用户名: 密码: 验证码:
不同藻类在UV-B处理下的抗性生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
UV-B辐射增强可引起深远的环境问题,藻类具有相应的适应机制,却存在种类间的差异。本文对五种藻进行短时和较长时间的UV-B辐射处理,研究不同藻类的生理生化响应。结果表明这五种藻类抗UV-B的能力大小的顺序为:钝顶螺旋藻>微绿球藻>纤细角刺藻>海洋原甲藻>球形棕囊藻。
     UV的增强可破坏叶绿素a,使其含量下降。钝顶螺旋藻和微绿球藻中在较低的UV辐射强度下类胡萝卜素含量升高,而叶绿素a保持相对稳定,说明类胡萝卜素可能对藻类起到一定保护作用,可能通过直接的或间接的方式猝灭激发态的叶绿素,来保障光合作用的进行;本实验发现多糖的累积和分泌与藻体的抗UV能力有相关,钝顶螺旋藻的细胞内和细胞外多糖分泌旺盛,其抗UV能力最强;微绿球藻体内能积累多糖,而胞外多糖分泌减少;球形棕囊藻的胞内多糖含量减少,胞外多糖含量增加也不明显,其抗UV能力最弱。同时实验中还发现钝顶螺旋藻在较长时间UV-B处理下没有明显的细胞损伤,这为藻类多糖的生产提供了一个新思路。另外这三种藻类分泌到细胞外的物质的紫外吸收情况对于不同藻类有所不同。本文推测UV-B辐射的变化可能是影响赤潮发生的诱因之一。
UV-B radiation enhancement can cause many environmental problems. Algae have different mechanisms to adapt UV-B enhancement. In this study, 5 algae were chosen as experimental materials, their physiological and biochemical responses were studied under both short time and longer period of UV-B treatment. Results showed that these algae have different ability in resisting UV-B enhancement: Spirulina plalensis >Nanochloropsis sp>Chaetoceros gracilis> Proroceatrum micans >Phaeocystis globosa scherffel.
    UV can destroy Ch1a, making Ch1a content decrease. Carotenoids content increased in algae Spirulina plalensis and Nanochloropsis sp under lower dosage of UV-B treatment. The result proved that Carotenoids maybe play important roles in photoprotection of algae. Carotenoids can make Chla return from excited state to ground state by direct or un-direct quenching, in order to prevent algae from photooxidation. On the other hand, it was indicated that polysaccharides have functions in resisting UV. Spirulina plalensis can accumulate both cellular and extracellular polysaccharides during UV treatment, it showed highest UV resistant ability; Nanochloropsis sp also can accumulate cellular polysaccharides, while extracellular polysaccharides reduced; the cellular polysaccharides content of Phaeocystis globosa scherffel decreased and extracellular polysaccharides content did not increased markedly, showing lowest UV resistant ability. Spirulina plalensis showed no cellular damage during the longer period of UV-B enhan
    cement treatment, that may provide a new way for polysaccharides production. From results, we can presume that UV-B enhancement may be one of factors, which cause red tide. When weather changes, causing UV-B decreased, some UV-susceptible algae would become dominant, it grow fast and eventually resulting in red tide formation.
引文
1. Anderson. C, Toohey, D.W. Free radicals within Anatacic vortex: the note of CFC's in Antactic ozone lose. Science. 1991.251:39-46
    2. Moina MJ, Rowland FS. Stratosphere sink for chlorofluorofluoromethanes, chlorine atom catalyzed destruction of ozone. Nature. 1974. 249:810-812.
    3.杨震,童家明,唐学玺,李永祺,贺君.海洋单细胞藻对紫外吸收的比较研究.海洋通报,1999.18(10):93-96
    4. Haeder D-P. Effects of increased solar ultraviolet radiation on aquatic ecosystems. Ambio. 1995.24(3): 174.
    5. Hder, D.-P., Kumar, H.D.,Smith, R.C. & Worrest, R.C.. Effects on aquatic ecosystems. J. Photochem. Photobiol. B: Biol. 1998.46:53-64
    6. Haeder D-P. Effects of enchanced solar UV-B radiation on phytoplankton. Sci Mar Barc, 1996.60(suppl):49
    7. Okada M, kitajima M, Butler WL Inhibition of photosystem Ⅰ and photosystemⅡ in chloroplants by UV-radiation. Plant Cell Physiol. 1976. 17:35-43
    8. Van TK, Grand LA, West SH. Effects of 298nm radiation on photosynthetic reactions of leaf discs and chloroplast preparations of some crop species. Environ Exp Bot 1977. 17:107-112
    9. Noorudeen AM, Kulandaivelu G On the possible site of inhibition of photosynthetic electron transport by ultraviolet-B(UV-B) radiation. Physiol Plant. 1982.55:161-166
    10. Renger G, Volker M, Eckert HJ. On the mechanism of photosystem Ⅱ deterioration by UV-B irradiation. Photochem Photobiol. 1989. 49(1):97-105.
    11. Vass I, Sass L. UV-B-induced inhitbition of phtosystem Ⅱ electron transport studies by EPR and Chlorophyll fluorescence. Impairment of doner and acceptor side Component Biochemistry 1996. 35:8964-8973
    12. RAIL C. Algal response to enhanced ultraviolet B radiation; Proceedings of the
    
    India National Science Academy Part B. Biological Science,. 1998.64(2): 125
    13. Nilawat I J. Influence of ultraviolet radiation on growth and photosynthesis of two cold ocean diatoms. Phycol. 1997. 33(2):215
    14. Van-donk E. Loss of flagellain green alga chlamydomonas reinhardtic due to inaitu UV-B exposur. Sci Mar Barc. 1996. 60(suppl): 107.
    15. Hader Donat-P, Hader Mafia A. Effects of solar UV-B radiation on photomovement and motility in photosynthetic and colorless flagellates Enviro and Erperi Bot. 1989.29(2):273
    16. Furgal JA. Utraviolet radiation and photosynthesis by Georgian Bay phytoplankton of varying nutrient and photoadaptive. J Fish Aquat Sci. 1997. 54(7):1659.
    17. Haedeer D P. Effects of sola rand artifical ultraviolet radiation motility and pigmentation in marine Cryptomonas maculata. Environ Exp Bot. 1991.31 (1) :33.
    18. Gerber S. Effects of solar radiation motility and pigmentation of three species of phytoplankton. Environ Exp Bot. 1993.33(4):515.
    19. Teramura AH. Effects of ultraviolet-B radiation on the growth and yield of crop plants, Physiol. Plant. 1983.58:415-427.
    20. Strid A, Chow WS, Anderson JM. Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum. Biochim Biophys Acta. 1990. 1020:260-268
    21. Gerber S. Effects of solar radiation motility and pigmentation of three species of phytoplankton. Environ Exp Bot. 1993.33(4):515.
    22. Pfindel E, Dan RS, Dilley RA. Inhibition of violaxanthin deepoxindation by ultraviolet-B radiation in isolated chloroplasts and intact leaves. Plant Physiol. 1992.98:1372-1380
    23. Demmig-Adams B. Carotenoids and photoprotection in plant:a role for the xanthophylls zeaxanthin: Biochim Biophys Acta. 1990. 1020:1-24.
    24. Young-AJ, Frank HA. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence. J Photochem Photobiol B: Biol. 1996. 36:3-15
    25. Asda K, Takahashi M Production and scavenging of active oxygen in
    
    photosynthesis In:Kyle. DJ,Osmond CB, Arntzen CJ(eds). Science Publishers,Amsterdam. 1987. pp89-109.
    26. Mackerness SAH, Tordam BR, Thomas B. Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet radiation(UV-B:280-320nm) in green and etiolated buds of pea9Prism Sativum L. J Photochem Photobiol B:Biol. 1999. 48:180-188
    27.唐学玺,杨震,王悠,李永祺.紫外辐射诱发三角褐指藻自由基伤害的研究.海洋通报.1999.18(4):93-96.
    28. Jansen MA, Gaba V. Greenburg B. Higher plants and UV-B radiantion on photosynthetic primary reactions on spinach chloroplasts. Physiol Plant. 1998. 58:401-407.
    29. Kumar A., Sinha R.P. & Hder D.-P. Effect of UV-B on enzymes of nitrogen metabolism in the cyanobacterium Nostoc calcicola. J. Plant Physiol. 1996a. 148: 86-91
    30. Sinha R.P., Singh N, Kumar A, Kumar H.D., Hder. M., Hder D.-P. Effects of UV irradiation on certain physiological and biochemical processes in cyanobacteria. J. Photochem. Photobiol. B: Biol. 1996.32:107-113
    31. Sinha R.P. & Hder D.-P. Effects of ultraviolet-B radiation in three rice field cyanobacteria. J. Plant Physiol. 1998. 153:763-769
    32. Sinha R.P., Singh N., Kumar A., Kumar H. D. & Hder D.- P. Impacts of ultraviolet-B irradiation on nitrogen-fixing cyanobacteria of rice paddy fields. J. Plant Physiol. 1997. 150:188-193
    33. Richter P, Krywult M, Sinha R. P & Hder. D.-P. Calcium signals from heterocysts of Anabaena sp. after UV irradiation. 1999. 154:137-139.
    34. Craigee W. What role does UV-B radiation play in freshwater ecosystem?. Limnol oceanogr. 1995.40(2):386
    35.陈善文,武宝玕.藻类对UV-B增强的响应及其分子基础(综述).暨南大学学报(自然和医学版).2000.21(5):88-94
    36. Britt AB. DNA damage and repair in plants. Anun Rev Plant Physiol Plant Mol Biol. 1996.47:75-100
    
    
    37. Fiscus EC, Booker FL. Is increased UV-B a threat to crop photosynthesis and productivity? Photosyn Res. 1995.43:81-92
    38. Landry LG, et al. An Arabidopsis photolyase mutant is hyper sensitive to ultraviolet-B radiation. Proc.Natl.Acad. Sci, USA. 1987. 94:328-332
    39. Lesser M.P. Carbon up take in a marine diatom during acute exposure to ultraviolet-B radiation:Relative importance of damage and repair. Phycol. 1994. 30(2):183
    40. Xiong F. Strategies of ultraviolet-B protein in microscopic algae. Physiol Plant. 1997.10(2):378
    41. D.-P. Hder. Novel method to determine vertical distribution of phytoplankton in marine in water columns, Environ. Exp. Bot. 1995.35:547-555.
    42. D.-P.Hder, Influence of ultraviolet radiation on phytoplankton ecosystems, in: W. Wiessner, E.Schnepf, R.C. Starr(Eds.), Algae, Environment and Human Affairs, Biopress Limited, Bristol, UK, 1995:pp.41-55.
    43. Rail C. Algal responses to enchanced ultraviolet B radiation; Proceedings of the India National Science Academy Part B. Biological Science. 1998.64(2): 125
    44. Neale PJ. Utraviolet sun screensin Gymnodinium sanguineum(dinophyceae): MAAs protect against inhibition of photosynthesis. Phycol. 1998.34(6):928.
    45. Fusheng xiong, Jiri Kopecky, Ldislay Nedbal. The occurrence of UV-B absorbing MAAs in freshwater and terrestrial microalgae. Aqutic Botany. 1999.63 (1):37
    46. Ryan KG; McMinn A; Mitchell KA; Trenerry L. Mycosporine-like amino acids in Antarctic sea ice algae, and their response to UVB radiation. Zeitschrift fur Naturforschung 2002 May-Jun. 57 (5-6), pp. 471-7
    47. Lesser M.P. Acclimation of phytoplankton to UV-B radiation: Oxidative stress and photoinhibition of phytoplankton are not prevented by UV-absorbing compounds in the dinoflagellate Prorocentrum micans. Mar. Ecol.Prog. Ser. 1996. 158:283-287
    48. Carreto J.I, Lutz V.A., De Marco S.G.&Carignan,M.O. Fluence and wavelength dependence of mycosporine-like amino acid synthesis in the dinoflagellate Alexandrium excavatum 1990a. Pp.275-279.In: Graneli E.,Edler L., Sundstrm
    
    B.&Anderson D.M.(eds). Toxic Marine Phytoplankton. Elsevier. New York.
    49. Riegger L.&Robinson D., Photoinduction of UV-absorbing compounds in Antarctic diatoms and Phaeocystis antarctica. Mar. Ecol.Prog. Ser. 1997. 160:13-25
    50. Neale,P.J., Banaszak,T&Jarriel C.R. Ultraviolet sunscreens in Gynmodinium sanguineum(Dinophyceae): mycosporine-like amino acids protect against inhibition of photosynthesis. J. Phycol. 1998a. 34:928-938
    51.李福川,唐志红,崔博文,席振乐,王海仁.三种海带多糖的降糖作用.中国海洋药物.2000,5:12
    52.刘力生,郭宝江.螺旋藻多糖对转移性癌细胞的抑制作用极其机理的研究,海洋科学,1991,5:33-38
    53.庞启深,郭宝江,阮继红,螺旋藻多糖对核酸内切酶活性和DNA修复合成的增强作用。1988,遗传学报,5:374-381
    54.宋剑秋,徐誉泰.海带硫酸多糖对小鼠腹腔巨噬细胞的免疫调节作用.中国免疫学杂志,2000,16(2):70
    55.王琪琳,王海仁.海洋生物多糖药用功能的新进展.生物学通报.2002.37(7):12-13
    56. Timothy R. Parsons, Yoshiaki Matita, and Carol M.Lalli. Determination of Chlorophyll and Total Carotenoids: Spectrophotometric Method. In: A manual of chemical and biological methods for seawater analysis. Great Britain:pergamon press. 1984. 101-104
    57.海洋饵料生物培养.湛江水产专科学校主编.北京:农业出版社.1980.6
    58. Michel D, Gilles K A, Hamilton J K, et al. Colorimeteric method for determination of sugas and related substances. Analytical Chemistry, 1956.28(3): 350-356
    59. Greenberg BM, Gaba V, Canaani O et al. Separate photosensitizer mediate degradation of the 32-Kda photosystem Ⅱ reaction center protein in the visible and UV spectral regions. Proc.Natl Acad Sci. USA. 1989.86:6617-6620.
    60. Clendennen SK, Alberts RS, Powers DA. A mechanism of UV-B damage in chromophytic marine macrophytes. Abs ASLO Aquatic Sciences Meeting, Santa
    
    Fe N.M. 1992
    61. Douglas Campbell. The cyanobacterium Synechococcus resists UV-B by exchanging photosystem Ⅱ reaction-center D1 proteins. Plant Biology. 1998. 95(1):364-369
    62. Irina M. Yakovleva, Eduard A. Titlyanov. Effect of high visible and UV irradiance on subtidal Chondrus crispus: stress, photoinhibition and protective mechanisms. Aquatic Botany. 2001.70:47-61
    63.刘成圣,王悠,于娟,唐学玺.UV辐射对叉鞭金藻和三角褐指藻光合色素的影响海洋科学.2002.126(7):5-7
    64.汪志平,徐步进。螺旋藻的电离辐射抗性及与多糖含量的关系,2001,15(4):229-233
    65.缪锦来,李光友,侯旭光,张沂萍,姜英辉,王波,张波涛.UV-B辐射对南极冰藻中抗辐射物质的诱导作用.2002.高技术通讯,04:82-96
    66. Félix L.Figueroa. 1997. Relationship between bio-optical characteristics and photoinhibition of phytoplankton[J]. Aquatic Botany, 59:237-251
    67. Yamanoto HY. Bichemistry of the violaxanthin cycle in high planta. Pure Appl Chen. 1979.51:639-640
    68. Siefermann D. Carotenoids in photosynthesis. I. Location in photosynthetic membrane and light-harvesting function. Biochim Biophys Acta. 1985. 811:325-355
    69.董高峰,陈贻竹.植物叶黄素与非辐射能量耗散.植物生理学通讯.1999. 35(2):141-144
    70.周志刚,刘志礼,刘雪娴.极大螺旋藻的分离、纯化极其抗氧化特性的研究.植物学报,1997.39(1):77-81
    71.周林珠,杨祥良,周井炎,徐辉碧.2002.多糖抗氧化作用研究进展.中国生化药物杂志,23(4):210-212
    72. Carr N G. Anti-ultraviolet and anti-irradiation properties of blue green in Carr N G(ed). The Biology of Cyanobacteria. London: Blackwell Scientific Publications. 1982.263
    
    
    73.刘嘉炼.应用微生物.台湾:华香出版社,1980.74~75
    74.张成武,曾昭琪,张媛贞,罗成基,郭朝华,施炎.钝顶螺旋藻多糖和藻蓝蛋白对小鼠急性放射病的防护作用,营养学报,1996,Vol.18.No.3:327-331
    75.郭宝江,庞启深.螺旋藻多糖对植物细胞辐射遗传损伤的防护效应.植物学报.1992.34(10):809.
    76. Cho.J.C. Response of bacterial communities to changes in composition of extracellular organic Carbon from phytoplankton Daechung Reservoir(Korea), Archiv. fur. Hydrobiologie. 1997. 138(4):559-576
    77. Fogg GE, The ecological significance of extracellular production of phytoplankton photosynthesis Botmar. 1983.26:3-14
    78. Strom S L. et al Planktonic garzers are a potentially important source of marine dissolved organic carbon. Limnol Oceanogr. 1997.42(6):1364-1374.
    79. Villiams P J L. The importance of losses during microbial growth: commentary on the physiology, measurement and ecology of the release of dissolved organic material.Mar Mcrobial Food webs, 1990,4:175-206
    80. Biddanda B& R Benner. Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton, limnology and Oceangraphy,.1997. 42(3): 506-518
    81.常站英.人为的灾害-红潮.工业安全与环保.2002.Vol.28(7):29-31
    82.陈树元.太阳紫外线(UV)辐射对植物的影响。环境科学.1992,13(6):52-56。
    83.王旭,张占海,吴辉碇.赤潮的研究和预报.2001.18(01):65-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700