用户名: 密码: 验证码:
高阶煤层气储层测井评价方法及其关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对我国高阶煤层气储层测井现阶段需要解决的有关问题,以沁水盆地南部某研究区的煤岩实验分析资料和常规测井资料为基础,围绕煤层气储层测井评价技术,分别从地质影响因素、测井响应特征及井环境影响、测井解释模型等方面开展系列研究。
     通过煤层气的成因及其储层地质特征的总结,分析了有关煤层气储层物质组成、孔裂隙结构、渗透性特征、含气量的控制因素等内容,为煤层气测井的解释模型方法及参数选取提供有关地质理论依据。针对高阶煤层气储层的特点,通过数理统计方法,利用研究区现场和实验数据,分析了煤岩工业分析、显微组分、粘土矿物、镜质体反射率、含气量及各种常规测井响应值的分布特征,并根据煤岩工业分析组分、煤岩介质孔隙结构、煤层气赋存状态进行煤层气储层测井响应机理的探索。
     为了获取高质量的测井数据,针对煤层气储层扩径情况,采用蒙特卡罗数值模拟方法,模拟了小井径的煤层气井结构环境,完成了不同密度煤岩和不同扩径情况下密度测井响应的模拟计算,得到长、短源距计数率的变化特征,制作了煤层气储层扩径情况下的密度测井响应“脊肋图”,解释了部分高阶煤层气储层段密度低于1.1g/cm3的看似不合理值,为煤层气储层密度的扩径校正提供了图版法的解决方案。
     针对煤层气勘探开发过程中需要解决的有关煤质分析、煤层储集性能、天然气储量及煤岩顶底板评价等问题,利用地球物理测井资料,建立了工业组分、含气量、孔隙度、岩石强度等重要参数的定量解释模型。研究归纳了一些适应研究区高阶煤层气储层的改进预测方法。提出在工业组分计算当中,在样品数据充足情况下,优选基于统计模型的回归分析方法;对于小样品数据,采用BP神经网络算法模型;并在体积模型的基础上提出了适于高阶煤层气储层快速预测的约束最优化算法。提出以煤层平均数据为研究对象,采用多元逐步回归分析法,得到基于对数变换形式的工业组分和测井资料预测含气量方程。通过常规测井的声波、密度资料计算煤层及围岩的力学参数,并拟合了纵横波速度比预测抗压强度的回归公式。实例表明,上述方法在高阶煤层气储层测井预测中效果良好。
Based on the coal bed experimental analysis data and conventional logging dataof a high rank coalbed methane study area in Southern Qinshui Basin, and takingcoalbed methane reservoir evaluation technique, the geological factors, loggingresponse and well environment as well logging interpreting model are systematicallystudied.
     In this thesis, the formation of coalbed methane and its reservoir geologicalcharacters are concluded, the reservoir material composition of coal bed, crackstructure, permeability characteristics, and controlling factors of gas contents arestudied, and then yield geological theoretical supports for the model interpretingmethods and parameter selection for coalbed methane logging. For high rank coalbedmethane reservoir, mathematical statistics are introduced to analyze the data fromfield data and experimental data, then deduced the distributions of all kinds of generalanalysis, like proximate analysis, microscopic components, clay minerals, vitrinitereflectance and gas contents, then explored the log response mechanism of coalbedmethane reservoir based on the proximate analysis, pore structure of coalbed, andstorage status of coalbed methane.
     In order to get high quality logging data with the situation of expanding ofcoalbed methane reservoir, Mont Carlo method is employed to simulate the structureenvironment of small diameter well of coalbed methane, and complete the density logsimulation of different coal bed densities and density logging response in differentexpanding situation, and then the count rate variation in long and short distance arededuced, a “spine-rib-plot” of density logging in different expanding, also solve theparadox of partial high rank coal bed reservoir density is less than1.1g/cc, whichprovides a solution to density expanding correction of coalbed methane reservoir.
     For issues should be solved during coalbed methane exploration like coal qualityanalysis, coal reservoir properties, natural gas reserves and roof and floor evaluationof coal bed, a quantitative interpretation models about important parameters likeproximate analysis, porosity, gas content, vitrinite reflectance, rock strength are constructed in this thesis. And sum up some developed interpreting method in highrank coalbed methane reservoir. That can be concluded as when calculate theproximate analysis, regression analysis method based on statistical models should beapplied with adequate sample data, meanwhile, if the sample data is not enough, BPneural network algorithm should be used. Finally, constrained optimization algorithmfor high rank coal bed methane quick predicting is proposed based on volume model.Propose stepwise multiple regression analysis method which taking coal bed averagedata as study objects to get the gas contents functions, which can be used to deducethe gas contents with logarithm of proximate components and logarithm of loggingdata respectively. Mechanical parameters of coal bed and surrounding rocks can becalculated via regular logging information like sonic and density data. Also,regression formula of predicting compressive strength via the ratio of compressionalto shear wave velocity is fitted. At last the case study showed that the above methodsworked well in logging evaluation of high rank coalbed methane reservoirs.
引文
[1] Archie G E., The electrical resistivity log as an aid in determining some reservoircharacteristics. Trans. AIMe,1942,146(1):54-62.
    [2] Aguilera, R., Analysis of Naturally Fractured Reservoirs from Conventional Well Logs.Journal of Petroleum Technology,1976.28(7):764-772.
    [3] Aguilera, R., Analysis of Naturally Fractured Reservoirs Reservoirs from Sonic andResistivity Logs. Journal of Petroleum Technology,1974.26(11):1233-1238.
    [4] Aguilera, R., Formation Evaluation of Coalbed Methane Formations. Journal of CanadianPetroleum Technology,1994.33(9):22-28.
    [5] Ahmed U., Johnston D., Colson L. An Advanced and Integrated Approach to CoalFormation Evaluation.In: SPE eds. the66th Annual Technical Conference and Exhibition ofthe Seciety of Petroleum Engineers. Dallas, TX: Society of Petroleum Engineers,1991:755-770.
    [6] Baldwin B.A.,Yamahashi W.S. Deeteting Fxuid movement and Isolation in ReservoirCores Using Medical NMR Imaging Techniques,sth SPE/DOE Symposium on EnhancedOil Recovery,Tulsa, Oklahoma,20-23April, SPE/DOE14884,1986
    [7] Bhanja A K, Srivastava O P. A new approach to estimate CBM gas content from well logs.In: SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of PetroleumEngineers,2008.
    [8] Bond L.O., Alger R.P., Schmidt A.W. Well Log Applications in Coal Mining and RockMechanics. Soil Mech. Eng. Trans,1971(220):355-362.
    [9] Brach I., Giuntini J.C., Zanchetta J.V. Real part of the permittivity of coals and their rank.Fuel,1994,73(5):738-741
    [10] Briesmeister J F. MCNPTM-A general Monte Carlo N-particle transport code. Version4C,LA-13709-M, Los Alamos National Laboratory,2000.
    [11] Chappellaz J., Barnola J.M., Raynaud D. et al., Ice-core record of atmospheric methaneover past160000years. Nature,1990,345:127-131.
    [12] Chatterjee R, Pal P K. Estimation of stress magnitude and physical properties for coal seamof Rangamati area, Raniganj coalfield, India. International Journal of Coal Geology,2010,81(1):25-36.
    [13] Chatterjee R., Paul S. Classification of coal seams for coal bed methane exploitation incentral part of Jharia coalfield, India-A statistical approach. Fuel,2013,(111):20-29
    [14] Christoffel D A, Kayal J R. Coal Quality from Geophysical Logs: Southland Lignite Region,New Zealand. The Log Analyst,1989,30(5):343-352
    [15] Coates G.R., Denoo S.A. Mechanical Properties Using Borehole Analysis and Mohr’s Circle.In: SPWLA, eds. SPWLA22nd Annual Logging Symposium. Mexico:SPWLA,1981.1-17
    [16] Cristensen M.D., Young J.A.,&Evans R.A. Control of annual grasses
    [17] and revegetation in the ponderosa pine woodlands. Journal of Range Management,1974(27),143-145
    [18] Dindi H. Thermal and electrical property measurements for coal. Fuel,1987,68(2):185-192.
    [19] Dlugokencky E.J., Steele L.P., Lang P.M. et al.The growth rate and distribution ofatmospheric methane. Journal of Geophysical Research,1994,99(8):17021-17043.
    [20] Durucan S., Edwards J.S. The effects of stress and fracturing on permeability of coal.Mining Science and Technology,1986,3(3):205-216
    [21] Eaton B.A. A Theory on the Effect of Overburden Stress on Geopressure Prediction fromWell Logs. Journal of Petroleum Technology,1972,929-934
    [22] Eaton B.A. The Equation for Geopressure Prediction from Well Logs. In: SPE, eds.50thAnnual Fall Meeting of the Society of Petroleum Engineers of AIME. Dallas:SPE,1975.1-11
    [23] Edwards K.W., Banks K.M. Theoretical Approach to the Evaluation of In-Situ Coal. CIMBulletin,1978,(71):124-131.
    [24] Faivre, O., and Sibbit, A.M., The Dual Laterolog Response in Fractured Rocks. In: SPWLA,eds.26st Annual Logging Symposium.1985,SPWLA:17-20
    [25] Fu X., Qin Y, Jiang B., et al. Research on Permeability of Multiphase Medium of Middle toHigh-Rank Coals. Journal of China University of Mining&Technology,2003,13(1):11-15
    [26] Fu X.,Qin Y., Wang G.,et al. Evaluation of coal structure and permeability with the aid ofgeophysical logging technology. Fuel,2009,88(11):2269-2277
    [27] George Coates,肖立志, Manfred Prammer.核磁共振测井原理与应用.北京:石油工业出版社,2007
    [28] Giuntini J.C., Zanchetta J.V., Diaby S. Characterization of coals by the study of complexpermittivity. Fuel,1987,66(2):179-184
    [29] Guo R., Kantzas A. Assessing the Water Uptake of Alberta Coal and the Impact of CO2Injection with Low-Field NMR. Journal of Canadian Petroleum Technology,2009,48(7):40-46
    [30] Guo R, Mannhardt K, Kantzas A. Characterizing moisture and gas content of coal bylow-field NMR. Journal of Canadian Petroleum Technology,2007,46(10):49-54
    [31] Hawkins J M, Schraufnagel R A, Olszewski A J. Estimating coalbed gas content andsorption isotherm using well log data. In: SPE Annual Technical Conference and Exhibition.Society of Petroleum Engineers,1992.
    [32] Holt R M, Ingsoy P, Mikkelson M. Rock mechanical analysis of North Sea reservoirformations. SPE Formation Evaluation,1989,4(1):33-37
    [33] Hou J., Evaluation of coalbed methane reservoirs from geophysical log data using animproved fuzzy comprehensive decision method and a homologous neural network.Geophysics Prospecting,2002,50(5):453-462.
    [34] Howard P., Log Analysis of Coalbed Methane Wells in San Juan Basin, Schlumberger GFEpaper,1985
    [35] Hoyer, D.L., Evaluation of Coalbed Fracture Porosity from Dual Laterolog. The LogAnalyst,1991.32(6):654-662.
    [36] Johnston D.J., Gales R.H., Ahmed U. A New Logging Method for Enhanced Coal Grading.In: SPE, eds. Rocky Mountain Regional Meeting and Low-Permeability ReservoirsSymposium. Denver: Society of Petroleum Engineers Inc.,1991:63-70
    [37] Kayal J.R., Christoffel D.A. Coal Quality from Geophysical Logs: Southland LigniteRegion, New Zealand. The Log Analyst,1989:343-352.
    [38] Kim A.G. Estimating Methane Content of Bituminous Coalbeds from Adsorption Data. U.S.Dept. of the Interior, Bureau of Mines,1977:1-11
    [39] Kluander B.R., Stuart L. Coal-cleat domains and domain boundaries in the AlleghenyPlateau of West Virginia. AAPG Bulletin,1993,77(3):1374-1388
    [40] Li J., Liu D.,Yao Y., et al. Evaluation of the reservoir permeability of anthracite coals bygeophysical logging data. International Journal of Coal Geology,2011,87(2):121-127
    [41] Mavor M.J., Close J.C., McBAne R.A. Formation evaluation of explorationcoalbed-methane wells. SPE Formation Evaluation,1994,9(4):285-294.
    [42] Mavor M.J., Close J.C.,and McBane R.A. Formation Evaluation of ExplorationCoalbed-Methane Wells. SPE Formation Evaluation,1994,9(4):285~293.
    [43] Mullen M.J. Coalbed Methane Resource Evaluation From Wireline Logs in theNortheastern San Juan Basin: A Case Study. In: SPE, eds. The Rocky Mountain RegionalMeeting and Low-Permeability Reservoirs Symposium and Exhibition, Denver: SPE,1989.180-192
    [44] Nielsen, Ramona, and Charles Kohlhaas. Acoustic and Biaxial Measurement of RockMechanical Properties for Interpretation of Logs for Design of Well-Completion Operations.In: SPE,eds. SPE Annual Technical Conference and Exhibition.Las Vegas: SPE,1979.1-10Mckee C.R., Bumb A.C., Koening B.A. Stress dependent permeability and porosity ofcoal. Rockey Mountain Association of Geologist,1988,143-153
    [45] Norris, J.O.,and Thomas, R., An In Situ Coal Quality Prediction Technique. In:SPE,eds. The55th Annual Fall Technical Conference and Exhibition of the Society of PetroleumEngineers of AIME. Dallas: Society of Petroleum Engineers,1980.1-9
    [46] Pan H, Liu G. Evaluation porosity and gas content of coalbeds from well logging data. In:Beijing: Proceedings of the thirtieth international geological congress.1996:46-51
    [47] Pungmiur R. Coal structure from solid state NMR in Encyclopaedia of NMR.John Wileyand Sons,Chichester UK,1996,1355-1365.
    [48] Radovic L.R., Menon V.C., Leon C., et al. On the porous structure of coals: Evident for aninterconnected but constricted micropore system and implications for coalbed methanerecovery. Adsorption,1997,3:221-232
    [49] Rai, D.K., Sunit Roy, and A.L. Roy., Evaluation of Coal Bed Methane through Wire LineLogs Jharia field: A Case Study.5th Conference&Exposition on Petroleum Geophysics,Hyderabad,2004. India. PP910-914
    [50] Ramanathan C., Bencsik M. Measuring spatially resolved gas transport and adsorption incoal using MRI. Magnetic Resonance Imaging,2001,19:555-559
    [51] Rodriguez S, Navas-Guzman G, Gomez Prada A. Estimation of Coalbed Gas Content FromElemental Analysis for Los Cuervos Formation. In: SPE eds. Latin America and CaribbeanPetroleum Engineering Conference. Mexico: SPE,2012.1-18
    [52] Rogers R.E. Coalbed methane: Principles and practice. Englewood Cliffs, New Jersey:Prentice Hall,1994:192
    [53] Salam F., Soulayman S.S., Giuntini J.C., et al. Frequency-Dependent Ionic Conductivity in(Ag2)x (GeS2)1-X Glasses. Solid State Ionics,1996,83:235-243
    [54] Scholes P L. Coalbed methane application of wireline logs, hydrocarbons from coal. AAPGBulletin,1993,38:287-302.
    [55] Sethi D.K. Well Log Applications in Rock Mechanics. In:SPE/DOE eds. the1981SPE/DOE Low Permeability Symposium. Denver: SPE,1981,45-54
    [56] Sommerton W.J. Soylemezoglu I.M., Dudley R.C. Effect of stress on permeability of coal.International Journal of Rock Mechanics and Mining Sciences&Geomechanics abstracts.1975,12(2):129-145
    [57] Tixier M.P, Alger R.P. Log evaluation of nonmetallic mineral deposits. Geophysics,1970,35(1):124-142.
    [58] Tsiao C, Botto RE. Xe-129NMR investigation of micropores. Energy&Fuels,1991,5:89-92
    [59] Wang G., Ren T., Wang, K., et al. Improved apparent permeability models of gas flow incoal with Klinkenberg effect. Fuel,2014,(128):53-61
    [60] Wernett P.C., Larsen J.W., Yamada O., Yue H.J., Determination of the average microporediameter of an illinois No.6coal by Xenon-129NMR. Energy&Fuels,1990,4(4):412-413
    [61] Yang Y., Peeters M., Cloud T.A., et al, Gas productivity related to cleat volumes derivedfrom focused resistivity tools in coalbed methane (CBM) Fields. Petrophysics,2006,47(3):250-257
    [62] Yao Y., Liu D., Cai Y., Li J. Advanced characterization of pores and fractures in coals bynuclear magnetic resonance and X-ray computed tomography. Science China: EarthSciences,2010,53(6):854-862
    [63] Yao Y., Liu D., Che Y. et al, Petrophysical characterization of coals by low-field nuclearmagnetic resonance (NMR). Fuel,2010,89:1371-1380
    [64] Yu G., Vozoff K., and Durney D.W. Effect of pore pressure on compressional wave velocityin coals. Exploration Geophysics,1991,22(2)475–480.
    [65] Yu G., Vozoff K., and Durney D.W. The influence of confining pressure and watersaturation on dynamic elastic properties of some Permian coals. Geophysics,1993,58(1):30-38.
    [66]车长波,杨虎林,李富兵,等.我国煤层气资源勘探开发前景.中国矿业,2008.17(5):1~4
    [67]陈金刚,张世雄,黄志伟.煤岩力学参数与其基质收缩性能的耦合效应.武汉理工大学学报,2004,26(11):67-70.
    [68]丁次乾.矿场地球物理.东营:中国石油大学出版社,2008
    [69]董红,侯俊胜,李能跟,等.煤层煤质和含气量的测井评价方法及其应用.物探与化探,2001,25(2):138-143.
    [70]董维武.煤层气储层测井评价方法研究:[硕士学位论文].东营:中国石油大学,2011
    [71]杜云贵,鲜学福,谭学术,等.南桐煤的导电性质研究.重庆大学学报,1995(2):145-148
    [72]傅雪海,姜波,秦勇,等.用测井曲线划分媒体结构和预测煤储层渗透率.测井技术,2003,27(2):140-144
    [73]傅雪海,陆国桢,秦杰,等.用测井响应值进行煤层气含量拟合和媒体结构划分.测井技术,1999,23(2):112-115
    [74]傅雪海,秦勇,姜波,王文峰.多相介质煤岩体力学实验研究.高校地质学报,2002,8(4):446-452.
    [75]傅雪海,秦勇,韦重韬.煤层气地质学.北京:中国矿业出版社,2007:10-50.
    [76]傅雪海.多相介质煤岩体物性的物理模拟与数值模拟:[博士学位论文].徐州:中国矿业大学,2001.
    [77]高旭晨,张春才,段铁梁.煤层气测井资料解释初探.中国煤田地质,2003.15(4):54-56.
    [78]高旭晨.密度和中子测井对煤层甲烷含气量的响应及解释.煤田地质与勘探,1999.27(3):25-28
    [79]郭晓红.数字测井在煤层顶底板岩石力学性质解释中的应用.陕西煤炭,2003,(3):42-44
    [80]国家发展和改革委员会.国家发展改革委关于印发煤层气(煤矿瓦斯)开发利用“十二五”规划的通知[EB/OL].
    [81] http://www.sdpc.gov.cn/zcfb/zcfbtz/2011tz/t20111231_454225.htm,2011-11-26.
    [82]国家能源局.专家:未来十年我国煤层气开发利用需万亿元投入[EB/OL].http://www.nea.gov.cn/2011-08/23/c_131068320.htm,2011-08-23
    [83]侯俊胜,王颖.神经网络方法在煤层气测井资料解释中的应用.地质与勘探,1999.35(3):41-45.
    [84]侯俊胜,尉中良.自组织神经网络在测井资料解释中的应用.测井技术,1996.20(3):197-200
    [85]侯俊胜.煤层气储层测井评价方法及其应用.2000,北京:冶金工业出版社.
    [86]胡文瑞,翟光明,李景明.中国非常规油气的潜力和发展.中国工程科学,2010,12(5):25-29
    [87]黄烈林,高纯福,布志虹,等.双侧向测井确定裂缝等效宽度.江汉石油学院学报,2002,24(4):42-44
    [88]黄兆辉,邹长春,杨玉卿,等.沁水盆地南部TS地区煤层气储层测井评价.现代地质,2012,26(6):1276-1282
    [89]黄智辉,潘和平.测井资料解释煤层气层方法研究.现代地质,1994,8(1):119-125
    [90]黄智辉.判别函数模糊模式识别法.煤田地质与勘探,1990,(1):47-54
    [91]接铭训.鄂尔多斯盆地东缘煤层气勘探开发前景.天然气工业,2010,30(6):1-6
    [92]梁冰,章梦涛,潘一山,等.瓦斯对煤的力学性质及力学响应影响的实验研究.岩土工程学报,1995,17(5):12-18.
    [93]李善军,肖承文.裂缝的双侧向测井响应的数学模型及裂缝孔隙度的定量解释.地球物理学报,1996,39(6):845-852.
    [94]刘成林.非常规油气资源.北京:地质出版社,2011
    [95]刘洪林,李景明,宁宁,李贵中.我国煤层气勘探开发现状、前景及产业化发展建议.天然气技术,2007,1(4):9-12.
    [96]刘洪林,刘洪建,李贵中,王红岩.中国煤层气开发利用前景及其未来战略地位.中国矿业,2004,13(9):11-15.
    [97]刘天成.体积模型非线性算法预测煤层原煤灰分的分析研究.物探与化探,1988,12(4):272-280.
    [98]刘之的,杨秀春,张继坤,等.鄂东气田煤层含气量测井预测.地质科技情报.2014,33(1):95-99
    [99]龙胜祥,樊生利,许化政,等.豫西地区煤层含气性分析.地质评论,1998,(2):
    [100]秦勇,曾勇编译.煤层甲烷储层评价及生产技术.徐州:中国矿业大学出版社,1996
    [101]马志茹.核磁共振技术在煤化学研究中的应用.煤炭转化,1996,19(:1)33-39
    [102]毛志强,赵毅,孙伟,等.利用地球物理测井资料识别我国的煤阶类型.煤炭学报,2011,36(5):766-771
    [103]孟召平,彭苏萍,傅继彤.含煤岩系岩石力学性质控制因素探讨.岩石力学与工程学报,2002,21(1):102-106.
    [104]孟召平,彭苏萍,屈洪亮.煤层顶底板岩石成分和结构与其力学性质的关系.岩石力学与工程学报,2000,19(2):136-139
    [105]孟召平,田永东,李国富.煤层气开发地质学理论与方法.北京:科学出版社,2010
    [106]潘和平,黄智辉.灰关联聚类法及其在测井中的应用.物探与化探,1998,22(1):34-42
    [107]潘和平,黄智辉.煤层含气量测井解释方法探讨.煤田地质与勘探,1998,26(2):58-60.
    [108]潘和平,黄智辉.最优化变尺度法分析岩性和煤质.物探与化探,1991,3:168-175.
    [109]潘和平,刘国强.应用BP神经网络预测煤质参数及含气量.地球科学——中国地质大学学报,1997.22(2):210-214.
    [110]潘和平.煤层气储层测井评价.天然气工业,2005.25(3):48-51.
    [111]朴庆春, et al.,煤层气测井解释方法综述.测井与射孔,2000(2): p.1-7.
    [112]钱凯,赵庆波,汪泽成,等.煤层甲烷气勘探开发理论与实验测试技术.北京:石油工业出版社,1996:188
    [113]邵龙义,肖正辉,汪浩,等.沁水盆地石炭-二叠纪含煤岩系高分辨率层序地层及聚煤模式.地质科学,2008,43(4):777-791
    [114]邵震杰,任硕忠,陈家良.煤田地质学.北京:煤炭工业出版社,1993.
    [115]苏现波,林晓英.煤层气地质学.北京:煤炭工业出版社,2007
    [116]孙万禄,陈召佑,陈霞,等.中国煤层气盆地.北京:地质出版社,2005:44-55
    [117]孙伟.不同煤阶煤层测井响应机理分析及评价技术研究:[硕士学位论文].北京:中国石油大学,2012
    [118]谭廷栋.测井解释煤层气藏.测井技术,1999.23(2):83-88
    [119]谭廷栋,林峰,陆大卫,等.测井学.石油工业出版社,1998.
    [120]汤达祯,王生维,金振奎,等.煤储层物性控制机理及有力储层预测方法.北京:科学出版社,2010
    [121]唐巨鹏,潘一山,李成全.利用核磁共振成像技术研究煤层气渗流规律.中国科学技术大学学报,2004,34(z1):423-427
    [122]唐巨鹏,潘一山.核磁共振成像技术在煤层气领域应用研究.煤矿开采,2003,8(2):1-3
    [123]唐巨鹏.煤层气赋存运移的核磁共振成像理论和实验研究:[博士学位论文].辽宁阜新:辽宁工程技术大学,2006
    [124]唐巨鹏.煤层气赋存运移的核磁共振成像理论和实验研究:[博士学位论文].阜新:辽宁工程技术大学,2006
    [125]田敏.煤层气资源量预测中的灰色系统理论研究:[硕士学位论文].东营:中国石油大学,2008
    [126]童敏明,胡俊立,唐守锋,等.不同应力速率下含水煤岩声发射信号特性.采矿与安全工程学报,2009,26(1):97-100.
    [127]童晓光.大力提高天然气在能源构成中比例的意义和可能性.天然气工业,2010,30(10):1-6
    [128]王红岩.煤层气富集成藏规律.北京:石油工业出版社,2005
    [129]王红岩.山西沁水盆地高阶煤层气成藏特征及构造控制作用:[博士学位论文].北京:中国地质大学,2005
    [130]王盼盼,秦勇,高弟.观音山勘探区煤层含气量灰色关联预测.煤田地质与勘探,2012,40(4):34-38
    [131]王庭斌.中国含煤-含气(油)盆地的地质条件.中国科学D辑:地球科学,2004,34(2):117-124
    [132]王云刚.受载煤体变形破裂微波辐射规律及其机理的基础研究:[博士学位论文].中国矿业大学,2008.
    [133]王志荣,谢清莲.根据测井数据评价煤层构造岩顶板抗压强度.煤田地质与勘探,2003,31(6):47-50
    [134]吴东平,吴春萍,谭世君.煤层气测井储层评价神经网络技术应用.天然气工业,2000.20(4):98-99.
    [135]吴东平,吴春萍,岳晓燕.煤层气测井评价的神经网络技术.天然气勘探与开发,2001.24(1):31-34.
    [136]吴东平,岳晓燕,吴春萍.神经网络技术在煤层气测井评价中的应用.断块油气田,2000.7(5):48-49.
    [137]吴基文,姜振泉,樊成,等.煤层抗拉强度的波速测定研究.岩土工程学报,2005,27(9):999-1003.
    [138]肖立志,杜有如,叶朝辉.岩石的核磁共振弛豫时间加权微成像.物理化学学报,1994,10(06):484-488.
    [139]肖立志,杜有如,叶朝辉.区分岩心中大孔和微孔的核磁共振微成像方法.科学通报,1994,39(17):1630-1630
    [140]肖立志,杜有如,叶朝辉.岩石的核磁共振自旋密度微成像.物理化学学报,1995,11(03):196-198
    [141]肖立志,杜有如,叶朝辉.储油岩心魔角旋转核磁共振波谱特征.科学通报,1993,38(16):1535-1535
    [142]肖立志,杜有如,叶朝辉.储油岩心魔角旋转核磁共振弛豫特性.科学通报,1994,39(5):631-631
    [143]肖立志.核磁共振成像测井.测井技术,1995,19(4):
    [144]肖立志.岩石核磁共振成像在EOR研究中的应用.石油学报,1995,16(3):107-110
    [145]肖立志.岩石核磁共振研究:[博士学位论文].武汉:中科院武汉物理研究所,1995
    [146]许淑艳.蒙特卡罗方法在实验核物理中的应用.北京:原子能出版社,1986.
    [147]徐刚,邓绪彪,张凯,等.含瓦斯煤体弹性波传播规律研究.煤矿安全,2009,415(6):1-4.
    [148]徐龙君,鲜学福,李晓红等.交变电场下煤复介电常数的实验研究.重庆大学学报,1998,21(3):6-10
    [149]徐龙君,张代均,鲜学福.煤的电特征和热特征.煤炭转化,1996,19(3):56~62.
    [150]闫立宏,吴基文,刘小红.水对煤的力学性质影响试验研究.建井技术,2002,23(3):30-32.
    [151]杨保联,冯继文.煤的固体高分辨核磁共振研究.中国科学(A辑),1998,28(11):1009-1012
    [152]杨东根.煤心刻度测井技术及测井响应特征研究:[硕士学位论文].山东东营:中国石油大学,2010
    [153]杨克兵, et al.,测井资料在煤层气储层评价中的应用研究.中国煤层气,2011.8(2): p.16-19.
    [154]姚艳斌,刘大锰,蔡益栋,等.基于NMR和X-CT的煤的孔裂隙精细定量表征.中国科学:地球科学,2010,40(11):1598~1607
    [155]姚宇平,周世宁.含瓦斯煤的力学性质.中国矿业学院学报,1988,(1):1-7.
    [156]雍世和.最优化测井解释.东营:石油大学出版社,1995
    [157]原永涛,赵毅,张建平.不同煤化程度煤种对飞灰导电特性影响实验的研究.中国环境科学,1997,15(5):450~461.
    [158]翟光明,何文渊.煤层气是天然气的现实接替能源.天然气工业,2004,24(:5)1-3.
    [159]曾明月.体积模型法计算煤层碳,灰,水含量问题的讨论.煤田地质与勘探,1985,(3):50-54
    [160]张凤威,陈联庆.煤质模型的研究.测井技术,1984,(4):32-41
    [161]张广洋,谭学术,杜贵云,胡跃华.煤的导电机理研究.湘潭矿业学院学报,1995,10(1):15-18
    [162]张慧,庞湘伟,杨杰,等.地面钻孔煤层瓦斯含量测定方法的对比研究.见:董书宁,张群.安全高效煤矿地质保障技术及应用.北京:煤炭工业出版社,2007
    [163]孙培伟,张建民,岳爱忠,等.双源距密度测井的蒙特卡罗数值模拟.原子能科学技术,2007,41(5):595-600.
    [164]张新民,赵靖舟.中国煤层气技术可采资源潜力.北京:科学出版社,2010
    [165]张亚蒲,何应付,杨正明,等.核磁共振技术在煤层气储层评价中的应用.石油天然气学报,2010,32(2):277-279
    [166]赵洪宝,李振华,仲淑姮,罗烨.单轴压缩状态下含瓦斯煤岩力学特性试验研究.采矿与安全工程学报,2010,27(1):131-134.
    [167]赵庆波.煤层气地质与勘探技术.北京:石油工业出版社,1999
    [168]赵秋芳,侯懿,刘顺喜.煤层波谱特征与瓦斯含量的实验研究.河南理工大学学报(自然科学版),2008,27(6):615-618.
    [169]赵毅.煤层气储层测井评价技术研究:[博士学位论文].北京:中国石油大学,2011
    [170]中华人民共和国中央人民政府.国民经济和社会发展第十二个五年规划纲要[EB/OL].http://www.gov.cn/test/2011-03/16/content_1825941_4.htm,2011-03-16
    [171]朱宝存,唐书恒,张佳赞.煤岩与顶底板岩石力学性质及对煤储层压裂的影响.煤炭学报,2009,34(6):756-760.
    [172]邹长春,谭茂金,尉中良,等.地球物理测井教程.北京:地质出版社,2010:85-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700