用户名: 密码: 验证码:
毛竹细胞骨架微管蛋基因PeTua3和PeTub3研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹林是我国重要的森林资源,竹材是由各种类型细胞的细胞壁及其包围的空间所组成的复杂生物材料,因其具有强度高、韧性好、硬度大等特点而在建筑、造纸等领域得到广泛的利用。竹子优良的材性特点与其细胞壁的组成及结构密切相关,竹子细胞壁的发育对竹子的生长发育、生理特性、生化代谢以及对外界环境胁迫的有机反应发挥着重要的调节作用,对竹子材性的形成起着决定性作用。细胞骨架指导细胞壁的生物合成,作为细胞骨架的重要组成部分,微管蛋白在细胞壁发育过程中起着重要的调控作用。本研究以我国重要经济竹种--毛竹(Phyllostachys edulis)为材料,分离细胞骨架微管蛋白基因,在对其序列进行充分分析的基础上,通过体外表达和在模式植物中的表达来验证其功能,以其为通过基因工程手段培育竹类植物新品种奠定基础。主要研究结果如下:
     1、采用RT-PCR方法从毛竹叶片中克隆了2个微管蛋白基因,分别命名为PeTua3和PeTub3。PeTua3的编码区为1353bp,编码451个氨基酸;PeTub3的编码区1341bp,编码447个氨基酸。
     2、Blast分析表明PeTua3和PeTub3与已报道的其它植物的tubulin蛋白具有很高的相似性,分别属于tubulin蛋白的Tua3和Tub3家族,都是疏水性酸性蛋白。通过MOTIFSCAN软件预测蛋白质的功能性位点,结果显示PeTua3和PeTub3序列均包含有N-糖基化位点、磷酸化酪蛋白激酶II位点、N-肉豆蔻酰化位点和磷酸化蛋白激酶位点、GTP酶域和C末端结构域,但是这些位点在蛋白序列中的位置、数量均存在一定的差异,这意味着它们可能存在功能上的不同。应用MEGA4.0软件,构建基于tubulin蛋白的系统进化树,结果表明:PeTua3与水稻的Tua3蛋白在进化关系上最近,Petub3与牛筋草的Tub3蛋白在进化关系上最近,而与大部分双子叶植物Tubulin蛋白的关系较远,这与毛竹属于单子植物禾本科竹亚科的形态学分类相吻合。
     3、通过构建PeTua3和PeTub3基因的原核表达载体pET-32b-PeTua3和pET-30a-PeTub3,分别转化大肠杆菌(Escherichia coli)菌株DE3,进行基因的体外表达研究。经过优化诱导表达条件,在37℃,0.4mmol·L~(-1)IPTG诱导2h的条件下获得高丰度的PeTua3可溶性重组蛋白;在28℃,0.4mmol·L~(-1)IPTG诱导4h的条件下获得高丰度的PeTub3可溶性重组蛋白。应用His标签亲和纯化方法,获得PeTua3、PeTub3的重组蛋白,并处理拟南芥种子,幼苗表现为上胚轴明显增粗,侧根增多,这意味着重组蛋白可能具有加快细胞的分裂的生物学活性。
     4、构建PeTua3和PeTub3基因的正义和反义植物表达载体,并转化拟南芥,通过抗性筛选获得转基因植株。表型观察发现,转基因拟南芥(正义和反义)和野生拟南芥在发芽和茎的生长上没有因基因的过量表达或抑制而受到影响,但对根系生长影响明显。PeTua3和PeTub3基因的过量表达均促进拟南芥根系生长,侧根增多;石蜡切片显示根系表皮薄壁细胞数量增多,且细胞体积变大,维管柱的体积增大,约是野生拟南芥的2倍,木质部明显加厚。而转反义PeTua3和PeTub3基因的拟南芥根系生长不正常,产生大量须根;石蜡切片显示根系表皮薄壁细胞的数量明显减少,且细胞体积变小,维管柱的体积变小,木质部明显比较薄。
     5、在烟草悬浮细胞(BY-2)中过量表达PeTua3和PeTub3,与对照相比转基因BY-2的G2期和S期分裂时间明显缩短,能显著提高烟草细胞的有丝分裂指数,细胞分裂加快。
     细胞骨架微管蛋白基因PeTua3和PeTub3的体外表达蛋白能够促进细胞生长,具有生物学活性,这在转PeTua3和PeTub3基因拟南芥中进一步得到证实,对转PeTua3和PeTub3基因烟草悬浮细胞的观察证实,PeTua3和PeTub3基因促进生长是通过缩短细胞分裂周期实现的。由此证明PeTua3和PeTub3基因具有促进细胞发育的功能,这意味着PeTua3和PeTub3基因对于分子育种研究具有重要的潜在应用价值。
Bamboo forest is one of important forest resources. Bamboo timber is a complexbiological material consisted of various types of cell walls forming special spatial structurewhich has high strength, good toughness and hardness, and it is widely used in handcraft,construction, paper making, etc. The excellent material characteristics of bamboo is closelyrelated to the composition and structure of its cell wall. The development of cell wall playsimportant roles in the growth and development, physiological characteristics, biochemicalmetabolism of bamboo and the defence reactions to environmental stress, and it also decidesthe characteristics of bamboo material. The biosynthesis of cell wall is guided by cytoskeletonwhich is composed of microfilament, microtubule and intemediate filament. As a key part ofcytoskeleton, microtubule has an important regulatory role in the development of cell wall. Inthis study, two genes encoding microtubule proteins were isolated from Moso bamboo(Phyllostachys edulis) and their functions were identified through prokaryotic expression invitro and ectopic expression in model plants. This work will lay the basis for molecularengineering to breed new bamboo varieties. The main results are as follows:
     1. Two genes encoding microtubule proteins were cloned using RT-PCR from leaves ofMoso bamboo, and named as PeTua3and PeTub3respectively. The open reading frame (ORF)of PeTua3is1353bp encoding451amino acids, while the ORF of PeTub3is1341bpencoding447amino acids.
     2. Blast analysis showed that PeTua3and PeTub3had a high similarity with tubilins fromother plants and belonged to α-tubilin and β-tubilin family, respectively. Hydropathic analysisshowed that PeTua3and PeTub3were hydrophobic acidic protein. The protein analysis withMOTIFSCAN showed that Petua3and PeTub3all contained N-glycosylation sites, caseinkinase II phosphorylation sites, N-myristoylation sites, phosphorylation protein kinase sites,GTPase domain and C-terminal domain, however, the positions and quantity of these sites were different in the sequences, which means they might have different functions. Phylogenetic treesbased on tubilins were constructed by using MEGA4.0. The reslut showed that PeTua3andPetub3were closed to α-tubilins and β-tubilins from monocotyledon respectively and wereaway from to those of dicotyledon, the nearest one to PeTua3was that of rice and to PeTub3was that of goose grass, which was consistent with the morphological classification ofBambusoideae in Poaceae of monocotyledon plants.
     3. The prokaryotic expression vectors of PeTua3and Petub3were constructed and theplasmids of pET-32b-PeTua3and pET-30a-PeTub3were transformed into Escherichia coli(DE3). The positive clones were selected for further experiments. By optimizing the expressionconditions of induction, the soluble recombinant protein of PeTua3was effectively expressedat37℃induced by0.4mmol·L~(-1)IPTG with2h, while that of PeTub3received higherexpression at28℃induced by0.4mmol·L~(-1)IPTG with4h. The recombinant proteins werepurified by using His·Tag Bind Purification Kit and were used to treat seeds of Arabidopsisthaliana. The result showed that the hypocotyl of the treated seedlings were thicken and thequantity of lateral root increased significantly, which indicated that the recombinant proteinsmight have biological activity for growth stimulation.
     4. The plant expression vectors of sense/antisense PeTua3/PeTub3were constructed andtransferred into A. thaliana. The sense and antisense transgenic plants were selected withantibiotics and the postive transgenics of T3were used to further studies. The phenotypes ofthe transgenics were observed, the germination was not affected by the overexpression orinhibition of genes. However, the root growth was affected obviously. The root phenotypes ofsense transgenics all grew fast and had more lateral roots, while the antisense transgenics allgrew abnomal and had lots of hair roots. All the roots of sense and antisense transgenics wereembedded in paraffin and sectioned to8~(-1)0m thick for tissue sections making. The roottissue sections of sense transgenics showed that the quantity of epidermal parenchyma cellswas increasing, the volume of the cells was becoming larger, the xylem was significantlythicker and the volume of the vascular cylinder increased about2times than that of wild type. However the quantity of epidermal parenchyma cells in antisense transgenics was significantlyreduced, the volume of the cells became smaller, the xyle was obviously thinner and thevolume of the vascular cylinder became smaller than that of wild type. These results suggestedthat PeTua3and PeTub3could promote cell growth and division to accelerate the growth ofroots.
     5. Tobacco (Nicotiana tabacum) BY-2suspension cells were used to study the tubilingenes’ influence on cell division. PeTua3and PeTub3were overexpressed respectively in BY-2suspension cells. The result of microscope observation showed that the mitotic index oftransgenic BY-2cells was increased and the shape of the cells was also changed. Comparedwith BY-2cells, the time of G2and S phase for the transgenic BY-2cells was shortenedsignificantly, which accelerated the cell division.
     The recombinant proteins of expression in vitro have biological activity for promoting cellgrowth, which further confirmed in transgenic A. thaliana. PeTua3and PeTub3promotegrowth by reducing the cell division cycle through transgenic BY-2. Thus prove the PeTua3and PeTub3functions to promote cell development has been proved, which means that PeTua3and PeTub3for molecular breeding have important potential applications.
引文
Alberts B, Johnson A, Lewis J, et al... Molecular Biology of the Cell (the4th edition). New York: GarlandScience,2002,914-915.
    Anthony RG and Hussey PJ. Dinitroaniline herbicide resistance and the microtubule cytoskeleton. TrendsPlant Sci,1999a,4:112-116.
    Anthony RG, Hussey PJ. Double mutation in Eleusine indica α-tubulin increases the resistance of transgenicmaize calli to dinitroaniline and phosphorothiamidate herbicides. Plant J,1999b,18:669-674.
    Anthony RG, Hussey PJ. Suppression of endogenous α-and β-tubulin synthesis in transgenic maize cellioverexpressing α-and β-tubules.Plant J,1998,16:297-304.
    Anthony RG, Reichelt S and Hussey PJ. Dinitroaniline herbicide-resistant transgenic tobacco plantsgenerated by co-overexpression of a mutant α-tubulin and a β-tubulin. Nat Biotechnol,1999,17:712-716.
    Anthony RG, Waldin TR, Ray JA.Bright et al.. Herbicide resistance caused by spontaneous mutation of thecytoskeletal protein tubulin. Nature,1998,393:260-263.
    Baskin TI, Wilson JE, Cork RE et al.. Morphology and microtubule organization in Arabidopsis rootsexposed to oryzalin or taxol. Plant Cell Physiol,1994,35(6):935-942.
    Belmont LD, Mitchison TJ. Identification of a protein that interacts with tubulin dimers and increases thecatastrophe rate of microtubules. Cell,1996,84:623-631.
    Binarova P, Cenklova V, Prochazkova J, et al.. Gamma-tubulin is essential for acentrosomal microtubulenucleation and coordination of late mitotic events in Arabidopsis. Plant Cell,2006,18:1199-1212.
    Binarova P,Dolezel J,Draber P, et al.. Treatment of Vicia faba root tip cells with specific inhibitors tocyclin-dependent kinases leads to abnormal spindle formation.Plant cell,1998,13:495-509.
    Blystone SD.. Integrating an integrin: a direct route to actin. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,2004,7(1692):47-54.
    Bokros CL,Hugdahl JD,Blumenthal SSD et al.. Proteolytic analysis of polymerized maize tubulin:regulation of microtubule stability to low temperature and Ca2+by the carboxyl terminus of β-tubulin.Plant Cell Environ,1996,19:539-548.
    Bonfante P, Bergero R, Uribe X, et al.. Transcriptional activation of a maize α-tubulin gene in mycorrhizalmaize and transgene tobacco plants. Plant J,1996,9:737-743.
    Bustos MM, Guiltinan MJ, Cyr RJ, Ahdoot D et al.. Light regulation of β-tubulin gene expression duringintenode development in soybean(Glycine max Merr). Plant Physiol,1989,91:1157-1161.
    Carnero-Diaz E, Martin F Tagu D. Eucalypt α-tubulin:cDNA cloning and increased level of transcripts inectomycorrhizal root system. Plant Mol Biol,1996,31:905-910.
    Carpenter JK, Kopczak SD, Snustad DP et al.. Semi-constitutive expression of an Arabidopsis thalianaα-tubulin gene. Plant Mol Biol,1993,21:937-942.
    Carpenter JL, Ploense SE, Snustad DP et al.. Preferential expression of an α-tubulin gene of Arabidopsis inpollen. Plant Cell,1992,4:557-571.
    Cassab GI, Varner, JE. Cell wall proteins. Annu. Rev. Plant physiol.,1988,39:321-353.
    Cheng L, Hunke L, Hardy C. Cell cycle regulation of the Saccharomyces cerevisiae pololike kinase Cdc5p.MoL.Cell.Bio.,1998,18:7360-7370.
    Collings DA, Lill AW, Himmelspach R, et a1.. Hypersensitivity to eytoskeletal antagonists demonstratesmicrotubule-microfilament cross-talk in the control of root elongation in Arabidopsis thaliana.NewPhytologist,2006,170:275-290.
    Cowan,NJ.,Lewis,SA.,Sarkar,S.,et al.. The cytoskeleton in cell differentiation and development: Proceedingsof the first international symposium,1987,157-166.
    Delmer DP. Cellulose biosynthesis. Annu. Rev.Plant physiol.,1987,38:259-290.
    Dhonukshe P, Gadella TW. Alteration of microtubulin dynamic instability during preprophase bandformation revealed by yellow fluorescent protein-CLIP170microtubulin plus-end labeling. Plant Cell,2003,5:597-611.
    Diaz-Camino C, Conde R. Actin expression is induced and three isoforms are differently expressed duringger mination in Zea mays. Journal of Experimental Botany,2005,56:557-565.
    Dolfini S, Consonni G, Mereghetti M, et al.. Antiparallel expression of the sense and antisense transcripts ofmaize α-tubulin genes. Mol Gen Genet,1993,241:161-169.
    Drobak BK, Franklin-Tong VE, Staiger CJ. The role of the actin cytoskeleton in plant cell signaling. NewPhytologist,2004,163:13-30.
    Dutcher SK. Long-lost relatives reappear identification of new members of the tubulin superfamily. CurrentOpinion in Microbiology,2003,6:634-640.
    Dutcher SK. The tubulin fraternity: a lpha to beta. Current Opinion in Cell Biology,2001,13:49-54.
    Frys C. Feruloylated pectin from the primary cell wall: Their structure and possible functions. Planta,1983,157:111-123.
    Goddard, R.H., Wick, S.M., Silˉow, C.D. et al.. Microtubule components of the plant cell cytoskeleton. PlantPhysiol,1994,104:1-6.
    Hamada S, Ishiyama K, Choi SB, et a1.. The transport of prdamine RNAs to prolamine protein bodies inliving rice endosperm cells. Plant Cell,2003,15:2253-2264.
    Hasezawa S.,Nagara T. Dynamic organization of plant microtubules at the3distinct transition pionts duringthe cell cycle progression of synchronized tobacco BY-2cells. Bio.Acta,1991,104:206-211.
    Hauser, M.T., Morikami, A. Benfey, P.N. Conditional root expansion mutants of Arabidopsis Development,1995,121,1237-1252.
    Havir E. A.. Purification and properties of violaxanthin de-epoxidase from spinach. Plant Science,1997,123:57-66.
    Helper, P.K. Hush, J.M. Behavior of MTs in living plant cells. Plant Physiol,1996,112:455-461.
    Hepler PK, Vidali L, Cheung AY. Polarized cell growth in higher plants. Annu Rev Cell Dev Biol,2001,17:159-187.
    Hieber A. D. Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle asrevealed by PsbS overexpression in tobacco and in-vitro deepoxidation inmonogalactosyldiacylglycerol micelles. Plant and cell physiology,2004,45(1):92-102.
    Hightower R C, Meagher R B. The molecular evolution of actin. Genetics,1986,114:315-332.
    Himmelspach, R., Wymer, C.L.L., Ioyd, C.W. et al.. Gravity-induced reorientation of cortical microtubulesobserved in vivo. Plant J,1999,18(4):449-453.
    Hopp HE.Synthesis of cellulose preeursors. Eur.J.Biochem,1978,84:561-571.
    Howard J, Hyman AA.Dynamics and mechanics of microtubule plus end. Nature,2003,422:753-758.
    Huang SJ, Blanchoin L, Chaudhry F, et al.. Agelsolin-like protein from papaver rhoeas pollen (PrABP80)stimulates calcium-regulated severing and depolymerization of actin filaments. Biol Chem,2004,279(22):23364-23375.
    Isagi Y., Kawahara T., Kamo K., et al.. Net production and carbon cycling in a bamboo Phyllostachyspubescens stand. Plant Ecology,1997,130:41-52.
    James F. H., Liu W., Halsey C. M. R., et al.. Ni-NTA-gold clusters target His-tagged proeins. Jounal ofStructural Biology,1999,127(2):185-198.
    Jiang Y Q, Zhao W L. Expression and phylogenetic analysis of pea actin isoforms. Acta Botanica Sinica,2002,44:1456-1461.
    Joyce CM,Villemur R,Snustad DP Silflow CD.Change in isotype expression along the developmental axisof seedling root. J Mol Biol,1992,227:97-107.
    Ketelaar T, Faivre-Moskalenko C, Esseling J J, et al.. Position of nuclei in Arabidopsis root hairs: anactin-regulated process of tip growth.The Plant Cell,2002,14:2941-2955.
    Kimh, Parkm. Actin filaments play a critical role in vacuolar trafficking at the golgi complex in plant cells.The Plant Cell,2005,17:888-902.
    Kobayashi Y, Kobayashi I, Funaki Y, et al.. Dynamic reorganization of microfilaments and microtubules isnecessary for the expression of non-host resistance in barley coleoptile cells. Plant J,1997,11:525-537.
    Kopczak SD,Haas NA,Hussey PJ. et al..The small genome of Arabidopsis contains at least six expressedα-tubulin genes.Plant Cell,1992,4:539-547.
    Kost, B., Mathur, J. Chua, N.H. Cytoskeleton in plant development. Curr. Opin. Plant Biol,1999,2,462-470.
    Lebdetter MC,Porter KR. A“microtubulin”in plant cell fine structure. Ceel Boi,1963,19:239-250.Li X B, Fan X P. The cotton ACTIN1gene is functionally expressed in fibers and participates in fiberelongation. The Plant Cell,2005,17:859-875.
    Libusova L, Draber P Multiple tubulin forms in ciliated protozoan Tetrahymena and Paramecium species.Protoplasma,2006,227:65-76.
    Ludwig SR, Oppenheimer DG, Silflow CD et al.. The α-tubulin gene of Arabidopsis thaliana: primarystructure and preferential expression in flowers. Plant Mol Bio,1988,10:311-321.
    Maly IV, Borisy GG. Self-organization of tread milling microtubules into a polar array.Trends Cell Biol,2002,12:462-465.
    Marc J,Granger CL,Brincat J, et al.. A GFP-MAP4reporter gene for visualizing cortical microtubulerearrangements in living epidermal cells. Plant Cell,1998,10:1927-1937.
    Mathur J.Cell shape development in plants. Trends Plant Sci,2004,9:583-590.
    Mayer, U., Herzog, U., Berger, F., et al.. Mutations in the PILZ group genes disrupt the microtubulecytoskeleton and uncouple cell cycle progression form cell division in Arabidopsis embryo andendosperm. Euro. J. Cell Biol,1999,78:100-108.
    McKean PG,Vaughan S,Gull K.The extend tubulin superfamily. J Cell Scl,2001,114:2723-2733.
    Meagher R B, Mckinney E C. Isovariant dynamics expand and buffer the responses of complex systems: thediverse plant actin gene family. The Plant Cell,1999,11:995-1005.
    Montoliu L, Rigau J.A tandem of α-tubulin genes preferentially expressed in radicular tissues from Zeamays. Plant Mol Biol,1990,14:1-15.
    Nagata T,Nemoto Y,Hasezaws S.Tobacco BY-2cell line as the “Hela” cell line in the cell biology of higherplant cells. Int Rev Cytol,1992,132:1-30.
    Oakley CE,Oakely BR.Identification of gamma-tubulin,a new member of the tubulin susperfamily encodedby mipA gene of Aspergillus nidulans. Nature,1989,338:662-664.
    Okita TW,Choi SB.mRNA localization in plants:targeting to the cell,s cortical region and beyond.CurrOpin Plant Biol,2002,5:553-559.
    Pastuglia M,Azimzadeh J,Goussot M,et al. Gmma-tubulin is essential for microtubulin organization anddevelopment in Arabidopsis. Plant Cell,2006,18:1412-1425.
    Peng Z, Lu T, Li L, et al. Genome-wide characterization of the biggest grass, bamboo, based on10,608putative full-length cDNA sequences. BMC Plant Biology,2010,10:116.
    Porceddu A,Stals H,Reichheld J,et al.. A plant-specific cyclin-dependent kinase is involved in the control ofG2/M progression in plants. J.Biol.Chem,2001,276:36354-36360.
    Schmtt AC, Lambert A M. Microinjected fluorescent phalloidin in vivo reveals the F-actin dynamics andassembly in higher plant mitotic cells. The plant cell,1990,2:129-138.
    Sedbrook JC,Ehrhardt DW,Fisher SE, et al.. The Arabidopsis sku6/spiral1gene encodes a plus end-localizedmicrotubule-interacting protein involved in directional cell expansion. Plant Cell,2004,16:1506-1520.
    Shevell D E,Leu W M,Gillmor CS. EMB30is essential for normal cell division, cell expansion and celladhesion in Arabidopsis, and encodes a protein that has similarity to Sec7. Cell,1994,77:1051-1062.
    Sorrell D.A.,Combettes B.,Chaubet-Gigot C.,et al..Disitinct cyclin D genes show mitotic accumulation orconstant levels of transcripts in tobacco Bright Yellow-2cells.Plant Physiol,1999,119:343-352.
    Steams T, Kirschner M. In vitro reconstitution of centrosome assembly and function: the central role ofgamma-tubulin. Cell,1994,76:623-637.
    Thitamadee S,Tuchihara K.Hashimoto T.Microtubule basis for left-handed helical growth in Arabidopsis.Nature,2002,417:193-196.
    Ueda K,Matsuyama T,Hashimoto T.Visualization of microtubules in living cells of transgenic Arabidopsisthaliana. Protoplasma,1999,206:201-206.
    Uribe X, Torres MA, Capellades M.Maize α-tubulin genes are expressed according to specific pattern of celldifferentiation.Plant Mol Biol,1998,37:1069-1078.
    Vantard M, Blanchon L. Actin polymerization processes in plant cells. Curr Opinin Plant Biol,2002,5:502-506.
    Vidali L, Mckenna S T. Actin polymerization is essential for pollen tube growth. Molecular Biology of theCell,2001,12:2534-2545.
    Wasteneys G O,Galway M E.Remodeling the cytoskeleton for growth and form: an overview with somenew views. Annual Rev Bio1,2003,54:691-722.
    Yamamoto K, Kiss J Z. Disruption of the actin cytoskeleton results in the promotion of gravitropismininflorescence stems and hypocotyls of Arabidopsis. Plant Physiology,2002,128:669-681.
    Yoshimura T, Demura T, Igarashi M.,et al.. Differential expression of three genes for different alpha tubulinisotypes during the initial culture of Zinnia mesophyll cells that divide and differentiate into trachearyelements. Plant Cell Physiol,1996,37:1167-1176.
    Yuan M,Ahaw PJ,Warn RM,et al.. Dynamic rerientation of cortical microtubules,from transverse tolongitudinal,in living plant cells.Proceedings of the National Academy of Sciences,1994,91:6050-6053
    J.萨姆布鲁克, D.W.拉塞尔著.分子克隆实验指南(第三版).科学出版社,2002,540-544.
    陈志玲.植物细胞骨架在细胞伸长及逆境胁迫应答中的功能研究.中国科学院博士后论文.2002,67-70.
    陈忠才,蔡尚,蒋青等.微管和微丝骨架综合调控动物细胞胞质分裂过程.科学通报,2005,(3):225-231.
    房婉萍.茶树花蕾发育差异表达基因克隆与分析.安徽农业大学博士论文.2006.
    甘小洪.毛竹茎秆纤维细胞的发育生物学研究.南京林业大学博士学位论文.2005,1-10.
    高志民,李雪平,彭镇华等.竹子捕光叶绿素a/b结合蛋白基因全长的克隆和序列分析.林业科学,2007,43(3):34-38.
    高志民,刘成,刘颖丽等.毛竹捕光叶绿素a/b结合蛋白基因cab-PhE1的克隆与表达分析.林业科学,2009,45(3):145-149.
    胡适宜著.被子植物胚胎学.北京:高等教育初出版社.1982,45-50.
    江泽慧主编.世界竹藤.辽宁:辽宁科学技术出版社,2002,3-20.
    金强.红富士苹果发育过程中果皮超微结构变化及相关酶类研究.西北农林科技大学.2004,35-46
    李国庆.砀山酥梨石细胞发育过程中木质素沉积及结构特性的研究.安徽农业大学.2010,33-34
    李香兰.微丝对豚鼠胃窦平滑肌细胞钾电流的影响.延边大学硕士论文.2004
    李雄彪.纤维素的化学结构、生物合成和糖化研究.大自然探索,1992,11(39):56-62.
    李雄彪等.西葫芦花粉壁和非壁蛋白中苹果酸脱氢酶的研究.植物生理学通讯,1985,11(2):180-187.
    李雄彪等编著.植物细胞壁.北京:北京大学出版社,1993,36-50.
    李正理等编著.植物解剖学.北京:高等教育出版社,1984,12-26
    林展.小麦膨胀素基因的分离、克隆与功能鉴定.中国农业大学.2005,21-23
    刘波.毛竹发育过程中细胞壁形成的研究.中国林业科学研究院博士论文,2008:1-20.
    刘丽娜.烟草细胞周期相关基因NtCDC48的克隆与功能研究.首都师范大学硕士论文.2006.
    王超,侍福梅.植物微管动态的研究进展.2009,37(26):12501-12502.
    王刚.黄瓜分子标记遗传连锁图构建与重要农艺性状基因定位.上海交通大学硕士论文.2005,18-20.
    林绕.雷竹成花相关基因的克隆研究,浙江林学院硕士论文.2007,22-24.
    王卓,张少斌,马冠军等.植物肌动蛋白研究进展.安徽农业科学,2007,10:2860-2861.
    魏晓静.盘基网柄菌尿囊酸酶基因表达产物的纯化及多克隆抗体制备.华东师范大学硕士论文.2008,98-100.
    徐瑜.棉花tubulin家族基因的大规模克隆、转录谱分析和功能鉴定.北京大学博士论文.2007,1-18.
    张少斌,任东涛,徐小静等.豌豆肌动蛋白异型体PEAc1与绿色荧光蛋白融合基因的原核表达与特性分析.科学通报,2004,49(6):563-569.
    张永梅,吴忠义,王学臣等.拟南芥保卫细胞微管骨架的重排参与NO诱导的气孔关闭.科学通报,2008,53(3):293-298.
    周希明,武维华,袁明等.气孔保卫细胞微管对质膜上钾离子通道的调节作用.科学通报,1999,44(9):951-954.
    朱东伟.细胞板的主要成分是纤维素吗.生物学通报,2003,01:52-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700