R on CXCR4 induced cell migration was also temporary because of the re-expression of internalized CXCR4 receptor on cell membrane. Accordingly, a new approach to permanently inhibit CXCR4 expression is necessary in order to obtain a clinical valuable CXCR4 antagon. The intrakine phaenotype knockout technology will be a new strategy to block CXCR4 expression on tumor cell surface permanently due to the properties of intrakine such as low molecular weight, strong specificity and high targetting. Above on this, eukaryotic vector and adenovirus vector of intrakine, SDF-1/54R/KDEL, were constructed by linking SDF-1/54R and an endoplasmic reticulum (ER) retention signal segment (KDEL) together. It has been demonstrated that expression of CXCR4 on MOLT-4 cell which transfected by SDF-1/54R/KDEL was reduced dramatically and a permanent inhibition of migration was observed. Allow for the multiplicity of transgenic technology operation and the low safety ensurance in systemic application, a further strategy of delivering chemotatic factor intracellularly to knockout CXCR4 on cell surface was necessary. Therefore, based on the newest research of transmembrane peptide, the second gene reconstruction of SDF-1/54R/KDEL was carried on by linking a highly effective transmembrane vector TAT(47~57) to its N-extremity. The high transmembrane effect of TAT and the ER retention function of KDEL both help to introduce fusion protein SDF-1/54R into ER of tumor cells in order to specifically bind to the newly-synthetic target receptor CXCR4 intracellularly, accordingly block the expression of CXCR4 on cell surface and consequently the following tumor metastasis signaling mediated by CXCR4/SDF-1 interaction. The results will provide direct experimental evidence to investigate the feasibility and effectivity of the new strategy which exploring CXCR4 as a target in cancer gene therapy.
     Objectives:
     A new chimeric protein: TAT/54R/KDEL was constructed by the second gene reconstruction of SDF-1/54R, via a highly effective transmembrane vector TAT(47~57) and the endoplasmic reticulum (ER) retention signal (KDEL) linked to each extremity of SDF-1/54R respectively, and the inhibition of tumor metastasis was tested both in vitro and in vivo.
     Methods:
     ①GFP/KDEL and 54R/KDEL gene were obtained from GFP/pET-28a(+) and 54R/pET-28a(+) constructed previously with PCR, and linked with KDEL gene fragment respectively. Then the two part were inserted into the downstream MCS of TAT in prokaryotic expression vector pTAT-HA respectively to obtain the recombinant plasmids TAT/GFP/KDEL/pTAT-HA and TAT/54R/KDEL/pTAT-HA .
     ②The identificated recombinant plasmids TAT/GFP/KDEL/pTAT-HA and TAT/54R/KDEL/pTAT-HA were subsequently transformed into E coli expression strain BL21(DE3), the expression of recombinant protein was induced by 0.5μM IPTG. and verificated by Western blot. Then a Ni2+ affinity chromatography column was used to purificate recombinant protein by the 6×His-Tag at the N-extremity of the protein. Active TAT/GFP/KDEL could be obtained just by dislysis and concentration due to its soluble expression property, however, TAT/54R/KDELL needs deliquation, dislysis and ultrafiltration for renaturation as it exists in inclusion body.
     ③MOLT-4 cell line was used to test the transmembrane and ER retention capability of TAT/GFP/KDEL to determine the feasibility of designed proposal initially. The bioactivity of TAT/54R/KDEL as transmembrane capability and targeting property was detected by fluorescence microscope and fluorescence microplate reader on MOLT-4 cells which have an overexpression of CXCR4 and CNE2 cells which are CXCR4 negative. Laser confocal microscopy was used to detect intracellular location of TAT/54R/KDEL on ER. It is of great importance to test CXCR4 knockout effect of TAT/54R/KDEL, so a flow cytometer was used firstly to detect influence of TAT/54R/KDEL on CXCR4 expression on cell surface, then a chemotaxis essay to investigate TAT/54R/KDEL’s inhibitory effect on MOLT-4 cell migration and finally Western blot was applied to evaluate the effectiveness of TAT/54R/KDEL on CXCR4 knockout on cell surface. Besides, trypan blue rejection experiment and MTT method was used to test cytotoxicity and influence on cell proliferation of TAT/54R/KDEL.
     ④The animal model of breast cancer metastasis was established by transplanting 4T1 cell into the second breast subcutaneous fat pad of BALB/c mice to detect the inhibitory effect of TAT/54R/KDEL on development and metastasis of the transplanted tumor in tumor-bearing mice. RT-PCR and flow cytometer was applied to detect variation of CXCR4 and SDF-1 expression in primary tumor and metastatic tumor in order to investigate the interaction of metastasis inhibition role of TAT/54R/KDEL and its knockout effect on CXCR4, and illuminate the action mechanism of TAT/54R/KDEL in vivo.
     Results:
     ①GFP/KDEL and 54R/KDEL gene were obtained successfully with PCR from GFP/pET-28a(+) and 54R/pET-28a(+) constructed previously and inserted into pTAT-HA vector. Both were confirmed to be correct by PCR, enzyme digestion and gene sequencing.
     ②Overexpression of TAT/GFP/KDEL/pTAT-HA and TAT/54R/KDEL/pTAT-HA in BL21 was confirmed by Western blot. Purified target proteins TAT/GFP/KDEL and TAT/54R/KDEL (>95%) were obtained by nickel affinity chromatography and HPLC purification. The TAT/54R/KDEL in inclusion body was renaturated by dilution, dislysis and ultrafiltration.
     ③High transmembrane effectiveness and capability of exact ER retention of TAT/GFP/KDEL in MOLT-4 cells was verified by fluorescence microscope and fluorescence microplate reader, which offering a initial feasibility of the designed proposal. When compared with CXCR4- CNE2 cells, TAT/54R/KDEL showed a better transmembrane and targeting capability, and exact located on ER in MOLT-4 cells on which CXCR4 is overexpressed, which established the foundation of CXCR4 phenotype knockout. Flow cytometry proved that TAT/54R/KDEL had a permanent CXCR4 phenotype knockout effect on MOLT-4 cells. Chemotaxis essay showed that TAT/54R/KDEL could restrain SDF-1 induced cell migration effectively and Western blot demonstrated that the CXCR4 phenotype knockout effectiveness of TAT/54R/KDEL was more thoroughly compared with SDF-1/54. Trypan blue rejection experiment and MTT method confirmed that TAT/54R/KDEL has a proliferation inhibitory effect on MOLT-4 cells which has no effect on CNE2 cells.
     ④The animal model of breast cancer metastasis was established successfully by transplanting 4T1 cell into the second breast subcutaneous fat pad of BALB/c mice, and a dramatic inhibitory effect of TAT/54R/KDEL on development and metastasis of the transplanted tumor was detected. The correlation breast tumor metastasis with CXCR4 expression on tumor cell surface and SDF-1 expression in metastatic tumor tissue was confirmed to be close by RT-PCR and flow cytometry. TAT/54R/KDEL has a inhibition role on breast cancer metastasis to some extent via its CXCR4 knockout effect.
     Conclusion:
     ①E.Coli expression system of TAT/GFP/KDEL and TAT/54R/KDEL was constructed successfully and bioactive TAT/GFP/KDEL and TAT/54R/KDEL proteins were obtained by expression, separation and purification.
     ②High transmembrane effectiveness and capability of exact ER retention of TAT/GFP/KDEL on MOLT-4 cells were verified, confirming the feasibility of the designed proposal initially.
     ③TAT/54R/KDEL has a permanent CXCR4 phenotype knockout effect on MOLT-4 cell surface in vitro.
     ④The animal model of breast cancer metastasis was established successfully by transplanting 4T1 cell into the breast subcutaneous fat pad of BALB/c mice.
     ⑤The inhibition role of TAT/54R/KDEL on breast cancer metastasis was confirmed by experiment in vivo to some extent.
引文
[1] Cai, S.H., et al., Loss of C-terminal alpha-helix decreased SDF-1alpha-mediated signaling and chemotaxis without influencing CXCR4 internalization. Acta Pharmacol Sin, 2004. 25(2): p. 152-60.
    [2] Wheeler, Y.Y., S.Y. Chen, and D.C. Sane, Intrabody and intrakine strategies for molecular therapy. Mol Ther, 2003. 8(3): p. 355-66.
    [3] Murphy, P.M., et al., International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev, 2000. 52(1): p. 145-76.
    [4] Caruz, A., et al., Genomic organization and promoter characterization of human CXCR4 gene. FEBS Lett, 1998. 426(2): p. 271-8.
    [5] Gerlach, L.O., et al., Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. J Biol Chem, 2001. 276(17): p. 14153-60.
    [6] Morris, A.J. and C.C. Malbon, Physiological regulation of G protein-linked signaling. Physiol Rev, 1999. 79(4): p. 1373-430.
    [7] Baggiolini, M., B. Dewald, and B. Moser, Human chemokines: an update. Annu Rev Immunol, 1997. 15: p. 675-705.
    [8] Luther, S.A. and J.G. Cyster, Chemokines as regulators of T cell differentiation. Nat Immunol, 2001. 2(2): p. 102-7.
    [9] Hayflick, J.S., A family of heptahelical receptors with adhesion-like domains: a marriage between two super families. J Recept Signal Transduct Res, 2000. 20(2-3): p. 119-31.
    [10] Yu, L., et al., Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene, 2006. 374: p. 174-9.
    [11] Hesselgesser, J., et al., Identification and characterization of the CXCR4 chemokine receptor in human T cell lines: ligand binding, biological activity, and HIV-1 infectivity. J Immunol, 1998. 160(2): p. 877-83.
    [12] Elisseeva, E.L., et al., NMR studies of active N-terminal peptides of stromal cell-derived factor-1. Structural basis for receptor binding. J Biol Chem, 2000. 275(35): p. 26799-805.
    [13] Zhou, N., et al., Exploring the stereochemistry of CXCR4-peptide recognition and inhibiting HIV-1 entry with D-peptides derived from chemokines. J Biol Chem, 2002. 277(20): p. 17476-85.
    [14] Sadir, R., et al., Characterization of the stromal cell-derived factor-1alpha-heparin complex. J Biol Chem, 2001. 276(11): p. 8288-96.
    [15] Tudan, C., et al., C-terminal cyclization of an SDF-1 small peptide analogue dramatically increases receptor affinity and activation of the CXCR4 receptor. J Med Chem, 2002. 45(10): p. 2024-31.
    [16] Dettin, M., et al., Synthetic peptides for study of human immunodeficiency virus infection. Appl Biochem Biotechnol, 2002. 102-103(1-6): p. 41-7.
    [17] Dragic, T., An overview of the determinants of CCR5 and CXCR4 co-receptor function. J Gen Virol, 2001. 82(Pt 8): p. 1807-14.
    [18] Oh, S.Y., et al., Structure-function correlation of laminar vascularity in human rectus extraocular muscles. Invest Ophthalmol Vis Sci, 2001. 42(1): p. 17-22.
    [19] Roland, J., et al., Role of the intracellular domains of CXCR4 in SDF-1-mediated signaling. Blood, 2003. 101(2): p. 399-406.
    [20] Crump, M.P., et al., Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. Embo J, 1997. 16(23): p. 6996-7007.
    [21] Gupta, S.K., et al., Pharmacological evidence for complex and multiple site interaction of CXCR4 with SDF-1alpha: implications for development of selective CXCR4 antagonists. Immunol Lett, 2001. 78(1): p. 29-34.
    [22] Zhou, N., et al., Structural and functional characterization of human CXCR4 as a chemokine receptor and HIV-1 co-receptor by mutagenesis and molecular modeling studies. J Biol Chem, 2001. 276(46): p. 42826-33.
    [23] Hatse, S., et al., Mutation of Asp(171) and Asp(262) of the chemokine receptor CXCR4 impairs its coreceptor function for human immunodeficiency virus-1 entry and abrogates the antagonistic activity of AMD3100. Mol Pharmacol, 2001. 60(1): p. 164-73.
    [24] Bleul, C.C., et al., A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med, 1996. 184(3): p. 1101-9.
    [25] Horuk, R., Chemokines beyond inflammation. Nature, 1998. 393(6685): p. 524-5.
    [26] Schmid, B.C., et al., CXCR4 is expressed in ductal carcinoma in situ of the breast and in atypical ductal hyperplasia. Breast Cancer Res Treat, 2004. 84(3): p. 247-50.
    [27] Lapteva, N., et al., CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther, 2005. 12(1): p. 84-9.
    [28] Hall, J.M. and K.S. Korach, Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol, 2003. 17(5): p. 792-803.
    [29] Balkwill, F., The significance of cancer cell expression of the chemokine receptor CXCR4.Semin Cancer Biol, 2004. 14(3): p. 171-9.
    [30] Kijowski, J., et al., The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells, 2001. 19(5): p. 453-66.
    [31] Majka, M., et al., Thrombopoietin, but not cytokines binding to gp130 protein-coupled receptors, activates MAPKp42/44, AKT, and STAT proteins in normal human CD34+ cells, megakaryocytes, and platelets. Exp Hematol, 2002. 30(7): p. 751-60.
    [32] Scotton, C.J., et al., Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res, 2002. 62(20): p. 5930-8.
    [33] Sun, Y.X., et al., Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem, 2003. 89(3): p. 462-73.
    [34] Barbero, S., et al., Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res, 2003. 63(8): p. 1969-74.
    [35] Dunussi-Joannopoulos, K., et al., Efficacious immunomodulatory activity of the chemokine stromal cell-derived factor 1 (SDF-1): local secretion of SDF-1 at the tumor site serves as T-cell chemoattractant and mediates T-cell-dependent antitumor responses. Blood, 2002. 100(5): p. 1551-8.
    [36] Pardoll, D., Does the immune system see tumors as foreign or self? Annu Rev Immunol, 2003. 21: p. 807-39.
    [37] Poznansky, M.C., et al., Active movement of T cells away from a chemokine. Nat Med, 2000. 6(5): p. 543-8.
    [38] Skinnider, B.F. and T.W. Mak, The role of cytokines in classical Hodgkin lymphoma. Blood, 2002. 99(12): p. 4283-97.
    [39] Milliken, D., et al., Analysis of chemokines and chemokine receptor expression in ovarian cancer ascites. Clin Cancer Res, 2002. 8(4): p. 1108-14.
    [40] Zlotnik, A. and O. Yoshie, Chemokines: a new classification system and their role in immunity. Immunity, 2000. 12(2): p. 121-7.
    [41] Pierson, T.C. and R.W. Doms, HIV-1 entry and its inhibition. Curr Top Microbiol Immunol, 2003. 281: p. 1-27.
    [42] Murphy, P.M., Chemokines and the molecular basis of cancer metastasis. N Engl J Med, 2001. 345(11): p. 833-5.
    [43] Scotton, C.J., et al., Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res, 2001. 61(13): p. 4961-5.
    [44] Dorsam, R.T. and J.S. Gutkind, G-protein-coupled receptors and cancer. Nat Rev Cancer, 2007. 7(2): p. 79-94.
    [45] Muller, A., et al., Involvement of chemokine receptors in breast cancer metastasis. Nature, 2001. 410(6824): p. 50-6.
    [46] Samara, G.J., et al., CXCR4-mediated adhesion and MMP-9 secretion in head and neck squamous cell carcinoma. Cancer Lett, 2004. 214(2): p. 231-41.
    [47] Bartolome, R.A., et al., Stromal cell-derived factor-1alpha promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities. Cancer Res, 2004. 64(7): p. 2534-43.
    [48] Wiley, H.E., et al., Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst, 2001. 93(21): p. 1638-43.
    [49] Mashino, K., et al., Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res, 2002. 62(10): p. 2937-41.
    [50] Takanami, I., Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis. Int J Cancer, 2003. 105(2): p. 186-9.
    [51] Ding, Y., et al., Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res, 2003. 9(9): p. 3406-12.
    [52] Till, K.J., et al., The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood, 2002. 99(8): p. 2977-84.
    [53] Takeuchi, H., et al., CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res, 2004. 10(7): p. 2351-8.
    [54] Letsch, A., et al., Functional CCR9 expression is associated with small intestinal metastasis. J Invest Dermatol, 2004. 122(3): p. 685-90.
    [55] Singh, S., et al., Expression and functional role of CCR9 in prostate cancer cell migration and invasion. Clin Cancer Res, 2004. 10(24): p. 8743-50.
    [56] Murakami, T., et al., Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J Exp Med, 2003. 198(9): p. 1337-47.
    [57] Notohamiprodjo, M., et al., CCR10 is expressed in cutaneous T-cell lymphoma. Int J Cancer, 2005. 115(4): p. 641-7.
    [58] Kakinuma, T. and S.T. Hwang, Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol, 2006. 79(4): p. 639-51.
    [59] Peled, A., et al., The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood, 2000. 95(11): p. 3289-96.
    [60] Ding, Z., et al., L-selectin stimulation enhances functional expression of surface CXCR4 in lymphocytes: implications for cellular activation during adhesion and migration. Blood, 2003. 101(11): p. 4245-52.
    [61] Salvucci, O., et al., The role of CXCR4 receptor expression in breast cancer: a large tissue microarray study. Breast Cancer Res Treat, 2006. 97(3): p. 275-83.
    [62] Kang, H., et al., Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Res, 2005. 7(4): p. R402-10.
    [63] Hatse, S., et al., Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett, 2002. 527(1-3): p. 255-62.
    [64] Liang, Z., et al., Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res, 2004. 64(12): p. 4302-8.
    [65] Liu, F.J. and H.X. Sun, [Inhibitory effect of viral macrophage inflammatory protein-II on metastasis of breast cancer cell line MCF-7 through antagonising CXCR4.]. Ai Zheng, 2004. 23(11): p. 1283-7.
    [66] Smith, M.C., et al., CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res, 2004. 64(23): p. 8604-12.
    [67] Liang, Z., et al., Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res, 2005. 65(3): p. 967-71.
    [68] Chen, J.D., et al., Inactivation of HIV-1 chemokine co-receptor CXCR-4 by a novel intrakine strategy. Nat Med, 1997. 3(10): p. 1110-6.
    [69] Zeelenberg, I.S., L. Ruuls-Van Stalle, and E. Roos, The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res, 2003. 63(13): p. 3833-9.
    [70] Kontermann, R.E., Intrabodies as therapeutic agents. Methods, 2004. 34(2): p. 163-70.
    [71] Steinberger, P., et al., Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion. Proc Natl Acad Sci U S A, 2000. 97(2): p. 805-10.
    [72] BouHamdan, M., et al., Inhibition of HIV-1 infection by down-regulation of the CXCR4 co-receptor using an intracellular single chain variable fragment against CXCR4. Gene Ther, 2001. 8(5): p. 408-18.
    [73] Cordelier, P., et al., Protecting from R5-tropic HIV: individual and combined effectiveness of a hammerhead ribozyme and a single-chain Fv antibody that targets CCR5. Gene Ther, 2004. 11(22): p. 1627-37.
    [74] Bai, X., et al., Genetic co-inactivation of macrophage- and T-tropic HIV-1 chemokinecoreceptors CCR-5 and CXCR-4 by intrakines. Gene Ther, 1998. 5(7): p. 984-94.
    [75] Goncalves, J., et al., Functional neutralization of HIV-1 Vif protein by intracellular immunization inhibits reverse transcription and viral replication. J Biol Chem, 2002. 277(35): p. 32036-45.
    [76] Marasco, W.A., et al., Intracellular antibodies against HIV-1 envelope protein for AIDS gene therapy. Hum Gene Ther, 1998. 9(11): p. 1627-42.
    [77] Goenaga, A.L., et al., Identification and characterization of tumor antigens by using antibody phage display and intrabody strategies. Mol Immunol, 2007. 44(15): p. 3777-88.
    [78] Alvarez, R.D., et al., A cancer gene therapy approach utilizing an anti-erbB-2 single-chain antibody-encoding adenovirus (AD21): a phase I trial. Clin Cancer Res, 2000. 6(8): p. 3081-7.
    [79] Wheeler, Y.Y., et al., Intrabody-based strategies for inhibition of vascular endothelial growth factor receptor-2: effects on apoptosis, cell growth, and angiogenesis. Faseb J, 2003. 17(12): p. 1733-5.
    [80] Popkov, M., et al., Targeting tumor angiogenesis with adenovirus-delivered anti-Tie-2 intrabody. Cancer Res, 2005. 65(3): p. 972-81.
    [81] Cardinale, A., et al., Evidence for proteasome dysfunction in cytotoxicity mediated by anti-Ras intracellular antibodies. Eur J Biochem, 2003. 270(16): p. 3389-97.
    [82] Tanaka, T., M.N. Lobato, and T.H. Rabbitts, Single domain intracellular antibodies: a minimal fragment for direct in vivo selection of antigen-specific intrabodies. J Mol Biol, 2003. 331(5): p. 1109-20.
    [83] Tanaka, T. and T.H. Rabbitts, Intrabodies based on intracellular capture frameworks that bind the RAS protein with high affinity and impair oncogenic transformation. Embo J, 2003. 22(5): p. 1025-35.
    [84] Zeelenberg, I.S., L. Ruuls-Van Stalle, and E. Roos, Retention of CXCR4 in the endoplasmic reticulum blocks dissemination of a T cell hybridoma. J Clin Invest, 2001. 108(2): p. 269-77.
    [85] Mhashilkar, A.M., et al., Intrabody-mediated phenotypic knockout of major histocompatibility complex class I expression in human and monkey cell lines and in primary human keratinocytes. Gene Ther, 2002. 9(5): p. 307-19.
    [86] Murphy, R.C. and A. Messer, A single-chain Fv intrabody provides functional protection against the effects of mutant protein in an organotypic slice culture model of Huntington's disease. Brain Res Mol Brain Res, 2004. 121(1-2): p. 141-5.
    [87] Lecerf, J.M., et al., Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington's disease. Proc Natl Acad Sci U S A, 2001. 98(8): p. 4764-9.
    [88] Musgrave, D.S., et al., Human skeletal muscle cells in ex vivo gene therapy to deliver bonemorphogenetic protein-2. J Bone Joint Surg Br, 2002. 84(1): p. 120-7.
    [89] Adam, E. and I. Nasz, [Adenovirus vectors and their clinical application in gene therapy]. Orv Hetil, 2001. 142(38): p. 2061-70.
    [90] Nasz, I. and E. Adam, Recombinant adenovirus vectors for gene therapy and clinical trials. Acta Microbiol Immunol Hung, 2001. 48(3-4): p. 323-48.
    [91] Pandori, M., D. Hobson, and T. Sano, Adenovirus-microbead conjugates possess enhanced infectivity: a new strategy for localized gene delivery. Virology, 2002. 299(2): p. 204-12.
    [92] Green, M. and P.M. Loewenstein, Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988. 55(6): p. 1179-88.
    [93] Pujals, S., et al., Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta, 2006. 1758(3): p. 264-79.
    [94] Eriksson, M., P.E. Nielsen, and L. Good, Cell permeabilization and uptake of antisense peptide-peptide nucleic acid (PNA) into Escherichia coli. J Biol Chem, 2002. 277(9): p. 7144-7.
    [95] Kueltzo, L.A. and C.R. Middaugh, Nonclassical transport proteins and peptides: an alternative to classical macromolecule delivery systems. J Pharm Sci, 2003. 92(9): p. 1754-72.
    [96] Futaki, S., et al., Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem, 2001. 276(8): p. 5836-40.
    [97] Letoha, T., et al., Membrane translocation of penetratin and its derivatives in different cell lines. J Mol Recognit, 2003. 16(5): p. 272-9.
    [98] Scheller, A., et al., Structural requirements for cellular uptake of alpha-helical amphipathic peptides. J Pept Sci, 1999. 5(4): p. 185-94.
    [99] Henriques, S.T., J. Costa, and M.A. Castanho, Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Biochemistry, 2005. 44(30): p. 10189-98.
    [100] Deshayes, S., et al., Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis. Biochemistry, 2004. 43(6): p. 1449-57.
    [101] Brugidou, J., et al., The retro-inverso form of a homeobox-derived short peptide is rapidly internalised by cultured neurones: a new basis for an efficient intracellular delivery system. Biochem Biophys Res Commun, 1995. 214(2): p. 685-93.
    [102] Wender, P.A., et al., The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A, 2000. 97(24): p. 13003-8.
    [103] Elmquist, A., et al., VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions.Exp Cell Res, 2001. 269(2): p. 237-44.
    [104] Vives, E., et al., TAT peptide internalization: seeking the mechanism of entry. Curr Protein Pept Sci, 2003. 4(2): p. 125-32.
    [105] Console, S., et al., Antennapedia and HIV transactivator of transcription (TAT) "protein transduction domains" promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem, 2003. 278(37): p. 35109-14.
    [106] Richard, J.P., et al., Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem, 2003. 278(1): p. 585-90.
    [107] Fittipaldi, A., et al., Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem, 2003. 278(36): p. 34141-9.
    [108] Silhol, M., et al., Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat. Eur J Biochem, 2002. 269(2): p. 494-501.
    [109] Lundberg, P. and U. Langel, A brief introduction to cell-penetrating peptides. J Mol Recognit, 2003. 16(5): p. 227-33.
    [110] Derossi, D., et al., Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J Biol Chem, 1996. 271(30): p. 18188-93.
    [111] Pouny, Y., et al., Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry, 1992. 31(49): p. 12416-23.
    [112] Matsuzaki, K., K. Sugishita, and K. Miyajima, Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide-containing liposomes as a model for outer membranes of gram-negative bacteria. FEBS Lett, 1999. 449(2-3): p. 221-4.
    [113] Hawiger, J., Noninvasive intracellular delivery of functional peptides and proteins. Curr Opin Chem Biol, 1999. 3(1): p. 89-94.
    [114] Gazit, E., et al., Mode of action of the antibacterial cecropin B2: a spectrofluorometric study. Biochemistry, 1994. 33(35): p. 10681-92.
    [115] Ilangumaran, S. and D.C. Hoessli, Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem J, 1998. 335 (Pt 2): p. 433-40.
    [116] Schwarze, S.R. and S.F. Dowdy, In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci, 2000. 21(2): p. 45-8.
    [117] Nagahara, H., et al., Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med, 1998. 4(12): p. 1449-52.
    [118] Bu, G., S. Rennke, and H.J. Geuze, ERD2 proteins mediate ER retention of the HNEL signal of LRP's receptor-associated protein (RAP). J Cell Sci, 1997. 110 (Pt 1): p. 65-73.
    [119] Townsley, F.M., D.W. Wilson, and H.R. Pelham, Mutational analysis of the human KDEL receptor: distinct structural requirements for Golgi retention, ligand binding and retrograde transport. Embo J, 1993. 12(7): p. 2821-9.
    [120] Engel, B.C., et al., Intrakines--evidence for a trans-cellular mechanism of action. Mol Ther, 2000. 1(2): p. 165-70.
    [121] Shao-Hui CAI, Y.T., Xian-Da REN, Xiao-Hong LI, Shao-Xi CAI, Jun DU, Loss of C-terminalá-helix decreased SDF-1á-mediated signaling and chemotaxis but not influenced CXCR4 internalization. Acta pharmacol Sin, 2004. 25(2): p. 152-160.
    [122] Princen, K., et al., Evaluation of SDF-1/CXCR4-induced Ca2+ signaling by fluorometric imaging plate reader (FLIPR) and flow cytometry. Cytometry, 2003. 51A(1): p. 35-45.
    [123] Kucia, M., et al., Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells, 2005. 23(7): p. 879-94.
    [124] Yasumoto, K., et al., Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res, 2006. 66(4): p. 2181-7.
    [125] Werner, M.H., et al., Refolding proteins by gel filtration chromatography. FEBS Lett, 1994. 345(2-3): p. 125-30.
    [126] Snyder, E.L., et al., Enhanced targeting and killing of tumor cells expressing the CXC chemokine receptor 4 by transducible anticancer peptides. Cancer Res, 2005. 65(23): p. 10646-50.
    [127] Zhou, W., et al., Efficient intracellular delivery of oligonucleotides formulated in folate receptor-targeted lipid vesicles. Bioconjug Chem, 2002. 13(6): p. 1220-5.
    [128] Leamon, C.P., S.R. Cooper, and G.E. Hardee, Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug Chem, 2003. 14(4): p. 738-47.
    [129] Gabizon, A., et al., Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem, 1999. 10(2): p. 289-98.
    [130] Gabizon, A., et al., In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res, 2003. 9(17): p. 6551-9.
    [131] Goren, D., et al., Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res, 2000. 6(5): p. 1949-57.
    [132] Shi, H.Y., et al., Blocking tumor growth, invasion, and metastasis by maspin in a syngeneic breast cancer model. Cancer Res, 2001. 61(18): p. 6945-51.
    [133] Tamamura, H., et al., T140 analogs as CXCR4 antagonists identified as anti-metastatic agentsin the treatment of breast cancer. FEBS Lett, 2003. 550(1-3): p. 79-83.
    [134] Amara, A., et al., HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J Exp Med, 1997. 186(1): p. 139-46.
    [135] Signoret, N., et al., Phorbol esters and SDF-1 induce rapid endocytosis and down modulation of the chemokine receptor CXCR4. J Cell Biol, 1997. 139(3): p. 651-64.
    [136] Haribabu, B., et al., Regulation of human chemokine receptors CXCR4. Role of phosphorylation in desensitization and internalization. J Biol Chem, 1997. 272(45): p. 28726-31.
    [137] Fernandis, A.Z., et al., CXCR4/CCR5 down-modulation and chemotaxis are regulated by the proteasome pathway. J Biol Chem, 2002. 277(20): p. 18111-7.
    [138] Holmes, W.D., et al., Solution studies of recombinant human stromal-cell-derived factor-1. Protein Expr Purif, 2001. 21(3): p. 367-77.
    [139] Zeelenberg, I.S., L. Ruuls-Van Stalle, and E. Roos, Retention of CXCR4 in the endoplasmic reticulum blocks dissemination of a T cell hybridoma. Journal of Clinical Investigation, 2001. 108(2): p. 269-277.
    [140] Smith, M.C.P., et al., CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Research, 2004. 64(23): p. 8604-8612.
    [141] Feng, Y., et al., HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 1996. 272(5263): p. 872-7.
    [142] Alkhatib, G., et al., CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science, 1996. 272(5270): p. 1955-8.
    [143] Choe, H., et al., The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell, 1996. 85(7): p. 1135-48.
    [144] Deng, H., et al., Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996. 381(6584): p. 661-6.
    [145] Dragic, T., et al., HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature, 1996. 381(6584): p. 667-73.
    [146] Doranz, B.J., et al., A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell, 1996. 85(7): p. 1149-58.
    [147] Kwong, P.D., et al., Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. J Virol, 2000. 74(4): p. 1961-72.
    [148] Cormier, E.G. and T. Dragic, The crown and stem of the V3 loop play distinct roles in human immunodeficiency virus type 1 envelope glycoprotein interactions with the CCR5 coreceptor. JVirol, 2002. 76(17): p. 8953-7.
    [149] Simmons, G., et al., Co-receptor use by HIV and inhibition of HIV infection by chemokine receptor ligands. Immunol Rev, 2000. 177: p. 112-26.
    [150] Berger, E.A., et al., A new classification for HIV-1. Nature, 1998. 391(6664): p. 240.
    [151] Simmons, G., et al., Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J Virol, 1996. 70(12): p. 8355-60.
    [152] Este, J.A. and A. Telenti, HIV entry inhibitors. Lancet, 2007. 370(9581): p. 81-8.
    [153] Connor, R.I., et al., Change in coreceptor use coreceptor use correlates with disease progression in HIV-1--infected individuals. J Exp Med, 1997. 185(4): p. 621-8.
    [154] Hirschel, B. and M. Opravil, The year in review: antiretroviral treatment. Aids, 1999. 13 Suppl A: p. S177-87.
    [155] Lucas, G.M., R.E. Chaisson, and R.D. Moore, Highly active antiretroviral therapy in a large urban clinic: risk factors for virologic failure and adverse drug reactions. Ann Intern Med, 1999. 131(2): p. 81-7.
    [156] Yerly, S., et al., Transmission of antiretroviral-drug-resistant HIV-1 variants. Lancet, 1999. 354(9180): p. 729-33.
    [157] Berger, E.A., P.M. Murphy, and J.M. Farber, Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol, 1999. 17: p. 657-700.
    [158] Chan, S.Y., et al., V3 recombinants indicate a central role for CCR5 as a coreceptor in tissue infection by human immunodeficiency virus type 1. J Virol, 1999. 73(3): p. 2350-8.
    [159] Michael, N.L., et al., Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 delta32. J Virol, 1998. 72(7): p. 6040-7.
    [160] Samson, M., et al., Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature, 1996. 382(6593): p. 722-5.
    [161] Zhou, Y., et al., Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor. J Immunol, 1998. 160(8): p. 4018-25.
    [162] Datema, R., et al., Antiviral efficacy in vivo of the anti-human immunodeficiency virus bicyclam SDZ SID 791 (JM 3100), an inhibitor of infectious cell entry. Antimicrob Agents Chemother, 1996. 40(3): p. 750-4.
    [163] Loetscher, P., et al., N-terminal peptides of stromal cell-derived factor-1 with CXC chemokine receptor 4 agonist and antagonist activities. J Biol Chem, 1998. 273(35): p. 22279-83.
    [164] Yang, O.O., et al., Enhanced inhibition of human immunodeficiency virus type 1 by Met-stromal-derived factor 1beta correlates with down-modulation of CXCR4. J Virol, 1999. 73(6): p. 4582-9.
    [165] McKnight, A., et al., Inhibition of human immunodeficiency virus fusion by a monoclonal antibody to a coreceptor (CXCR4) is both cell type and virus strain dependent. J Virol, 1997. 71(2): p. 1692-6.
    [166] Strizki, J.M., et al., A monoclonal antibody (12G5) directed against CXCR-4 inhibits infection with the dual-tropic human immunodeficiency virus type 1 isolate HIV-1(89.6) but not the T-tropic isolate HIV-1(HxB). J Virol, 1997. 71(7): p. 5678-83.
    [167] Arakaki, R., et al., T134, a small-molecule CXCR4 inhibitor, has no cross-drug resistance with AMD3100, a CXCR4 antagonist with a different structure. J Virol, 1999. 73(2): p. 1719-23.
    [168] Agrawal, L. and G. Alkhatib, Chemokine receptors: emerging opportunities for new anti-HIV therapies. Expert Opin Ther Targets, 2001. 5(3): p. 303-326.
    [169] Gallo, S.A., et al., The HIV Env-mediated fusion reaction. Biochim Biophys Acta, 2003. 1614(1): p. 36-50.
    [170] Armand-Ugon, M., et al., Reduced fitness of HIV-1 resistant to CXCR4 antagonists. Antivir Ther, 2003. 8(1): p. 1-8.
    [171] Matthys, P., et al., AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-gamma receptor-deficient mice. J Immunol, 2001. 167(8): p. 4686-92.
    [172] Virelizier, J.L., Blocking HIV co-receptors by chemokines. Dev Biol Stand, 1999. 97: p. 105-9.
    [173] Cooley, L.A. and S.R. Lewin, HIV-1 cell entry and advances in viral entry inhibitor therapy. J Clin Virol, 2003. 26(2): p. 121-32.
    [174] Sodroski, J.G., HIV-1 entry inhibitors in the side pocket. Cell, 1999. 99(3): p. 243-6.
    [175] Arenzana-Seisdedos, F., et al., HIV blocked by chemokine antagonist. Nature, 1996. 383(6599): p. 400.
    [176] Chan, D.C. and P.S. Kim, HIV entry and its inhibition. Cell, 1998. 93(5): p. 681-4.
    [177] O'Hara, B.M. and W.C. Olson, HIV entry inhibitors in clinical development. Curr Opin Pharmacol, 2002. 2(5): p. 523-8.
    [178] Wyatt, R. and J. Sodroski, The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science, 1998. 280(5371): p. 1884-8.
    [179] Witvrouw, M., et al., Potent anti-HIV (type 1 and type 2) activity of polyoxometalates: structure-activity relationship and mechanism of action. J Med Chem, 2000. 43(5): p. 778-83.
    [180] Nanki, T., et al., Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play acentral role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J Immunol, 2000. 165(11): p. 6590-8.
    [181] Blades, M.C., et al., Stromal cell-derived factor 1 (CXCL12) induces monocyte migration into human synovium transplanted onto SCID Mice. Arthritis Rheum, 2002. 46(3): p. 824-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700