用户名: 密码: 验证码:
UGT1A9多态性对丙泊酚靶控输注药效学及单次注射药动学的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的
     丙泊酚(propofol)是一临床应用广泛的速效强效静脉麻醉镇静药物,其具有诸多优点:诱导迅速平稳、体内代谢速度快、停药后苏醒快、安全范围较大、不良反应少等,已经成为全球用量最大的成人临床麻醉和ICU镇静的静脉麻醉药。但文献报道其镇静效应及药代动力学存在较大的个体差异,代谢酶等遗传因素的改变可以影响药物的药代动力学及药效动力学,而镇静药物临床镇静效应的个体差异可能就是受其代谢酶基因多态性的影响。本研究的目的是分析尿苷二磷酸葡萄糖醛酸转移酶(UDP-glucuronosyl tansferase, UGTs)基因1A9多态性对良性乳腺肿块切除术女性患者停止靶控输注丙泊酚后,患者意识恢复期丙泊酚镇静效应个体差异的影响,以及对单次静脉注射丙泊酚后药代动力学的影响,为临床麻醉提供合理的用药方案,为实现以基因为导向的个体化用药提供实验依据。
     方法
     1.研究对象与分组
     选择150例于郑州大学第一附属医院择期行良性乳腺肿块切除手术女性患者,ASA分级:I或Ⅱ级,年龄在20-50岁之间,体重指数范围(1±20%)。术前常规检查心、肝、肺、肾功能均无异常,排除标准:有吸烟史、酗酒史、精神病及癫痫病史、糖尿病、甲亢、内分泌功能紊乱、严重心血管系统疾病、肾脏病、肝脏病史、近期使用过肝药酶诱导剂或抑制剂、长期服用镇静催眠药物的患者。根据UGT1A9基因型检测结果将患者分为野生型纯合子、突变型杂合子和突变型纯合子三组。此研究设计方案通过了郑州大学第一附属医院伦理委员会的批准,患者了解本试验过程并均签署知情同意书后纳入该试验。
     2.麻醉方法
     2.1药效学部分
     本试验中纳入的所有患者均采用统一的静脉麻醉方法,丙泊酚应用靶控输注(TCI)给药模式,麻醉诱导:丙泊酚TCI血浆靶控浓度为3μg/ml,待患者意识消失后静脉注射瑞芬太尼和顺式阿曲库铵,置入喉罩并机械通气;麻醉维持:术中所有患者均以丙泊酚血浆靶控浓度3μg/ml,持续静脉输注瑞芬太尼和间断静脉注射顺式阿曲库铵;在手术结束前30min和5min分别停用顺式阿曲库铵和瑞芬太尼,手术结束即刻停止丙泊酚的靶控输注,同时静脉注射阿托品和新斯的明进行肌松药的拮抗,并对患者进行丙泊酚镇静效应的评估,待患者神志清醒并且自主呼吸恢复良好后拔除喉罩。
     2.2药动学部分
     所有患者采用统一的全凭静脉麻醉方法,麻醉诱导:30例患者于20s内恒速静脉推注丙泊酚2mg-kg-1、瑞芬太尼1.5μg·kg-1、顷阿曲库铵0.15μg·kg-1待患者意识消失并且肌肉松弛良好后,置入喉罩进行机械通气管理,维持患者的呼气末二氧化碳分压在35-45mmHg范围内波动;麻醉维持:持续吸入1%~2%七氟烷,持续输注瑞芬太尼0.2~0.3μg·kg-1,依麻醉深浅随时调整维持麻醉药物剂量以确保所有患者术中生命体征平稳。术毕及时停药和进行肌松药的拮抗。检测患者UGT1A9基因型,分别分为UGT1A91399C/C(野生型纯合子)I399C/T(突变型杂合子)1399T/T(突变型纯合子);-1818T/T(野生型纯合子)-1818C/T(突变型杂合子)-1818C/C(突变型纯合子);-1887T/T(野生型纯合子)-1887T/G(突变型杂合子)-1887G/G(突变型纯合子)。
     3.丙泊酚镇静效应的评价
     评估并记录停止靶控输注丙泊酚至患者警觉-镇静评分(OAA/S)达到4分的时间、效应室浓度和BIS值,患者意识恢复时(BIS>80)的时间和效应室浓度,以此作为评价停止丙泊酚靶控输注后意识恢复期患者镇静效应的指标。
     4.基因型检测
     术前采集患者静脉血样1ml,于一周内应用DNA提取试剂盒提取患者的基因组DNA,而后采用聚合酶链反应(polymerase chain reaction, PCR)及直接测序技术,对UGT1A9I399C>T、-1818T>C、-1887T>G多态性位点进行检测分析。
     5.血标本采集
     药效学部分,停止丙泊酚靶控输注后,于患者BIS升至80时经对侧肘静脉抽取血样3ml,药动学部分,于丙泊酚单次静脉注射后采集患者血样,采血时间分别为:1、3、5、10、15、30、45、60、90、120、240和360min经给药对侧肘静脉抽取血样3ml,EDTA抗凝后3000r/min离心10min,抽取上层血浆2ml保存在EP管内,冻存于-80℃冰箱待测,采用高效液相色谱荧光法检测血浆中的丙泊酚浓度。本实验应用由中国药理学会专业委员会编制的DAS药动学软件处理丙泊酚血药浓度-时间数据,选择最佳房室模型,绘制曲线并求得药动学参数。
     统计学分析
     采用SPSS17.0软件分析本研究的实验数据,以均数士标准差(x±s)表示计量资料,以x2检验检测等位基因和基因型分布是否符合Hardy-Weinberg平衡;x2检验或Fisher's精确概率法检测不同种族间基因多态性的分布差异;采用单因素方差分析(ANOVA)多组间数据,采用LSD法用于各组间比较。为排除混杂因素的影响,代谢酶不同基因型组间丙泊酚镇静效应的比较采用协方差分析。采用x2检验或Fisher's精确概率法比较各组间不良反应发生率。采用直线相关分析来分析计量资料变量之间的关系。采用直线相关与回归进行处理丙泊酚标准曲线回归方程,检验水准a=0.05。
     结果
     1.一般情况
     纳入本实验的各组患者的年龄、BMI、麻醉时间、手术时间、相关麻醉药品的使用量、术中失血量、输液量、肝肾功能等实验室检查结果等指标组间比较差异均无统计学意义(P>0.05)。
     2.乳腺良性肿块患者中UGT1A9等位基因频率
     在中国汉族乳腺手术患者UGT1A91399C>T、-18181>C、-18871>G等位基因频率分别为52.3%、41%和9.3%,其等位基因和基因型分布符合Hardy-Weinberg平衡(P>0.05)。其中,UGT1A91399C>T等位基因频率与文献报道的中国汉族(55.0%)无差异(P>o.05),但比日本人群(64.4%)低,比高加索人(38%)高,差别均有统计学意义(P<0.05)。UGT1A9-1818T>C、-18871>G等位基因频率与文献报道的中国汉族(47.6%和9.5%)无差异(P>o.05)。
     3.乳腺良性肿块患者丙泊酚TCI药效指标存在较大差异.
     本研究结果显示,患者意识恢复期丙泊酚的镇静效应存在较大的个体差异,停止靶控输注丙泊酚至患者OAA/S达到4分的时间5(3,7)min相差18倍,效应室浓度102~209μg·ml-1(2.2±0.4μg·ml-1)相差2.5倍,BIS值51~80(69±7)相差1.9倍;患者BIS>80的时间8(6,11)min相差15倍,效应室浓度0.9-2.8μg·ml-1(1.9±0.4μg-ml-1)相差3.3倍。患者意识恢复期丙泊酚的各项镇静效应指标的最大值和最小值之间呈现较大的个体差异。
     4.UGT1A9多态性对乳腺良性肿块患者丙泊酚镇静效应的影响
     所有患者根据UGT1A9I399C>T、-1818T>C、-1887T>G基因型检测结果分为野生纯合子组、突变杂合子组和突变纯合子组。一般情况比较各组件差异无统计学意义(P>0.05);各组间患者肝肾功能等实验室检查结果比较差异均无统计学意义(P>0.05);停止靶控输注丙泊酚后患者意识恢复期各丙泊酚镇静效应指标在UGT1A9I399C>T、-1818T>C、-1887T>G各基因型组间比较差异无统计学意义(p>0.05);将患者的年龄、BMI和手术时间作为协变量对实验结果进行协方差分析后的结果表明丙泊酚镇静效应各基因组间差异无统计学意义(P>0.05);停止靶控输注丙泊酚后患者意识恢复期丙泊酚镇静效应指标,与UGT1A9I399C/C-1818C/T组比较,I399C/T-1818C/T组和I399C/T-1818T/T组患者OAAS达4分的时间较长,此时的效应室浓度较低、BIS升至80的时间较长,且组间比较差异有统计学意义(P<0.05)。
     5.高效液相色谱法测定血浆丙泊酚浓度
     丙泊酚标准色谱图保留时间分别为11.1min和7.1min,此结果显示丙泊酚和内标完全分离,本研究中的丙泊酚检测浓度范围为0.05~25.6μg·mL-1,丙泊酚检测低限0.01μg·mL-1.所得标准曲线回归方程:Y=0.0185X+0.0089,相关系数:r=0.9989。采用0.1、1.6和25.6μg·ml-1三种浓度检测丙泊酚回收率,其检测结果:101.21%、102.07%和99.98%,RSD均小于5%;日内精密度RSD为3.26%~11.00%及日间精密度为2.55%~8.00%。
     6.UGT1A9多态性对乳腺良性肿块患者丙泊酚单次注射药动学参数的影响
     应用DAS软件对各组血药浓度-时间数据进行曲线拟合和模型识别,根据拟合结果绘制的药-时曲线,均符合三房室开放模型的特点。UGT1A91399C/C、 C/T、T/T各组患者的主要药动学参数为:T1/2α为(1.31±0.11vs1.28±0.11vs1.45±0.10) min、T1/2β为(29.88±3.00vs19.68±1.28vs21.59±l.18) min、T1/2γ为(209.65±31.45vs156.76±13.15vs215.85±20.36) min、为(111.38±3.71vs110.89±2.64vs108.45±3.28)μg·min-1·ml-1、CL为(0.0152±0.0004vs0.0151±0.0003vs0.0151±0.0005) ml·kg·min-1、Cmax为(8.71±0.62vs8.88±0.64vs8.52±0.83) μg·ml-1,三组间比较药动学参数差异无统计学意义(P>0.05); UGT1A9-1818T/T、 T/C、C/C各组患者的主要药动学参数为:T1/2a为(1.35±0.12vs1.33±0.08vs1.43±0.16) min、T1/2β为(26.71±2.22vs21.84±1.64vs20.00±1.25) min、T1/2γ为
     (209.52±26.75vs184.98±16.93vs194.58±28.64)min、AUC0→t为(113.808±3.659vs107.342±2.641vs111.959±3.204)μg·min·ml-1、CL为(0.0146±0.0005vs0.155±0.0003vs0.015±0.0003) ml·kg-1·min-1、Cmax为(8.56±0.75vs8.68±0.71vs0.1046±0.0058) μg·ml-,三组间比较药动学参数差异无统计学意义(P>0.05);因UGT1A9-1887T/G、G/G组患者例数较少,所以合并为一组,与-1887T/T组比较,两组患者(T/T vs TG/GG)的主要药动学参数为:T1/2α为(1.16±0.22vs1.39±0.34) min、T1/2β为(24.65±8.62vs22.23±5.83) min、T1/2γ为(194.02±48.34vs192.78±71.90) mi、AUC0→t为(0.131±0.022vs0.146±0.021) μg·min·ml-1、CL为(0.0150±0.0012vs0.0151±0.0013)ml·kg-1·min-1、Cmax为(8.87±0.63vs8.66±0.74) μg·ml-,两组间比较药动学参数差异无统计学意义(P>0.05)。本实验结果显示UGT1A9代谢酶的多态性不是丙泊酚镇静效应及药动学个体差异的遗传因素,但表观遗传学及多个单核苷酸多态性位点的相互作用,以及样本量等因素均是影响实验结果的因素,因此后期研究中增大样本量、在体外单细胞实验中研究代谢酶基因多态性对丙泊酚代谢的影响,以排除混杂因素对实验结果的影响,真正探究丙泊酚应用过程中产生个体差异的原因,实现以基因为导向的个体化麻醉。
     结论
     1.中国汉族良性乳腺肿块切除女性患者UGT1A9I399C>T、-1818T>C、-1887T>G等位基因的变异频率分别为52.3%(157/300)、41%(123/300)、9.3%(28/300);
     2.静脉停止靶控输注丙泊酚后患者意识恢复期的镇静效应存在较大的个体差异,UGT1A9I399C>T、-1818T>C、-1887T>G多态性对此镇静效应无显著影响,这些位点不是影响丙泊酚镇静效应的遗传标记物;
     3.高效液相色谱法测定丙泊酚血浆浓度,方法简便准确、重现性好,适用丙泊酚血药浓度的检测;
     4.各组患者丙泊酚的药-时曲线均符合三房室模型,单次静脉注射丙泊酚后,UGT1A9I399C>T、-1818T>C、-1887T>G多态性对丙泊酚的药动学无明显影响
Background and Objective
     Propofol is a widely used clinical rapid-acting intravenous general anesthetics, it has many advantages:rapid onset, short-acting, rapid recovery, large range of safty, fewer adverse reactions, etc. It quickly become the first choice of clinical anesthesia sedative drugs, so it is used for anesthesia induction, maintenance, and also ICU ward for sedation commonly. But there is a big demand and sedative effects of differences in individual who used it for sedation. Study confirmed that genetic factors can alter metabolism enzyme activity, thus affect the drug pharmacokinetics and pharmacodynamics, resulting in sedative effects of individual differences. Therefore, to observe the association of UGT1A9gene polymorphisms with propofol pharmacodynamics of target-controlled infusion and pharmacokinetics of single injection in benign breast tumor resection patients under general anesthesia and to achieve reasonable safety for clinical anesthetics use and provide a theoretical basis are the purpose of this study.
     Materials and Methods
     1. Subjects
     Total150cases, American Society of Anesthesiologists (ASA) physical status: I or II,20~49years, and body mass index in the normal range (1±20%), undergoing selective benign breast tumor resection were included. Exclusion criteria: history of alcohol abuse, smoking, psychiatric disease, diabetes mellitus, significant cardiovascular diease, hepatic or renal dysfunction, chronic analgesia use, recently used liver drug metabolizing inducers or inhibitors, and patients with long-term use of sedative and hypnotic drugs. Subjects were divided into three groups according to the genotypes:wild-type homozygotes, mutant heterozygous, homozygous mutant. The protocol of this study was approved by the Ethical Committee of the First Affiliated Hospital of Zhengzhou University, and informed consent was obtained from all patients enrolled in this study.
     2. Anesthesia
     2.1Pharmacodynamic section
     All patients using a uniform method of TIVA, administer propofol by target controlled infusion (TCI), induction of anesthesia:plasma concentration of propofol TCI is3μg/ml, intravenous remifentanil and cis-atracurium after the patients lost their consciousness, skilled anesthetists insert Laryngeal mask and mechanical ventilation. Anesthesia was maintained with propofol TCI3μg-ml-1and remifentanil and change the maintenance dose to ensure the patients maintain stable vital signs. We disable the cis-atracurium and remifentanil before the end of surgery30min and5min, stop the propofol TCI at the end of the surgery and intravenous atropine and neostigmine antagonistic muscle relaxants, assessment of the propofol sedation effects at the same time, removal of the laryngeal mask until the patients'conscious and breathing recovery good.
     Record time, effect-site concentration and BIS value after stop injecting of propofol to the patient's OAA/S (the Observer's Assessment of Alertness/Sedation Scale) was4, record the time and effect-site concentration when patients recover their consciousness (BIS value back to80).
     2.2Pharmacokinetic section
     All30subjects use a standardized general anesthesia technique. General anesthesia was induced with propofol2mg/kg, remifentanil1.5μg/kg and cis-atracurium0.15mg/kg within60s, insert Laryngeal mask and mechanical ventilation, main end-tidal partial pressure of carbon dioxide at35~45mmHg. Remifentanyl (0.1-0.2μg/kg/min) and sevoflurane (1%-2%) were used for anesthesia maintenance during the operation. We withdrawal drugs and antagonize muscle relaxants at the end of the surgery.
     3. Evaluation of propofol sedation effects
     Observe and record the time, BIS value and effect-site concentration after stop propofol target controlled infusion to patients OAA/S was4points, time and effect-site concentration of patient recovery of consciousness, to regard awareness convalescent evaluation as propofol indicators of sedative effect after target-controlled infusion.
     4. Genotyping assays
     Collect2ml venous blood samples from all patients in this study. DNA was extracted from leukocytes in peripheral blood using DNA extraction kit, genotyping of UGT1A91399C>T-1818T>C and-1887T>G alleles was conducted by polymerase chain reaction (PCR) and direct sequence anaylsis.
     5. Collect blood samples
     In the first part, blood samples were collected when patients BIS value was back to80after stop propofol target controlled infusion.In the second part,3ml blood samples were taken after propofol injection through ulnar vein at the time of1,3,5,10,15,30,45,60,90,120,240,360min. After3000r/min centrifugal plasma lOmin, shifted the upper to2ml EP tube and stored at-80℃refrigerator. We use high performance liquid chromatography to detect blood concentration of propofol. Propofol plasma concentration was processed using DAS pharmacokinetic software by the Chinese Pharmacological Society prepared by the commission in this study, selecting the best compartment model, drawing blood drug concentration-time curves and obtaining pharmacokinetic parameters.
     Statistical analysis
     SPSS17.0software was used for statistical analysis(SPSS Inc, Chicago, IL, USA). The Chi-square test was used to verify Hardy-Weinberg equilibrium. Data for numerical variables are expressed as mean±standard deviation (x±s). One-way analysis of variance (ANOVA) was used to assess whether significant differences exist among the three genotypes. Data for the time, effect-site concentration and BIS value were compared using one-way analysis of variance with post hoc Bonferroni correction, multiple comparisons was performed before and after adjusted for age, height, weight of the patients and duration of anesthesia. Propofol standard curve regression equation using linear regression and correlation processing, amount of data used by a single factor analysis of variance. A P<0.05(two-sided) was considered statistically significant.
     Results
     1. General information
     Every three groups according to UGT1A9SNP of patient's age, weight, height, anesthesia time, medication, blood loss, fluid volume, liver's and kidneys function and others have no significant difference in the two parts of this artical (P>0.05).
     2. Distribution of UGT1A9allele
     The frequency of UGT1A91399C>T,-1818T>C,-1887T>G allele in Han Chinese patients with breast surgery was52.3%,41%,9.3%. The allele frequency was in Hardy-Weinberg equilibrium (P>0.05), which indicates that the patient pool was likely representative of the population being studied. The allelic frequency of UGT1A9I399C>T in our study was similar to that reported in the literature of the Chinese Han (55.0%)(P>0.05), but lower than the Japanese population (64.4%) and higher than the Caucasus people(38%), and the difference have statistically significant(P<0.05).
     3. Sedation effects of propofol TCI in patients are quite different
     The results showed that there is a big individual different in propofol efficacy. Stopping propofol TCI injection to patients OAA/S was4, the time1-18mina difference of18times, the effect-site concentration1.2~2.9μg-ml-1(2.2±0.4μg-ml-1) a difference of2.5times, BIS values of51~80(69±7) a difference of1.9times; patients with BIS>80time2~29min a difference of15times, the effect-site concentration0.9~2.8μg·ml-1(1.9±0.4μg-ml-1) a difference of3.3times. Indicators of efficacy between the maximum and minimum values show large individual differences.
     4. Association of UGT1A9gene polymorphism with propofol TCI sedation effect
     According to the genotype of UGT1A9I399C>T,-1818T>C,-1887T>G, patients were divided into three genotypes of homozygous wild group, heterozygous and mutant homozygous group. No statistical differences in general information among every three genotype groups (P>0.05). No statistical differences in propofol sedative effects after stopping propofol TCI to the patients OAA/S was4among the every three genotype groups (P>0.05). After age, weight, height and duration of anesthesia as a covariate analysis of covariance, there were no significant difference in propofol sedative effects too (P>0.05). Propofol sedative effect indicators after stop TCI, compared with UGT1A9I399C/C-1818C/T group, I399C/T-1818C/T group and I399C/T-1818T/T group patients had a long time and low effect-site concentration when OAA/S was4, and had a long time to BIS value back to80, the difference between groups was statistically significant(P<0.05).
     5. High performance liquid chromatographic determination of propofol concentration in plasma
     Propofol and internal standard retention times were11.1min and7.1min in standard chromatograms, which indicated that they are completely separated. Detection range of propofol concentration is0.04~25μg. ml-1, and0.01~g-ml-1is the minimum detection limits. Propofol three detection rate concentrations of0.1,1and25μg-ml-1were97.17%,103.79%, and98.18%, respectively, and RSD<5%. RSD of day precision was1.72%-2.34%and inter-day precision was2.18%-4.38%.
     6. Pharmacokinetic parameters of propofol
     Blood propofol concentration-time data curve were identified by DAS soft ware, and in line with the three compartment open model features. Primary ph armacokinetic parameters:UGT1A9I399C/C, C/T, T/T T1/2α(1.31±0.llvsl.28±0.11vs1.45±0.10)min,T1/2p(29.88±3.00vs19.68±1.28vs21.59±1.18)min,T1/2γ(209.65±31.4 5vs56.76±13.15vs215.85±20.36)min,AUC0→t(111.38±3.71vs110.89±2.64vs108.45±3.28)μg·min-1·ml-1,CL(0.0152±0.0004vs0.0151±0.0003vs0.015l±0.0005)ml·kg-1·min-1, Cmax (8.71±0.62vs8.88±0.64vs8.52±0.83) mg/l, there was no statistically signific ant differences among the three groups about pharmacokinetic parameters(P>0.05). UGT1A9-1818T/T, T/C, C/C T1/2α(1.35±0.12vsl.33±0.08vsl.43±0.16)min, T1/2β(26.71±2.22vs21.84±1.64vs20.00±1.25)min, T1/2γ(209.52±26.75vs184.98±16.93vsl94.58±28.64)min, AUC0→t(113.808±3.659vs107.342±2.641vs111.959±3.204)μ g·min-1·ml-1, CL(0.0146±030005vs0.l55±0.0003vs0.015±0.0003)ml·kg-1·min-1,Cmax (8.56±0.75v58.68±0.71vs0.1046±0.0058) mg/1, there was no statistically signific ant differences among the three groups about pharmacokinetic parameters(P>0.05). UGT1A9-1887(T/TvsTG/GG) T1/2α(1.16±0.22vsl.39±0.34)min, T1/2β(24.65±8.62vs22.23±5.83)min, T1/2γ(194.02±48.34vsl92.78±71.90)min, AUC0→t(0.131±0.022vs0.146±0.021)μg·min-1·ml-1, CL(0.0150±0.0012vs0.0151±0.0013)ml·kg-1·min-1,max为(8.87±0.63vs8.66±0.74) mg/1, there was no statistically significant difference s between the two groups (P>0.05).
     Our results show that UGT1A9polymorphism was not one of the genetic factors that lead to propofol pharmacodynamics and pharmacokinetics individual differences. Epigenetics, interaction of multiple single nucleotide polymorphisms (SNPs), and sample size are all factors that influence the results. To exclude confounding factors that impact our results, we will increase the sample size and study metabolic enzyme gene polymorphism on the metabolism of propofol in vitro single cell experiments in late study. Explore the reasons for individual differences of propofol, to achieve gene-oriented individualized anesthesia.
     Conclusion
     1. The frequencies of UGT1A91399OT,-1818T>C,-1887T>G allele in Chinese Han benign breast lumpectomy female patients are52.33%(157/300),41%(123/300),9.33%(28/300) respectively.
     2. There are large individual differences of propofol sedative effects in patients with consciousness recovering after stopping target-controlled infusion of propofol, UGT1A91399OT,-1818T>C,-1887T>G polymorphism have no significant effect on this and were not one of genetic markers that can affect propofol sedation effects.
     3. Propofol plasma concentration was determined by high performance liquid chromatography, which is a simple, accurate and reproducible method that can be used in clinical blood propofol concentration monitoring and pharmacokinetic studies.
     4. Three groups of propofol concentration-time curves meet the three compartment model, UGT1A9gene polymorphisms have no significant effects on the propofol pharmacokinetic characteristics after single intravenous injection.
引文
[1]陈新谦,金有豫,汤光主编.新编药物学[M].第15版.北京:人民卫生出版社,2003:293.
    [2]Iohom G, Ni Chonghaile M, O'Brien JK,et al.An investigation of potential genetic determinants of propofol requirements and recovery from anaesthesia[J]. Eur J Anaesthesiol,2007; 24(11):912-919.
    [3]Allegaert K, Vancraeynest J, Rayyan M, et al. Urinary propofol metabolites in early life after single intravenous bolus[J]. Br J Anaesth.2008; 101(6):827-831.
    [4]Al-Jahari WS, Yamamoto K, Hiraoka H, et al. Prediction of total propofol clearance based on enzyme activities in microsomes from human kidney and liver[J]. Eur J Clin Pharmacol. 2006; 62(7):527-533.
    [5]Ramirez J, Liu W, Mirkov S, et al. Lack of association between common polymorphisms in UGT1A9 and gene expression and activity[J]. Drug Metab Dispos.2007; 35(12): 2149-2153.
    [6]Gagne JF, Montminy V, Belanger P, et al.Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38) [J]. Mol Pharmacol.2002; 62(3):608-617.
    [7]Strassburg CP, Strassburg A, Kneip S, et al. Developmental aspects of human hepatic drug glucuronidation in young children and adults[J]. Gut.2002; 50(2):259-265.
    [8]Mano Y, Usui T, Kamimura H.Identification of human UDP-glucuronosyltransferase responsible for the glucuronidation of niflumic acid in human liver [J]. Pharm Res.2006; 23(7):1502-1508.
    [9]Favetta P, Degoute C S, Perdrix J P, et al. Propofol metabolites in man following propofol induction and maintenance[J]. Br J Anesthesia.2002; 88(5):653-658.
    [10]Argikar UA, Iwuchukwu OF, Nagar S. Update on tools for evaluation of uridine diphosphoglucuronosyltransferase polymorphisms. Expert Opin Drug Metab Toxicol.2008; 4(7):879-94.
    [11]Takahashi H, Maruo Y, Mori A, et al. Effect of D256N and Y483D on propofol glucuronidation by human uridine 5'-diphosphate glucuronosyltransferase (UGT1A9). Basic Clin Pharmacol Toxicol.2008; 103(2):131-136.
    [12]Jinno H, Saeki M, Saito Y, et al. Functional characterization of human UDP-glucuronosyltransferase 1A9 variant, D256N, found in Japanese cancer patients. J Pharmacol Exp Ther.2003; 306(2):688-93.
    [13]Villeneuve L, Girard H, Fortier LC,et al. Novel functional polymorphisms in the UGT1A7 and UGT1A9 glucuronidating enzymes in Caucasian and African-American subjects and their impact on the metabolism of 7-ethyl-10-hydroxycamptothecin and flavopiridol anticancer drugs. J Pharmacol Exp Ther.2003; 307(1):117-28.
    [14]Pazik J, Oldak M, Dabrowski M, et al. Association of UDP-glucuronosyltransferase 1A9 (UGT1A9) gene polymorphism with kidney allograft function. Ann Transplant.2011; 16(4): 69-73.
    [15]Girard H, Villeneuve L, Court MH,et al.The novel UGT1A9 intronic 1399 polymorphism appears as a predictor of 7-ethyl-10-hydroxycamptothecin glucuronidation levels in the liver[J]. Drug Metab Dispos.2006; 34(7):1220-1228.
    [16]张伟.浅析术中知晓及其理性思考[J].医学与哲学(临床决策论坛版),2007,28(6):55-56.
    [17]Sackel DJ. Anesthesia awareness:an analysis of its incidence,the risk factors involved, and prevention[J]. J ClinAnesth.2006; 18(7):483-485.
    [18]Evans WE, Mcleod HL. Pharmacogenomics-drug disposition,drug target, and side effects. The New England journal of medicine 2003; 348:538-549.
    [19]Weinshiboum R.Inheritance and drug response. The New England journal of medicine 2003; 348:529-537.
    [20]Kansaku F, Kumai T, Sasaki K, et al.Individual differences in pharmacokinetics and pharmacodynamics of anesthetic agent propofol with regard to CYP2B6 and UGT1A9 genotype and patient age[J]. Drug Metab Pharmacokinet.2011; 26(5):532-537.
    [21][21].Nguyen HT, Li KY, daGraca RL, et al.Behavior and cellular evidence for propofol-induced hypnosis involving brain glycine receptors[J]. Anesthesiology.2009; 110(2),326-322
    [22]庞良芳,周宏灏.UGT1A9和JGT2B7的基因多态性对麦考酚酸药代动力学的影响[D];中南大学;2009年.
    [23]McGurk KA, Brierley CH, Burchell B. Drug glucuronidation by human renal UDP-glucuronosyltransferases[J]. Biochem Pharmacol.1998; 55(7):1005-1012.
    [24]Rowland A, Knights KM, Mackenzie PI, et al. The "albumin effect" and drug glucuronidation:bovine serum albumin and fatty acid-free human serum albumin enhance the glucuronidation of UDP-glucuronosyltransferase (UGT) 1A9 substrates but not UGT1A1 and UGT1A6 activities. Drug Metab Dispos.2008; 36(6):1056-1062.
    [25]Inoue K, Miura M, Satoh S, et al. Influence of UGT1A7 and UGT1A9 Intronic 1399 Genetic Polymorphisms on Mycophenolic Acid Pharmacokinetics in Japanese Renal Transplant Recipients[J]. Ther Drug Monit.2007; 29(3):299-304.
    [26]Court MH, Duan SX, Hesse LM, et al. Cytochrome P-450 2B6 Is Responsible for Interindividual Variability of Propofol Hydroxylation by Human Liver Microsomes[J]. Anesthesiology.2001; 94(1):110-119.
    [27]Doufas AG, Bakhshandeh M, Bjorksten AR, et al. Automated responsiveness test (ART)predicts loss of consciousness and adversephysiologic responses during propofol conscious sedation[J]. Anesthesiology.2001; 94(4):585-592.
    [28]Ortolani O, Conti A, Chan YK, et al. Comparison of propofol consumption and recovery time in Caucasians from Italy, with Chinese, Malays and Indians from Malaysia[J]. Anesth Intensive Care.2004; 32(2):250-255.
    [29]Gill M, Green SM, Krauss B. A study of the bispectral index monitor during procedure sedation and analgesia in the emergency department[J]. Ann Emerg Med.2003; 41(2): 234-241.
    [30]Wong CA, Fragen RJ, Fitzgerald PC, et al. The association between propofol-induced loss of consciousness and the SNAP index[J]. Anesth Analg.2005; 100(1):141-148.
    [31]Ibrahim AE, Taraday JK, Kharasch ED. Bispectral index monitoring during sedation with sevoflurane, midazolam, and propofol[J]. Anesthesiology.2001; 95(5):1151-1159.
    [32]Struys MM, Jensen EW, Smith W, et al. Performance of the ARX-derived auditory evoked potential index as an indicator of anesthetic depth:a comparison with bispectral index and hemodynamic measures during propofol administration[J]. Anesthesiology.2002; 96(4): 803-816.
    [33]周挺,高越,许国良,等.脑电双频指数评估急性脑损伤患者预后的可行性[J]。浙江实用医学,2006,11(5):319-320.
    [34]Yamashita K, Terao Y,Inadomi C, et al. Age-dependent relationship between bispectral index and sedation level[J]. J Clin Anesth,2008; 20(7):492-495.
    [35]王宏伟,金小东,刘娟,等.依托咪酯镇静时不同年龄患者脑电双频谱指数与镇静评分之间的相关性因素分析[J].中国危重病急救医学,2009,21(7):442-443.
    [36]Nunes CS, Ferreira DA, Antunes L, et al. Individual effect-site concentrations of propofol at return of consciousness are related to the concentrations at loss of consciousness and age in neurosurgical patients[J]. J Clin Anesth.2009; 21(1):3-8.
    [37]Iwakiri H, Nishihara N, Nagata O, et al. Individual Effect-Site Concentrations of Propofol Are Similar at Loss of Consciousness and at Awakening[J]. Anesth Analg.2005; 100(1): 107-110.
    [38]Girard H, Villeneuve L, Court MH, et al. The novel UGT1A9 intronic 1399 polymorphism appears as a predictor of 7-ethyl-10-hydroxycamptothecin glucuronidation levels in the liver[J]. Drug Metab Dispos.2006; 34(7):1220-1228.
    [39]Saito Y, Sai K, Maekawa K, et al. Close association of UGT1A9 IVS1+399C>T with UGT1A1*28,*6, or*60 haplotype and its apparent influence on 7-ethyl-10-hydroxycamptothecin (SN-38) glucuronidation in Japanese[J]. Drug metab Dispos.2009; 37(2):272-276.
    [40]Levesque E, Delage R, Benoit-Biancamano MO. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers [J]. Clin Pharmacol Ther.2007; 81(3):392-400.
    [41]Jiao Z, Ding JJ, Shen J, et al. Population pharmacokinetic modelling for enterohepatic circulation of mycophenolic acid in healthy Chinese and the influence of polymorphisms in UGT1A9. Br J Clin Pharmacol.2008; 65(6):893-907.
    [42]Hay Kraus BL, Greenblatt DJ, Venkatakrishnan K, et al. Evidence for propofol hydroxylation by cytoehrome P4502B11 in canine liver microsomes:breed and Gender differences[J]. Xenobiotica.2000; 30(6):575-588.
    [43]Court MH. Isoform-selective probe substrates for in vitro studies of human UDP-glucuronosyltransferases[J]. Methods Enzymol.2005; 400:104-116.
    [44]Liang SC, Ge GB, Liu HX, et al. Determination of propofol UDP-glucuronosyltransferase (UGT) activities in hepatic microsomes from different species by UFLC-ESI-MS[J]. J Pharm Biomed Anal.2011; 54(1):236-241.
    [45]Yamanaka H, Nakajima M, Katoh M, et al. A novel poly-morphism in the promoter region of human UGT1A9 gene (UGT19A* 22) and its effects on the transcriptional activity[J]. Pharmacogenetics.2004; 14(5):329-332.
    [46]Murayama N, Minoshima M, Shimizu M, et al. Involvement of human cytochrome P450 2B6 in the omega and 4-hydroxylation of the anesthetic agent propofol[J]. Xenobiotica. 2007; 37(7):717-724.
    [47]Allegaert K, Vanhaesebrouck S, Verbesselt R, et al. In vivo glucuronidation activity of drugs in neonates:extensive interindividual variability despite their young age[J]. Ther Drug Monit. 2009; 31(4):411-415.
    [48]郭栋,庞良芳,周宏灏.尿苷二磷酸葡萄糖醛酸基转移酶基因多态性的研究进展[J].生理科学进展,2010,41(2):107.
    [49]Argikar UA, Iwuchukwu OF, Nagar S. Update on tools for evaluation of uridine diphosphoglucuronosyl transferase polymorphisms[J]. Expert Opin Drug Metab Toxicol. 2008; 4(7):879-894.
    [50]姜杉,郝海平,王广基.肝损状态下尿苷二磷酸葡萄糖醛酸转移酶研究进展[J].中国临床药理学与治疗学,2009,14(12):1321-1328.
    [51]Court MH. Interindividual variability in hepatic drug glucuronidation:studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system[J]. Drug Metab Rev.2010; 42(1):202-224.
    [52]马宁,乔瑜,高旭.内含子microRNA-基因组中的暗物质[J].生命的化学,2012,32(1):1-4.
    [53]Ting LS, Partovi N, Levy RD, et al. Pharmacokinetics of Mycophenolic Acid and its Phenolic-Glucuronide and Acyl Glucuronide Metabolites in Stable Thoracic Transplant Recipients[J]. Ther Drug Monit.2008; 30(3):282-291.
    [54]Saito K, Moriya H, Sawaguchi T, et al. Haplotype analysis of UDP-glucuronocyltransferase 2B7 gene (UGT2B7) polymorphisms in healthy Japanese subjects[J]. Clin Biochem.2006; 39(3); 303-308.
    [55]Anderson RE, Jakobsson JG.Entropy of EEG during anaesthetic induction:a comparative study with propofol or nitrous oxide as sole agent[J]. Br J Anaesth.2004; 92(2):167-170.
    [56]Marsh B, White M, Morton N, et al. Pharmacokinetic model driven infusion of propofol in children[J]. Br J Anaesth.1991,67(1):41-48.
    [57]Schuttler J, Ihmsen H. Population pharmacokinetics of propofol:a multicenter study[J]. Anesthesiology.2000; 92(3):727-738.
    [58]Hernandez JP, Mota LC, Huang W, et al. Sexually dimorphic regulation and induction of P450s by the constitutive androstane receptor (CAR) [J]. Toxicology.2009; 256(1-2):53-64.
    [59]Buckley DB, Klaassen CD. Mechanism of gender-divergent UDP-glucuronosyltransferase mRNA expression in mouse liver and kidney[J]. Drug Metab Dispos.2009; 37(4):834-840.
    [60]张兴安,芮建中,吴群林,等.NONMEM法分析静滴丙泊酚在中国人体的群体药代动力学.中国临床药理学杂志,2004,20(6):444-448.
    [61]Shastry BS. SNPs and haplotypes:genetic markers for disease and drug response (review) [J]. Int J Mol Med.2003; 11(3):379-382.
    [162]边婷,陈超.人肝脏CYP3A4在mRNA和蛋白质表达及硝苯地平氧化反应速率上的关联分析[D];西北大学;2011年.
    [1]. Robert J, Morvan VL, Smith D, et al. Predicting drug response and toxicity based on gene polymorphisms. Crit Rev Oncol Hematol.2005; 54(3):171-96.
    [2]. Macphee IA, Fredericks S, Mohamed M, et al. Tacrolimus pharmacogenetics:the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in whites and South Asians. Transplantation.2005; 79(4):499-502.
    [3]. Kurland L, Liljedahl U, Lind L. Hypertension and SNP genotyping in antihypertensive treatment.Cardiovasc Toxicol.2005; 5(2):133-42.
    [4].Efferth T, Volm M.Pharmacogenetics for individualized cancer chemotherapy.Pharmacol Ther. 2005; 107(2):155-76.
    [5]. Taramelli R, Acquati F. The human genome project and the discovery of genetic determinants of cancer susceptibility. Eur J Cancer.2004; 40(17):2537-43.
    [6]. Iohom G, Ni Chonghaile M, O'Brien JK, et al. An investigation of potential genetic determinants of propofol requirements and recovery from anaesthesia. Eur J Anaesthesiol.2007; 24(11):912-919.
    [7]. Hoymork SC, Raeder J. Why do women wake up faster than men from propofol anaesthesia? Br J Anaesth.2005; 95(5):627-633.
    [8]. Allegaert K, Vancraeynest J, Rayyan M, et al. Urinary propofol metabolites in early life after single intravenous bolus. Br J Anaesth.2008; 101:827-831.
    [9]. Gagne JF, Montminy V, Belanger P, et al. Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol.2002; 62:608-617.
    [10].Strassburg CP, Strassburg A, Kneip S, et al. Developmental aspects of human hepatic drug glucuronidation in young children and adults.2002; 50:259-265.
    [11].R.R. Kirby, J.M. Colaw,M.M. Douglas, Death frompropofol:accident, suicide, or murder? Anesth Analg.2009; 1182-1184
    [12].Girard,H., Villeneuve,L., Court MH,et al. The novel UGT1A9 intronic 1399 polymorphism appears as a predictor of 7-ethyl-10-hydroxycamptothecin glucuronidation levels in the liver. Drug Metab.2006; 34,1220-1228.
    [13].庞良芳,周宏灏UGT1A9和UGT2B7的基因多态性对麦考酚酸药代动力学的影响[D];中南大学;2009年.
    [14]. Schuttler J, Ihmsen H. Population pharmacokinetics of propofol:a multicenter study. Anesthesiology.2000; 92:727-38.
    [15].Bigos KL, Pollock BG, Stankevich BA, et al. Sex differences in the phanna-cokinetics and pharmacodynamics of antidepressants:an updated review[J].Gend Med.2009,6(4):522-543.
    [16]. Durendic-Brenesel M, Mimica-Dukic N, Pilija V, et al. Gender-related differ-ences in the pharmacokinetics of opiates[J]. Forensic sci Int.2010,194(1-3):28-33.
    [17].Jurgen Schutter,Harald Ihmsen, et al. Population pharmacokinetics of propofol. Anesthesiology.2000; 92:727-738.
    [18].Kazama T, Ikeda K, Morita, K, et al. Relation between initial blood distribution volume and propofol induction dose requirement. Anesthesiology,2001; 94(2):205-10.
    [19].王琪,张立生,徐贯杰,等.芬太尼在麻醉诱导期对丙泊酚药代动力学的影响[J].临床麻醉学杂志,2003,19(9):555-556.
    [20].夏东亚,许霁虹,王彦,等。高效液相色谱法测定丙泊酚血药浓度[J].解放军药学学报,2005,21(3):229。
    [21].Cussonneau X,De Smet E,Lantsoght K,et al. A rapid and simple HPLC method for the analysis of propofol in biological fluids.J Pharm Biomed Anal.2007; 44(3):680-682.
    [22].Matot I, Neely CF, katz RY, et al. Pulmanary uptake of propofol in rats anesthesiology,1993, 78:1157-1165.
    [23].Guilton J. A comparison of near-frared spectroscopy and jugular bulb oximetry in comatose patients resuscitated from a cardiac arrest. Br J Anaesth.1998; 80(6):788
    [24].Mega JL, Close SL, Wiviott SD, et al. Cytochrome P450 polymorphisms and response to clopidogrel[J]. N Engl J Med.2009; 360(4):354-362.
    [25].Mlubb MD, Innocenti F. Mechanisms of genetic regulation in gene expression:examples from drug metabolizing enzymes and transporters[J]. Wiley Interdiscip Rev Syst Biol Med. 2011; 3(3):299-313.
    [1]Lotsch J, Skarke C, Liefhold J, Geisslinger G Genetic predictors of the clinical response to opioid analgesics:clinical utility and future perspectives. Clinical pharmacokinetics 2004, 43(14):983-1013.
    [2]Wei CY, Michael Lee MT, Chen YT. Pharmacogenomics of adverse drug reactions: implementing personalized medicine. Human molecular genetics 2012,21(Rl):R58-65.
    [3]Searle R, Hopkins PM. Pharmacogenomic variability and anaesthesia. British journal of anaesthesia 2009,103(1):14-25.
    [4]Galley HF, Mahdy A, Lowes DA. Pharmacogenetics and anesthesiologists. Pharmacogenomics 2005,6(8):849-856.
    [5]Ama T, Bounmythavong S, Blaze J, Weismann M, Marienau MS, Nicholson WT. Implications of pharmacogenomics for anesthesia providers. AANA journal 2010, 78(5):393-399.
    [6]Landau R, Bollag LA, Kraft JC. Pharmacogenetics and anaesthesia:the value of genetic profiling. Anaesthesia 2012,67(2):165-179.
    [7]Streetman DS. Emergence and evolution of pharmacogenetics and pharmacogenomics in clinical pharmacy over the past 40 years. The Annals of pharmacotherapy 2007, 41(12):2038-2041.
    [8]Motulsky AG From pharmacogenetics and ecogenetics to pharmacogenomics. Medicina nei secoli2002,14(3):683-705.
    [9]Meyer UA. Pharmacogenetics-five decades of therapeutic lessons from genetic diversity. Nature reviews Genetics 2004,5(9):669-676.
    [10]Motulsky AG Drug reactions enzymes, and biochemical genetics. Journal of the American Medical Association 1957,165(7):835-837.
    [11]Restrepo JG, Garcia-Martin E, Martinez C, Agundez JA. Polymorphic drug metabolism in anaesthesia. Current drug metabolism 2009,10(3):236-246.
    [12]Savonarola A, Palmirotta R, Guadagni F, Silvestris F. Pharmacogenetics and pharmacogenomics:role of mutational analysis in anti-cancer targeted therapy. The pharmacogenomics journal 2012,12(4):277-286.
    [13]Ong FS, Deignan JL, Kuo JZ, Bernstein KE, Rotter JI, Grody WW, Das K. Clinical utility of pharmacogenetic biomarkers in cardiovascular therapeutics:a challenge for clinical implementation. Pharmacogenomics 2012,13(4):465-475.
    [14]Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients:a meta-analysis of prospective studies. JAMA:the journal of the American Medical Association 1998,279(15):1200-1205.
    [15]Weinshilboum R. Inheritance and drug response. The New England journal of medicine 2003,348(6):529-537.
    [16]Severino G, Del Zompo M. Adverse drug reactions:role of pharmacogenomics. Pharmacological research:the official journal of the Italian Pharmacological Society 2004, 49(4):363-373.
    [17]Alfirevic A, Pirmohamed M. Drug-induced hypersensitivity reactions and pharmacogenomics:past, present and future. Pharmacogenomics 2010, 11(4):497-499.
    [18]Need AC, Motulsky AG, Goldstein DB. Priorities and standards in pharmacogenetic research. Nature genetics 2005,37(7):671-681.
    [19]Pirmohamed M, Naisbitt DJ, Gordon F, Park BK. The danger hypothesis--potential role in idiosyncratic drug reactions. Toxicology 2002,181-182:55-63.
    [20]Pirmohamed M, Park BK. Genetic susceptibility to adverse drug reactions. Trends in pharmacological sciences 2001,22(6):298-305.
    [21]genome Th. Science genome map.291 Science 2001;,1218.
    [22]http://www.pharmgkb.org. accessed 25.06.2011.
    [23]Flockhart DA, Skaar T, Berlin DS, Klein TE, Nguyen AT. Clinically available pharmacogenomics tests. Clinical pharmacology and therapeutics 2009,86(1):109-113.
    [24]Frueh FW, Amur S, Mummaneni P, Epstein RS, Aubert RE, DeLuca TM, Verbrugge RR, Burckart GJ, Lesko LJ. Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration:prevalence of related drug use. Pharmacotherapy 2008,28(8):992-998.
    [25]Sim SC, Ingelman-Sundberg M. Pharmacogenomic biomarkers:new tools in current and future drug therapy. Trends in pharmacological sciences 2011,32(2):72-81.
    [26]Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui CH, Yee SW, Stein CM, Carrillo M, Evans WE, Klein TE. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clinical pharmacology and therapeutics 2011,89(3):387-391.
    [27]Allen PD. Anesthesia and the human genome project:the quest for accurate prediction of drug responses. Anesthesiology 2005,102(3):494-495.
    [28]Avram MJ, Gupta DK, Atkinson AJ, Jr. Anesthesia:a discipline that incorporates clinical pharmacology across the DDRU continuum. Clinical pharmacology and therapeutics 2008, 84(1):3-6.
    [29]Galinkin JL, Demmer L, Yaster M. Genetics for the pediatric anesthesiologist:a primer on congenital malformations, pharmacogenetics, and proteomics. Anesthesia and analgesia 2010,111(5):1264-1274.
    [30]Kim H, Clark D, Dionne RA. Genetic contributions to clinical pain and analgesia:avoiding pitfalls in genetic research. The journal of pain:official journal of the American Pain Society 2009,10(7):663-693.
    [31]Kosarac B, Fox AA, Collard CD. Effect of genetic factors on opioid action. Current opinion in anaesthesiology 2009,22(4):476-482.
    [32]Landau R, Kraft JC. Pharmacogenetics in obstetric anesthesia. Current opinion in anaesthesiology 2010,23(3):323-329.
    [33]Landau R. Pharmacogenetic influences in obstetric anaesthesia. Best practice & research Clinical obstetrics & gynaecology 2010,24(3):277-287.
    [34]Lotsch J. Basic genetic statistics are necessary in studies of functional associations in anesthesiology. Anesthesiology 2007,107(1):168-169; author reply 169.
    [35]Cordell HJ, Clayton DG Genetic association studies. Lancet 2005,366(9491):1121-1131.
    [36]Aubrun F, Langeron O, Quesnel C, Coriat P, Riou B. Relationships between measurement of pain using visual analog score and morphine requirements during postoperative intravenous morphine titration. Anesthesiology 2003,98(6):1415-1421.
    [37]Somogyi AA, Barratt DT, Coller JK. Pharmacogenetics of opioids. Clinical pharmacology and therapeutics 2007,81(3):429-444.
    [38]Kirchheiner J, Schmidt H, Tzvetkov M, Keulen JT, Lotsch J, Roots I, Brockmoller J. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. The pharmacogenomics journal 2007,7(4):257-265.
    [39]Desmeules J, Gascon MP, Dayer P, Magistris M. Impact of environmental and genetic factors on codeine analgesia. European journal of clinical pharmacology 1991,41(1):23-26.
    [40]Vree TB, van Dongen RT, Koopman-Kimenai PM. Codeine analgesia is due to codeine-6-glucuronide, not morphine. International journal of clinical practice 2000, 54(6):395-398.
    [41]Willmann S, Edginton AN, Coboeken K, Ahr G, Lippert J. Risk to the breast-fed neonate from codeine treatment to the mother:a quantitative mechanistic modeling study. Clinical pharmacology and therapeutics 2009,86(6):634-643.
    [42]Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G. Codeine, ultrarapid-metabolism genotype, and postoperative death. The New England journal of medicine 2009,361(8):827-828.
    [43]de Leon J, Susce MT, Murray-Carmichael E. The AmpliChip CYP450 genotyping test: Integrating a new clinical tool. Molecular diagnosis & therapy 2006,10(3):135-151.
    [44]Lenz H, Sandvik L, Qvigstad E, Bjerkelund CE, Raeder J. A comparison of intravenous oxycodone and intravenous morphine in patient-controlled postoperative analgesia after laparoscopic hysterectomy. Anesthesia and analgesia 2009,109(4):1279-1283.
    [45]Olkkola KT, Hagelberg NM. Oxycodone:new'old'drug. Current opinion in anaesthesiology 2009,22(4):459-462.
    [46]Gronlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Laine K, Olkkola KT. Effect of inhibition of cytochrome P450 enzymes 2D6 and 3A4 on the pharmacokinetics of intravenous oxycodone:a randomized, three-phase, crossover, placebo-controlled study. Clinical drug investigation 2011,31(3):143-153.
    [47]Kummer O, Hammann F, Moser C, Schaller O, Drewe J, Krahenbuhl S. Effect of the inhibition of CYP3A4 or CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. European journal of clinical pharmacology 2011,67(1):63-71.
    [48]Nieminen TH, Hagelberg NM, Saari TI, Neuvonen M, Neuvonen PJ, Laine K, Olkkola KT. Grapefruit juice enhances the exposure to oral oxycodone. Basic & clinical pharmacology & toxicology 2010,107(4):782-788.
    [49]Samer CF, Daali Y, Wagner M, Hopfgartner G, Eap CB, Rebsamen MC, Rossier MF, Hochstrasser D, Dayer P, Desmeules JA. The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone. British journal of pharmacology 2010,160(4):907-918.
    [50]Gronlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Olkkola KT, Laine K. Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. British journal of clinical pharmacology 2010, 70(1):78-87.
    [51]Lemberg KK, Siiskonen AO, Kontinen VK, Yli-Kauhaluoma JT, Kalso EA. Pharmacological characterization of noroxymorphone as a new opioid for spinal analgesia. Anesthesia and analgesia 2008,106(2):463-470, table of contents.
    [52]Heiskanen T, Olkkola KT, Kalso E. Effects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Clinical pharmacology and therapeutics 1998, 64(6):603-611.
    [53]Samer CF, Daali Y, Wagner M, Hopfgartner G, Eap CB, Rebsamen MC, Rossier MF, Hochstrasser D, Dayer P, Desmeules JA. Genetic polymorphisms and drug interactions modulating CYP2D6 and CYP3A activities have a major effect on oxycodone analgesic efficacy and safety. British journal of pharmacology 2010,160(4):919-930.
    [54]Eap CB, Broly F, Mino A, Hammig R, Deglon JJ, Uehlinger C, Meili D, Chevalley AF, Bertschy G, Zullino D et al. Cytochrome P450 2D6 genotype and methadone steady-state concentrations. Journal of clinical psychopharmacology 2001,21(2):229-234.
    [55]Rollason V, Samer C, Piguet V, Dayer P, Desmeules J. Pharmacogenetics of analgesics: toward the individualization of prescription. Pharmacogenomics 2008,9(7):905-933.
    [56]Nielsen CS, Staud R, Price DD. Individual differences in pain sensitivity:measurement, causation, and consequences. The journal of pain:official journal of the American Pain Society 2009,10(3):231-237.
    [57]Stamer UM, Zhang L, Stuber F. Personalized therapy in pain management:where do we stand? Pharmacogenomics 2010, 11(6):843-864.
    [58]Walter C, Lotsch J. Meta-analysis of the relevance of the OPRM1118A>G genetic variant for pain treatment. Pain 2009,146(3):270-275.
    [59]Doehring A, Geisslinger G, Lotsch J. Epigenetics in pain and analgesia:an imminent research field. Eur J Pain 2011,15(1):11-16.
    [60]Mata M, Hao S, Fink DJ. Applications of gene therapy to the treatment of chronic pain. Current gene therapy 2008,8(1):42-48.
    [61]Wolfe D, Wechuck J, Krisky D, Mata M, Fink DJ. A clinical trial of gene therapy for chronic pain. Pain Med 2009,10(7):1325-1330.
    [62]Lotsch J, Geisslinger G. Pharmacogenetics of new analgesics. British journal of pharmacology 2011,163(3):447-460.
    [63]Stamer UM, Musshoff F, Kobilay M, Madea B, Hoeft A, Stuber F. Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clinical pharmacology and therapeutics 2007,82(1):41-47.
    [64]Desmeules JA, Piguet V, Collart L, Dayer P. Contribution of monoaminergic modulation to the analgesic effect of tramadol. British journal of clinical pharmacology 1996,41(1):7-12.
    [65]Garcia-Quetglas E, Azanza JR, Sadaba B, Munoz MJ, Gil I, Campanero MA. Pharmacokinetics of tramadol enantiomers and their respective phase Ⅰ metabolites in relation to CYP2D6 phenotype. Pharmacological research:the official journal of the Italian Pharmacological Society 2007,55(2):122-130.
    [66]Klotz U, Ammon E. Clinical and toxicological consequences of the inductive potential of ethanol. European journal of clinical pharmacology 1998,54(1):7-12.
    [67]Liem EB, Lin CM, Suleman MI, Doufas AG, Gregg RG, Veauthier JM, Loyd G, Sessler DI. Anesthetic requirement is increased in redheads. Anesthesiology 2004,101(2):279-283.
    [68]Reichle FM, Conzen PF. Halogenated inhalational anaesthetics. Best practice & research Clinical anaesthesiology 2003,17(1):29-46.
    [69]Christ DD, Kenna JG, Kammerer W, Satoh H, Pohl LR. Enflurane metabolism produces covalently bound liver adducts recognized by antibodies from patients with halothane hepatitis. Anesthesiology 1988,69(6):833-838.
    [70]Tsutsumi R, Leo MA, Kim CI, Tsutsumi M, Lasker J, Lowe N, Lieber CS. Interaction of ethanol with enflurane metabolism and toxicity:role of P450IIE1. Alcoholism, clinical and experimental research 1990,14(2):174-179.
    [71]Lankveld DP, Driessen B, Soma LR, Moate PJ, Rudy J, Uboh CE, van Dijk P, Hellebrekers LJ. Pharmacodynamic effects and pharmacokinetic profile of a long-term continuous rate infusion of racemic ketamine in healthy conscious horses. Journal of veterinary pharmacology and therapeutics 2006,29(6):477-488.
    [72]Lo JN, Cumming JF. Interaction between sedative premedicants and ketamine in man in isolated perfused rat livers. Anesthesiology 1975,43(3):307-312.
    [73]White PF, Vasconez LO, Mathes SA, Way WL, Wender LA. Comparison of midazolam and diazepam for sedation during plastic surgery. Plastic and reconstructive surgery 1988, 81(5):703-712.
    [74]Vanlersberghe C, Camu F. Etomidate and other non-barbiturates. Handbook of experimental pharmacology 2008(182):267-282.
    [75]Heykants JJ, Meuldermans WE, Michiels LJ, Lewi PJ, Janssen PA. Distribution, metabolism and excretion of etomidate, a short-acting hypnotic drug, in the rat. Comparative study of (R)-(+)-(--)-Etomidate. Archives internationales de pharmacodynamie et de therapie 1975,216(1):113-129.
    [76]Hwang JY, Kim JH, Oh AY, Do SH, Jeon YT, Han SH. A comparison of midazolam with remifentanil for the prevention of myoclonic movements following etomidate injection. The Journal of international medical research 2008,36(1):17-22.
    [77]Combeer A. Complete atrioventricular block following etomidate. European journal of anaesthesiology 2007,24(12):1067-1068.
    [78]Allegaert K, Vancraeynest J, Rayyan M, de Hoon J, Cossey V, Naulaers G, Verbesselt R. Urinary propofol metabolites in early life after single intravenous bolus. British journal of anaesthesia 2008,101(6):827-831.
    [79]Li Lin A, Shangari N, Chan TS, Remirez D, O'Brien PJ. Herbal monoterpene alcohols inhibit propofol metabolism and prolong anesthesia time. Life sciences 2006,79(1):21-29.
    [80]Al-Jahdari WS, Yamamoto K, Hiraoka H, Nakamura K, Goto F, Horiuchi R. Prediction of total propofol clearance based on enzyme activities in microsomes from human kidney and liver. European journal of clinical pharmacology 2006,62(7):527-533.
    [81]Takahashi H, Maruo Y, Mori A, Iwai M, Sato H, Takeuchi Y. Effect of D256N and Y483D on propofol glucuronidation by human uridine 5'-diphosphate glucuronosyltransferase (UGT1A9). Basic & clinical pharmacology & toxicology 2008,103(2):131-136.
    [82]Liang SC, Ge GB, Liu HX, Shang HT, Wei H, Fang ZZ, Zhu LL, Mao YX, Yang L. Determination of propofol UDP-glucuronosyltransferase (UGT) activities in hepatic microsomes from different species by UFLC-ESI-MS. Journal of pharmaceutical and biomedical analysis 2011,54(1):236-241.
    [83]Kirby RR, Colaw JM, Douglas MM. Death from propofol:accident, suicide, or murder? Anesthesia and analgesia 2009,108(4):1182-1184.
    [84]Kansaku F, Kumai T, Sasaki K, Yokozuka M, Shimizu M, Tateda T, Murayama N, Kobayashi S, Yamazaki H. Individual differences in pharmacokinetics and pharmacodynamics of anesthetic agent propofol with regard to CYP2B6 and UGT1A9 genotype and patient age. Drug metabolism and pharmacokinetics 2011,26(5):532-537.
    [85]Marik PE. Propofol:therapeutic indications and side-effects. Current pharmaceutical design 2004,10(29):3639-3649.
    [86]Ahlen K, Buckley CJ, Goodale DB, Pulsford AH. The'propofol infusion syndrome':the facts, their interpretation and implications for patient care. European journal of anaesthesiology 2006,23(12):990-998.
    [87]Chukwuemeka A, Ko R, Ralph-Edwards A. Short-term low-dose propofol anaesthesia associated with severe metabolic acidosis. Anaesthesia and intensive care 2006, 34(5):651-655.
    [88]Bilotta F, Ferri F, Soriano SG, Favaro R, Annino L, Rosa G. Lidocaine pretreatment for the prevention of propofol-induced transient motor disturbances in children during anesthesia induction:a randomized controlled trial in children undergoing invasive hematologic procedures. Paediatric anaesthesia 2006,16(12):1232-1237.
    [89]Ouattara A, Boccara G, Lemaire S, Kockler U, Landi M, Vaissier E, Leger P, Coriat P. Target-controlled infusion of propofol and remifentanil in cardiac anaesthesia:influence of age on predicted effect-site concentrations. British journal of anaesthesia 2003, 90(5):617-622.
    [90]Yousef AM, Bulatova NR, Newman W, Hakooz N, Ismail S, Qusa H, Zahran F, Anwar Ababneh N, Hasan F, Zaloom I et al. Allele and genotype frequencies of the polymorphic cytochrome P450 genes (CYP1A1, CYP3A4, CYP3A5, CYP2C9 and CYP2C19) in the Jordanian population. Molecular biology reports 2012,39(10):9423-9433.
    [91]Pechandova K, Buzkova H, Matouskova O, Perlik F, Slanar O. Genetic polymorphisms of CYP2C8 in the Czech Republic. Genetic testing and molecular biomarkers 2012, 16(7):812-816.
    [92]Singh D, Kashyap A, Pandey RV, Saini KS. Novel advances in cytochrome P450 research. Drug discovery today 2011,16(17-18):793-799.
    [93]Johansson I, Ingelman-Sundberg M. Genetic polymorphism and toxicology--with emphasis on cytochrome p450. Toxicological sciences:an official journal of the Society of Toxicology 2011,120(1):1-13.
    [94]Pinto N, Dolan ME. Clinically relevant genetic variations in drug metabolizing enzymes. Current drug metabolism 2011,12(5):487-497.
    [95]Zhang W, Dolan ME. The emerging role of microRNAs in drug responses. Current opinion in molecular therapeutics 2010,12(6):695-702.
    [96]Carthew RW. Gene regulation by microRNAs. Current opinion in genetics & development 2006,16(2):203-208.
    [97]Nagpal JK, Rani R, Trink B, Saini KS. Targeting miRNAs for drug discovery:a new paradigm. Current molecular medicine 2010,10(5):503-510.
    [98]Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell 2008,132(1):9-14.
    [99]Peter ME. Targeting of mRNAs by multiple miRNAs:the next step. Oncogene 2010, 29(15):2161-2164.
    [100]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005,120(1):15-20.
    [101]Ramamoorthy A, Skaar TC. In silico identification of microRNAs predicted to regulate the drug metabolizing cytochrome P450 genes. Drug metabolism letters 2011,5(2):126-131.
    [102]Amur S, Frueh FW, Lesko LJ, Huang SM. Integration and use of biomarkers in drug development, regulation and clinical practice:a US regulatory perspective. Biomarkers in medicine 2008,2(3):305-311.
    [103]Mwenifumbo JC, Tyndale RF. Molecular genetics of nicotine metabolism. Handbook of experimental pharmacology 2009(192):235-259.
    [104]Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, Sulem P, Rafnar T, Esko T, Walter S et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nature genetics 2010,42(5):448-453.
    [105]Tamaki Y, Arai T, Sugimura H, Sasaki T, Honda M, Muroi Y, Matsubara Y, Kanno S, Ishikawa M, Hirasawa N et al. Association between cancer risk and drug-metabolizing enzyme gene (CYP2A6, CYP2A13, CYP4B1, SULT1A1, GSTM1, and GSTT1) polymorphisms in cases of lung cancer in Japan. Drug metabolism and pharmacokinetics 2011,26(5):516-522.
    [106]Han S, Choi S, Chun YJ, Yun CH, Lee CH, Shin HJ, Na HS, Chung MW, Kim D. Functional characterization of allelic variants of polymorphic human cytochrome P4502A6 (CYP2A6*5,*7,*8,*18,*19, and*35). Biological & pharmaceutical bulletin 2012, 35(3):394-399.
    [107]Zanger UM, Klein K, Saussele T, Blievernicht J, Hofmann MH, Schwab M. Polymorphic CYP2B6:molecular mechanisms and emerging clinical significance. Pharmacogenomics 2007,8(7):743-759.
    [108]Richter T, Murdter TE, Heinkele G, Pleiss J, Tatzel S, Schwab M, Eichelbaum M, Zanger UM. Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. The Journal of pharmacology and experimental therapeutics 2004,308(1):189-197.
    [109]Heil SG, van der Ende ME, Schenk PW, van der Heiden I, Lindemans J, Burger D, van Schaik RH. Associations between ABCB1, CYP2A6, CYP2B6, CYP2D6, and CYP3A5 alleles in relation to efavirenz and nevirapine pharmacokinetics in HIV-infected individuals. Therapeutic drug monitoring 2012,34(2):153-159.
    [110]Bunten H, Liang WJ, Pounder DJ, Seneviratne C, Osselton D. OPRM1 and CYP2B6 gene variants as risk factors in methadone-related deaths. Clinical pharmacology and therapeutics 2010,88(3):383-389.
    [111]Garcia-Martin E, Martinez C, Ladero JM, Agundez JA. Interethnic and intraethnic variability of CYP2C8 and CYP2C9 polymorphisms in healthy individuals. Molecular diagnosis & therapy 2006,10(1):29-40.
    [112]Parikh S, Ouedraogo JB, Goldstein JA, Rosenthal PJ, Kroetz DL. Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8:implications for malaria treatment in Africa. Clinical pharmacology and therapeutics 2007,82(2):197-203.
    [113]Garcia-Martin E, Pizarro RM, Martinez C, Gutierrez-Martin Y, Perez G, Jover R, Agundez JA. Acquired resistance to the anticancer drug paclitaxel is associated with induction of cytochrome P4502C8. Pharmacogenomics 2006,7(4):575-585.
    [114]Agundez JA, Martinez C, Garcia-Martin E, Ladero JM. Cytochrome P450 CYP2C9 polymorphism and NSAID-related acute gastrointestinal bleeding. Gastroenterology 2007, 133(6):2071-2072; author reply 2072-2073.
    [115]Martinez C, Garcia-Martin E, Alonso-Navarro H, Jimenez-Jimenez FJ, Benito-Leon J, Garcia-Ferrer I, Vazquez-Torres P, Puertas I, Zurdo JM, Lopez-Alburquerque T et al. Changes at the CYP2C locus and disruption of CYP2C8/9 linkage disequilibrium in patients with essential tremor. Neuromolecular medicine 2007,9(2):195-204.
    [116]Aquilante CL, Kosmiski LA, Bourne DW, Bushman L, Daily EB, Hammond KP, Hopley CW, Kadam RS, Kanack AT, Kompella UB et al. Impact of the CYP2C8*3 polymorphism on the drug-drug interaction between gemfibrozil and pioglitazone. British journal of clinical pharmacology 2012.
    [117]Kirchheiner J, Brockmoller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clinical pharmacology and therapeutics 2005,77(1):1-16.
    [118]Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, Limdi NA, Page D, Roden DM, Wagner MJ et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. The New England journal of medicine 2009,360(8):753-764.
    [119]Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, Chen CH, Motsinger-Reif A, Sagreiya H, Liu N et al. Warfarin pharmacogenetics:a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 2010,115(18):3827-3834.
    [120]Lenzini P, Wadelius M, Kimmel S, Anderson JL, Jorgensen AL, Pirmohamed M, Caldwell MD, Limdi N, Burmester JK, Dowd MB et al. Integration of genetic, clinical, and INR data to refine warfarin dosing. Clinical pharmacology and therapeutics 2010,87(5):572-578.
    [121]Iohom G, Fitzgerald D, Cunningham AJ. Principles of pharmacogenetics--implications for the anaesthetist. British journal of anaesthesia 2004,93(3):440-450.
    [122]Kirchheiner J, Henckel HB, Franke L, Meineke I, Tzvetkov M, Uebelhack R, Roots I, Brockmoller J. Impact of the CYP2D6 ultra-rapid metabolizer genotype on doxepin pharmacokinetics and serotonin in platelets. Pharmacogenetics and genomics 2005, 15(8):579-587.
    [123]Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, Brockmoller J. Pharmacogenetics of antidepressants and antipsychotics:the contribution of allelic variations to the phenotype of drug response. Molecular psychiatry 2004,9(5):442-473.
    [124]Crews KR, Gaedigk A, Dunnenberger HM, Klein TE, Shen DD, Callaghan JT, Kharasch ED, Skaar TC. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clinical pharmacology and therapeutics 2012,91(2):321-326.
    [125]Baranska M, Dziankowska-Bartkowiak B, Waszczykowska E, Rychlik-Sych M, Skretkowicz J. Significance of genetic polymorphism of CYP2D6 in the pathogenesis of systemic sclerosis. Pharmacological reports:PR 2012,64(2):336-342.
    [126]Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P, Desmeules J. Codeine intoxication associated with ultrarapid CYP2D6 metabolism. The New England journal of medicine 2004,351(27):2827-2831.
    [127]Palmer SN, Giesecke NM, Body SC, Shernan SK, Fox AA, Collard CD. Pharmacogenetics of anesthetic and analgesic agents. Anesthesiology 2005,102(3):663-671.
    [128]Oneta CM, Lieber CS, Li J, Ruttimann S, Schmid B, Lattmann J, Rosman AS, Seitz HK. Dynamics of cytochrome P4502E1 activity in man:induction by ethanol and disappearance during withdrawal phase. Journal of hepatology 2002,36(1):47-52.
    [129]Hernandez-Boussard T, Whirl-Carrillo M, Hebert JM, Gong L, Owen R, Gong M, Gor W, Liu F, Truong C, Whaley R et al. The pharmacogenetics and pharmacogenomics knowledge base:accentuating the knowledge. Nucleic acids research 2008,36(Database issue):D913-918.
    [130]Mohri T, Nakajima M, Fukami T, Takamiya M, Aoki Y, Yokoi T. Human CYP2E1 is regulated by miR-378. Biochemical pharmacology 2010,79(7):1045-1052.
    [131]Kim SH, Yoon HJ, Shin DH, Park SS, Kim YS, Park JS, Jee YK. NAT2, CYP2C9, CYP2C19, and CYP2E1 genetic polymorphisms in anti-TB drug-induced maculopapular eruption. European journal of clinical pharmacology 2011,67(2):121-127.
    [132]Kudryashov AV, Vavilin VA, Kolpakova TA, Mutaykhan Z, Krasnov VA, Lyakhovich VV. Relationship between CYP2E1 polymorphism and increase of ALT activity during therapy of patients with pulmonary tuberculosis. Bulletin of experimental biology and medicine 2011,151(6):741-746.
    [133]Garcia-Martin E, Martinez C, Pizarro RM, Garcia-Gamito FJ, Gullsten H, Raunio H, Agundez JA. CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity. Clinical pharmacology and therapeutics 2002,71(3):196-204.
    [134]Piscitelli SC, Burstein AH, Chaitt D, Alfaro RM, Falloon J. Indinavir concentrations and St John's wort. Lancet 2000,355(9203):547-548.
    [135]Farkas D, Greenblatt DJ. Influence of fruit juices on drug disposition:discrepancies between in vitro and clinical studies. Expert opinion on drug metabolism & toxicology 2008,4(4):381-393.
    [136]Brandin H, Viitanen E, Myrberg O, Arvidsson AK. Effects of herbal medicinal products and food supplements on induction of CYP1A2, CYP3A4 and MDR1 in the human colon carcinoma cell line LS180. Phytotherapy research:PTR 2007,21(3):239-244.
    [137]Crettol S, Venetz JP, Fontana M, Aubert JD, Pascual M, Eap CB. CYP3A7, CYP3A5, CYP3A4, and ABCB1 genetic polymorphisms, cyclosporine concentration, and dose requirement in transplant recipients. Therapeutic drug monitoring 2008,30(6):689-699.
    [138]Pan YZ, Gao W, Yu AM. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug metabolism and disposition:the biological fate of chemicals 2009, 37(10):2112-2117.
    [139]Takagi S, Nakajima M, Mohri T, Yokoi T. Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P4503A4. The Journal of biological chemistry 2008,283(15):9674-9680.
    [140]Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS letters 2009,583(4):759-766.
    [141]Meech R, Miners JO, Lewis BC, Mackenzie PI. The glycosidation of xenobiotics and endogenous compounds:versatility and redundancy in the UDP glycosyltransferase superfamily. Pharmacology & therapeutics 2012,134(2):200-218.
    [142]Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenetics and genomics 2005,15(10):677-685.
    [143]Court MH. Interindividual variability in hepatic drug glucuronidation:studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system. Drug metabolism reviews 2010,42(1):209-224.
    [144]Ohno S, Nakajin S. Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug metabolism and disposition: the biological fate of chemicals 2009,37(1):32-40.
    [145]Izukawa T, Nakajima M, Fujiwara R, Yamanaka H, Fukami T, Takamiya M, Aoki Y, Ikushiro S, Sakaki T, Yokoi T. Quantitative analysis of UDP-glucuronosyltransferase (UGT) 1A and UGT2B expression levels in human livers. Drug metabolism and disposition:the biological fate of chemicals 2009,37(8):1759-1768.
    [146]Meech R, Mackenzie PI. UGT3A:novel UDP-glycosyltransferases of the UGT superfamily. Drug metabolism reviews 2010,42(l):45-54.
    [147]MacKenzie PI, Rogers A, Elliot DJ, Chau N, Hulin JA, Miners JO, Meech R. The novel UDP glycosyltransferase 3A2:cloning, catalytic properties, and tissue distribution. Molecular pharmacology 2011,79(3):472-478.
    [148]Guillemette C. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. The pharmacogenomics journal 2003,3(3):136-158.
    [149]Ramirez J, Liu W, Mirkov S, Desai AA, Chen P, Das S, Innocenti F, Ratain MJ. Lack of association between common polymorphisms in UGT1A9 and gene expression and activity. Drug metabolism and disposition:the biological fate of chemicals 2007,35(12):2149-2153.
    [150]Saito Y, Sai K, Maekawa K, Kaniwa N, Shirao K, Hamaguchi T, Yamamoto N, Kunitoh H, Ohe Y, Yamada Y et al. Close association of UGT1A9 IVS1+399C>T with UGT1A1*28, *6, or*60 haplotype and its apparent influence on 7-ethyl-10-hydroxycamptothecin (SN-38) glucuronidation in Japanese. Drug metabolism and disposition:the biological fate of chemicals 2009,37(2):272-276.
    [151]Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clinical pharmacokinetics 2007,46(1):13-58.
    [152]Bock KW. Functions and transcriptional regulation of adult human hepatic UDP-glucuronosyl-transferases (UGTs):mechanisms responsible for interindividual variation of UGT levels. Biochemical pharmacology 2010,80(6):771-777.
    [153]Levesque E, Delage R, Benoit-Biancamano MO, Caron P, Bernard O, Couture F, Guillemette C. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clinical pharmacology and therapeutics 2007,81(3):392-400.
    [154]Ross D, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods in enzymology 2004,382:115-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700