用户名: 密码: 验证码:
草酸和草酸钙晶体诱导肾脏NADPH氧化酶相关性氧化应激损伤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草酸钙肾结石的病因复杂。近年来发现,草酸、草酸钙晶体可导致肾脏上皮和间质损伤,其机制与活性氧簇(ROS)大量生成引起的氧化应激(OS)有关。研究认为肾脏上皮损伤是促进结石形成的关键因素,而间质损伤则是慢性肾病发展和最终肾功能衰竭的最重要的危险因素之一。因此,探讨肾脏OS损伤机制的研究应该是结石防治工作的重要内容,抗氧化疗法对于肾结石的防治及肾脏的保护可能会有好处,这是结石研究的新思路之一。
     本课题分五个部分,通过建立高草酸尿症和草酸钙晶体沉积的肾结石大鼠模型,并分别采用夹竹桃麻素(apocynin)、氯沙坦(losartan)和牛磺酸(taurine)三个特异性的抗氧化剂进行干预治疗,重点观察NADPH氧化酶在肾脏中的表达和作用;同时建立与晶体沉积相关的巨噬细胞体外培养体系,观察草酸钙晶体刺激下巨噬细胞NADPH氧化酶的表达和活性变化。研究发现,在高草酸尿症大鼠模型中,肾脏出现明显的OS损伤,而NADPH氧化酶是肾脏ROS形成的重要来源之一,血管紧张素Ⅱ通过刺激NADPH氧化酶的表达而促进肾脏OS的发展;研究结果还提示在低剂量诱石剂诱导下肾脏线粒体的改变早于NADPH氧化酶表达水平的变化;在体外细胞培养体系中,具有吞噬功能的巨噬细胞在草酸钙晶体刺激下其NADPH氧化酶的表达和活性也增加,并引起细胞OS损伤。本研究结果提示抗氧化疗法对高草酸尿症大鼠肾脏具有保护效果。
     第一部分摘要:高草酸尿症大鼠模型的建立和肾脏氧化应激损伤的观察
     目的:建立高草酸尿症大鼠模型,观察高草酸尿和草酸钙晶体沉积导致肾脏氧化应激(OS)损伤的情况。
     方法:高草酸尿症模型通过给予雄性SD大鼠(190-210g)自由饮用含0.8%乙二醇的饮水4周而诱导建立。动物随机分2个组(n=8):A,空白组,饮用正常饮水;B,高草酸尿症组,饮用含0.8%乙二醇的饮水。四周后收集大鼠24h尿液,分别检测尿草酸、尿钙、尿肌酐、尿H2O2、尿8-IP,采血测血清肌酐,取肾脏组织进行病理分析(HE染色、钙盐染色、免疫组化、电镜观察)。
     结果:与空白组比较,高草酸尿症组大鼠尿草酸排泄量明显增多,尿钙减少,尿8-IP和H2O2增多,而尿肌酐排泄量减少,肌酐清除率下降;肾脏病理分析示肾组织中大量含钙结晶体沉积,肾小管腔扩大和上皮损伤,肾间质大量炎性细胞浸润,肾组织CD68、TGF-β、α-SMA的表达均明显增强。
     结论:采用0.8%乙二醇的饮水法成功诱导建立高草酸尿症大鼠模型,同时观察到高草酸尿症大鼠肾脏OS发展和肾脏损伤出现。
     第二部分摘要:NADPH氧化酶在高草酸尿症大鼠肾脏中的表达和作用研究
     目的:观察NADPH氧化酶在高草酸尿症大鼠肾脏中的表达和作用。
     方法:采用0.8%乙二醇饮水法诱导建立高草酸尿症大鼠模型。动物随机分4个组(n=8):A,空白组;B,高草酸尿诱导组;C,NADPH氧化酶特异抑制剂夹竹桃麻素干预组,高草酸尿诱导+夹竹桃麻素(0.2g·kg-1·d-1,灌胃给予);D,夹竹桃麻素对照组,夹竹桃麻素(0.2g·kg-1·d-1,灌胃给予)。4周后检测各组大鼠尿液、肾组织中的氧化应激(OS)指标水平,免疫组化观察NADPH氧化酶亚基p47phox蛋白在肾脏中的表达位置,RT-PCR检测肾组织NADPH氧化酶亚基p47phox、gp91phox、Nox-1, p22phox, Nox-4 mRNA的表达水平,免疫印迹检测肾组织p47phox蛋白的表达水平。
     结果:免疫组化证实p47phox在各组大鼠肾脏中均有表达,表达部位在肾小球、集合管、远曲和近曲小管、髓袢等。与空白组比较,诱导高草酸尿症后大鼠肾脏p47phox、gp91phox和Nox-1 mRNA表达显著增多,p22phox, Nox-4 mRNA的表达未发现明显变化,p47phox蛋白表达也明显增多,伴肾脏OS损伤;诱导高草酸尿症的同时使用夹竹桃麻素则肾脏表达p47phox、Nox-1 mRNA及p47phox蛋白减少,但gp91phox mRNA的表达未明显减少,而肾脏的OS损伤程度减轻,但仍高于对照组水平。
     结论:NADPH氧化酶是高草酸尿症大鼠肾脏中ROS形成的来源之一。
     第三部分摘要:血管紧张素Ⅱ刺激高草酸尿症大鼠肾脏NADPH氧化酶的表达和作用
     目的:观察血管紧张素Ⅱ(AngⅡ)和NADPH氧化酶在高草酸尿症大鼠肾脏氧化应激(OS)形成中的相互作用。
     方法:采用0.8%乙二醇饮水法诱导建立高草酸尿症大鼠模型。动物随机分6个组(n=8):A,空白组;B,高草酸尿症组;C,高草酸尿症+夹竹桃麻素治疗组;D,单纯夹竹桃麻素治疗组;E,高草酸尿症+氯沙坦治疗组;F,单纯氯沙坦治疗组。后4组分别灌胃给予夹竹桃麻素(0.2g·kg-1·d-1)或氯沙坦(30mg·kg-1·d-1)。4W后检测大鼠尿液、肾组织中的氧化应激(OS)指标,放免法检测肾组织AngⅡ的含量,免疫组化法观察p47phox蛋白在肾脏中的表达位置,RT-PCR法检测肾组织p47phox mRNA的表达水平。
     结果:p47phox在各组大鼠肾脏中都有广泛表达,表达部位包括肾皮质、内髓、外髓。与A组比较,B组尿液8-IP明显增多,肾组织SOD活性降低,肾组织AngⅡ含量增多,p47phox mRNA在肾组织中的表达水平也明显增多。使用夹竹桃麻素(C组)和氯沙坦(E组)均可抑制肾组织p47phox mRNA的表达,同时肾脏的OS程度减轻。
     结论:在高草酸尿症大鼠模型中,肾脏p47phox mRNA表达增多,导致肾脏OS;同时肾脏的肾素血管紧张素系统(RAS)也被激活,后者可通过刺激p47phox mRNA的表达而导致肾脏OS程度增加。
     第四部分摘要:低剂量诱石剂诱导条件下大鼠肾脏线粒体的改变先于NADPH氧化酶表达的变化
     目的:高草酸尿和肾脏内晶体沉积可导致肾脏氧化应激(OS)的发展,线粒体和NADPH氧化酶均被认为是肾脏内活性氧簇(ROS)形成的来源。牛磺酸是一种重要的抗氧化剂。本研究观察在低剂量诱石剂诱导下肾脏线粒体和NADPH氧化酶的改变情况,探讨肾脏ROS的主要来源,同时观察牛磺酸对肾脏的保护作用。
     方法:采用定量灌胃2.5%乙二醇+2.5%氯化铵(4ml/d,分2次给予)并控制饮水4周诱导建立草酸钙肾结石大鼠模型。动物随机分4个组(n=8):空白组(A组)、结石诱导组(B组)、牛磺酸干预组(C组)和牛磺酸对照组(D组),其中B、C组定量灌胃诱石剂,A、D组灌胃相同量的饮水;A、B组喂食标准颗粒饲料;C、D组喂食含2.0%牛磺酸的颗粒饲料。各组的日饮水量均控制在20ml/只。4周后收集各组大鼠24h尿液检测草酸、肌酐和8-异前列腺素(8-IP)水平;采血测血清肌酐;取肾脏分离线粒体,比色法测定超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)活性,荧光比色法检测线粒体氧化损伤水平;肾组织HE和钙盐染色观察晶体沉积和上皮损伤情况,透射电镜下观察肾小管上皮的超微病理改变,免疫组化和RT-PCR观察NADPH氧化酶亚基p47phox在肾脏中的定位和基因表达水平;同时检测肾组织中血管紧张素Ⅱ的水平。结果:与空白组比较,使用诱石剂诱导结石后大鼠尿8-IP显著增加,肌酐清除率降低,肾脏/体重比值增加,肾组织线粒体SOD、GSH-Px活性下降伴线粒体损伤,肾脏内广泛结晶体沉积并上皮损伤表现;同时使用牛磺酸进行干预则尿8-IP生成减少,肌酐清除率增加,肾脏/体重比值减少,肾组织线粒体SOD、GSH-Px活性增加而线粒体损伤程度减轻,肾小管上皮病理损伤情况改善。但是,肾组织p47phox mRNA的表达水平,以及肾组织匀浆液血管紧张素Ⅱ的水平,在各组中均无明显的差异。
     结论:在此动物模型中,线粒体而非NADPH氧化酶与肾脏OS损伤有关;牛磺酸通过线粒体途径发挥其抗氧化剂的作用。
     第五部分摘要:草酸钙晶体刺激巨噬细胞NADPH氧化酶表达和活性的体外细胞培养研究
     目的:在实验动物模型和肾结石患者的肾脏内均发现晶体沉积的周围有大量的单核/巨噬细胞浸润,提示单核/巨噬细胞也参与肾脏内晶体的沉积过程。本研究观察草酸钙晶体刺激下巨噬细胞NADPH酶的表达和活性变化及其作用。
     方法:建立鼠巨噬细胞株体外培养体系,在体系中加入一水草酸钙(COM)晶体共同培养,并使用NADPH氧化酶特异抑制剂夹竹桃麻素进行干预处理。实验分4个组:A组,空白组,单纯巨噬细胞;B组,巨噬细胞+COM;C组,巨噬细胞+COM +夹竹桃麻素组;D组,巨噬细胞+夹竹桃麻素。共同培养6h后,采用光镜、扫描电镜和透射电镜观察巨噬细胞粘附、吞噬COM情况;同时采用比色法检测各组细胞培养基中MDA、LDH的水平,荧光比色法检测各组细胞内ROS水平,比色法检测各组细胞NADPH氧化酶的活性,免疫印迹检测各组巨噬细胞表达NADPH氧化酶亚基p47phox蛋白的水平。
     结果:①光镜和电镜下观察到巨噬细胞粘附和吞噬COM。②与A组比较,B组细胞培养液中MDA、LDH水平均明显升高,细胞内ROS生成增多,细胞NADPH氧化酶活性显著增加;使用夹竹桃麻素(C组)则可减少COM刺激下巨噬细胞培养液中MDA、LDH的水平,细胞内ROS生成减少,细胞NADPH氧化酶活性降低。③免疫印记检测结果发现,与A组比较,B组细胞表达p47phox蛋白明显增多,使用夹竹桃麻素(C组)则可抑制COM刺激下巨噬细胞p47phox蛋白的表达水平。
     结论:在体外巨噬细胞培养体系中,COM晶体可刺激巨噬细胞NADPH氧化酶的表达和活性,引起细胞氧化应激损伤。这可能是肾间质晶体沉积导致组织损伤的机理之一。
Hyperoxaluria and crystal deposition induce renal oxidative stress (OS) and renal tubular injury which in turn contribute to the development of nephrolithiasis, both mitochondria and NADPH oxidase are considered to be the source of reactive oxygen species (ROS).This study focused on the role of NADPH oxidase in the development of renal oxidative stress induced by oxalate and calcium oxalate crystals in vitro and vivo. Apocynin, losartan and taurine were chosen here to act as the special intervenors (antioxidants). Five related parts of the study were discussed respectively. Results of this study suggest that renal angiotensinⅡand its stimulation of NADPH oxidase may partially account for the development of OS in kidney in a rat model of hyperoxaluria. We also detected evidences that the changes of mitochondria preceded that of the expression of the NADPH oxidase in kidney. In vitro, COM stimulate the expression and activity of NADPH oxidase in macrophage which may also account for the renal OS, since macrophages were seen commonly accumulating in the interstitium of kidney with crystal deposition.
     Part I: Establishment of a rat model of calcium oxalate nephrolithiasis, and the development of renal oxidative stress in the model
     Objective To establish a rat model of calcium oxalate nephrolithiasis, and observe the development of renal oxidative stress (OS) in this model.
     Methods Animal model of hyperoxaluria and crystal deposition was established in adult male Sprague-Dawley rats by administration of 0.8% ethylene glycol (EG) in drinking water for 4 weeks. At the end of the study, markers for the state of OS, urinary 8-IP and H2O2, and the creatine clearnance and kidney/body weight were examined. Histological examinations of kidneys were performed to check the tubular injury and interstitium injury, as well as the crystal deposition in kidney. Renal tubular ultrastruture changes were analyzed under TEM. The expression of CD68、TGF-βandα-SMA in kidney were evaluated by immunohistochemistry.
     Results Compared with the control, renal OS developed significantly in rats received EG. Histological examinations of kidneys show renal tubular injury, with increased expression of CD68、TGF-βandα-SMA in kidney.Calcium crystal deposits in kidney were detected evidently.
     Conclusions Rat model of hyperoxaluria and crystal deposition was established successfully. Renal OS and renal injury, and calcium crystal deposits were detected evidently.
     Part II: Role of NADPH oxidase in the development of renal oxidative stress in a rat model of calcium oxalate nephrolithiasis
     Objective To investigate the role of NADPH oxidase in the development of renal oxidative stress (OS) in a rat model of calcium oxalate nephrolithiasis. Methods Rat model of hyperoxaluria and crystal deposition was established by administration of 0.8% ethylene glycol (EG) to the male SD rats in drinking water for 4 weeks. Apocynin, one of the selective NADPH oxidase inhibitor, was also administrated in the experimental group(0.2g·kg-1·d-1). At the end of the study, markers for the state of OS, urinary 8-IP and H2O2, and the kidney/body weight were examined. Immunohistochemistry, RT-PCR and Western blotting analysis were made respectively to evaluate the expression of NADPH oxidase subunits (p47phox, gp91phox, Nox-1, p22phox, Nox-4) in kidneys.
     Results Compared with the control, OS and renal injury occurred in the rats recived EG, in accordance with the increased expression of NADPH oxidase subunits p47phox, gp91phox, Nox-1 mRNAs and p47phox protein in kidneys. Simutanious treatment with apocynin can partially reduce OS and renal injury, as well as the expression of p47phox and Nox-1 mRNAs and p47phox protein in kidneys.
     Conclusions The increased expression of NADPH oxidase was suggested to be partially accounted for the development of OS in kidney in this rat model.
     Part III: AngiotensinⅡstimulate the expression and activity of NADPH oxidase in a rat model of calcium oxalate nephrolithiasis
     Objective To investigate the roles of angiotensinⅡand NADPH oxidase in the development of renal oxidative stress (OS) in a rat model of calcium oxalate nephrolithiasis.
     Methods Animal model of hyperoxaluria and crystal deposition was established in adult male Sprague-Dawley rats by administration of 0.8% ethylene glycol (EG) in drinking water for 4 weeks. Simultaneous treatment with apocynin (0.2g·kg-1·d-1) or losartan (30mg·kg-1·d-1) by intragastric administration were performed in rats respectively. At the end of the study, markers for the state of OS, urinary 8-IP and the enzymatic activity of superoxide dismutase (SOD) in kidney homogenates were assessed. The concentration of angiotensinⅡin kidney homogenates was determined using radioimmunoassay method.Expression of NADPH oxidase subunit p47phox protein and mRNA in kidney were localized and evaluated by immunohistochemistry and real time-PCR respectively.
     Results P47phox express widely in the kidneys of this rat model, including renal cortex, inner medulla and outer medulla.Compared with the control, OS developed significantly in rats received EG, with increased expression of p47phox mRNA in kidneys. Renal angiotensinⅡalso increased significantly. Treatment with apocynin or losartan significantly reduced the excretion of urinary 8-IP, restored the SOD activity, with decrease in the expression of p47phox mRNA in kidney, but the levels of those OS markers in apocynin or losartan treated rats were still higher than that of the normal controls.
     Conclusions Results suggest that renal AngⅡand its stimulation of NADPH oxidase may partially account for the development of renal OS in this rat model.
     Part IV: Mitochondria but not NADPH oxidase account for the renal oxidative stress in a rat model of calcium oxalate nephrolithisis
     Objective Hyperoxaluria and crystal deposition induce oxidative stress (OS) in kidney; both mitochondria and NADPH oxidase are considered to be the source of reactive oxygen species (ROS). Taurine is known as an antioxidant. We investigate the putative source of ROS, as well as the effects of taurine treatment on renal protection in a rat model of calcium oxalate nephrolithisis.
     Methods Animal model of nephrolithiasis was established in adult male Sprague-Dawley rats by intragastric administration of 2.5% ethylene glycol+2.5% Ammonium Chloride 2ml twice daily, with restriction on intake of drinking water(20ml /per rat daily) for 4 weeks. Simultaneous treatment with taurine (2.0% mixed with the chow) was performed. At the end of the study, indexes of OS and renal injury were assessed. Renal tubular ultrastruture changes were analyzed under TEM. Crystal deposition in kidney was analysed under light microscopy. Expression of NADPH oxidase subunit p47phox protein and mRNA in kidney were localized and evaluated by immunohistochemistry and real time-PCR respectively. AngiotensinⅡin kidney homogenates was determined by radioimmunoassay method. Results Compared with the control, oxidative injury of kidney occurred in rats induced nephrolithiasis. Hyperplasia of mitochondria developed in renal tubular epithelium .The activities of SOD and GSH-Px in mitochondria decreased significantly and the mitochondrial membrane showed oxidative injury. Taurine treatment significantly alleviated oxidative injury of kidney and its mitochondria, restored SOD and GSH-Px activities, with relative slight morphological changes in kidney. We could not detect statistically changes in the renal p47phox mRNA expression, as well as the renal angiotensinⅡin those rats. Conclusions Results suggest that mitochondria but not NADPH oxidase account for the OS in kidney, taurine protected the kidney from oxidative injury by the mitochondrial-linked pathway in this rat model.
     Part V: Calcium oxalate crystals stimulate the expression and activity of NADPH oxidase in macrophage in vitro
     Objective The NADPH oxidase was originally discovered in neutrophils, where it is a potent source of millimolar quantities of superoxide during phagocytosis and plays a vital role in nonspecific host defense. Macrophages were seen commonly accumulating around the crystals in the interstitium of kidney, which suggest that macrophage involve in the crystal deposition in kidney.We test our hypothesis that COM crystals stimulate the expression and activity of NADPH oxidase in macrophage which may also account for the renal oxidative stress (OS) and injury.
     Methods Confluent cultures of macrophage cells (Ana-1) were exposed to COM crystals for 6 h .Markers for the state of oxidative stress, MDA and LDH in the culture medium were measured to investigate the involvement of ROS. Cellular ROS and the activity of NADPH oxidase in macrophage cells were assessed by ?uorescence spectrophotometrical analysis and spectrophotometrical analysis, respectively. We also investigated the effect of the NADPH oxidase inhibitor apocynin on the COM crystal-induced expression of p47phox protein using western blot analysis. Cell-crystal reaction was detected by light microscopy and TEM.
     Results Exposure of macrophage cells to COM crystals resulted in increased expression of p47phox protein, with increased MDA and LDH in the culture medium. Cellular ROS and the activity of NADPH oxidase in macrophage cells also increased significantly. Treatment with apocynin reduced the crystal-induced expression of p47phox protein, inhibited the activity of NADPH oxidase in macrophage cells, in accordance with decrease of those OS markers. We also detected the phagocytosis of crystal by macrophage under light microscopy and TEM.
     Conclusions Results indicated that COM crystals stimulate the expression and activity of NADPH oxidase in macrophage .This may be one of the the mechanism of renal interstitium injury induced by crystal deposition.
引文
1. Moe OW. Kidney stones: pathophysiology and medical management. Lancet, 2006,367:333-344.
    2.Trinchieri A, Ostini F, Nespoli R, et al. A prospective study of recurrence rate and risk factors for recurrence after a first renal stone. J Urol,1999,162: 27–30.
    3. Sutherland JW, Parks JH, Coe FL. Recurrence after a single renal stone in a community practice. Miner Electrolyte Metab,1985,11:267–269.
    4. Asplin JR. Hyperoxaluric calcium nephrolithiasis. Endocrinol Metab Clin North Am, 2002,31: 927–949.
    5. Coe FL, Parks JH, Evan AP, et al. Pathogenesis and treatment of nephrolithiasis. In: Alpern RJ, Hebert SC, editors. Seldin and Giebisch’s the kidney. 4th edition. Burlington (MA): Academic Press; 2007,1945–1977.
    6. Curhan GC, Willett WC, Speizer FE, et al. Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int,2001,59:2290-2298.
    7. Atmani F, Slimani Y, Mimouni M, et al. Effect of aqueous extract from Herniaria hirsuta L. on experimentally nephrolithiasic rats. J Ethnopharmacol,2004,95:87–93.
    8. Khan SR.Renal tubular damage/dysfunction: key to the formation of kidney stones.Urol Res,2006,34:86-91.
    9. Tsujihata M. Mechanism of calcium oxalate renal stone formation and renal tubular cell injury. Int J Urol,2008,15:115–120.
    10. Fasano JM, Khan SR. Intratubular crystallization of calcium oxalate in the presence of membrane vesicles. Kidney Int, 2001,59: 169–178.
    11. Khan SR. Calcium oxalate crystal interaction with renal epithelium,mechanism of crystal adhesion and its impact on stone development.Urol Res,1996,23: 71–79.
    12. Khan SR. Role of renal epithelial cells in the initiation of calcium oxalate stones. NephronExp Nephrol,2004,98: e55–e60.
    13. Thamilselvan S, Byer KJ, Hackett RL, et al. Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. J Urol,2000,164: 230–236.
    14. Khan SR. Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res,1995, 23: 71-77.
    15. Miller C, Kennington L, Cooney R et al. Oxalate toxicity in renal epithelial cells: characteristics of apoptosis and necrosis. Toxicol Appl Pharmacol,2000,162: 132–141.
    16. Bigelow MW, Wiessner JH, Kleinman JG, et al. Calcium oxalate–crystal membrane interactions. J Urol,1996,155:1094–1098.
    17. Khan SR, Shevock PN, Hackett RL. Membrane-associated crystallization of calcium oxalate. Calcif Tissue Int,1990,46:116–120.
    18. Khan SR. Interactions between stone forming calcific crystals and macromolecules. Urol Int,1997,59: 59–69.
    19. Scheid C, Koul H, Hill WA et al. Oxalate toxicity in LLC-PK1 cells, a line of renal epithelial cells. J Urol,1996,155: 1112–1116.
    20. Thamilselvan S, Hackett RL, and Khan SR. Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J Urol,1997,157: 1059–1063.
    21. Khand FD, Gordge MP, Robertson WG, et al. Mitochondrial superoxide production during oxalate mediated oxidative stress in renal epithelial cells.Free Radic Biol Med,2002,32: 1339-1350.
    22. Byer K, Khan SR. Citrate provides protection against oxalate and calcium oxalate crystal induced oxidative damage to renal epithelium. J Urol ,2005,173: 640-646.
    23. Thamilselvan S, Byer KJ, Hackett RL, Khan SR. Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. J Urol,2000,164: 230–236.
    24. Khan SR.Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res,2005,33:349-357.
    25. Thamilselvan S, Menon M.Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status.BJU Int,2005, 96:117-126.
    26. Umekawa T, Byer K,Uemura H, et al .Diphenyleneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushite crystal-induced upregulation of MCP-1 in NRK
    52E cells . Nephrology Dialysis Transplantation,2005,20: 870-878.
    27. Thamilselvan S, Khan SR, Menon M.Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urol Res,2003,31: 3-9.
    28. Selvam R. Calcium oxalate stone disease: role of lipid peroxidation and antioxidants. Urol Res,2002,30: 35–49.
    29. Tungsanga K, Sriboonlue P, Futrakul P, et al.Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res,2005,33:65-69.
    30. Schwille PO, Manoharan M, and Schmiedl A. Is idiopathic recurrent calcium urolithiasis in males a cellular disease? Laboratory findings in plasma, urine and erythrocytes, emphasizing the absence and presence of stones, oxidative and mineral metabolism: an observational study. Clin Chem Lab Med, 2005,43: 590–600.
    31. Cao LC, Honeyman TW, Cooney R, et al. Mitochondrial dysfunction is a primary event in renal cell oxalate toxicity. Kidney Int,2004,66: 1890–1900.
    32. Khand FD, Gordge MP, Robertson WG, et al. Mitochondrial superoxide production during oxalate mediated oxidative stress in renal epithelial cells.Free Radic Biol Med,2002,32: 1339-1350.
    33. McMartin KE, Wallace KB. Calcium Oxalate Monohydrate, a Metabolite of Ethylene Glycol,Is Toxic for Rat Renal Mitochondrial Function. Toxicol Scien,2005,84: 195–200.
    34. Meimaridou E, Lobos E, Hothersall J S.Renal oxidative vulnerability due to changes in mitochondrial-glutathione and energy homeostasis in a rat model of calcium oxalate urolithiasis. Am J Physiol Renal Physiol, 2006,291:731-740.
    35. Veena CK, Josephine A, Preetha SP,et al. Mitochondrial dysfunction in an animal model of hyperoxaluria: a prophylactic approach with fucoidan. Eur J Pharmacol, 2008,28,579:330-336.
    36. Rashed T, Menon M, Thamilselvan S. Molecular mechanism of oxalate-induced free radical production and glutathione redox imbalance in renal epithelial cells: effect of antioxidants. Am J Nephrol,2004,24: 557-568.
    37. Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys, 2002 ,397: 342–344.
    38. Han CH, Lee MH. Expression and characterization of the flavoprotein domain of gp91phox. J Vet Sci, 2000,1:19-26.
    39. Khan SR. Crystal-induced inflammation of the kidneys,results of human, animal model and tissue culture studies. Clin Exp Nephrol,2004,8:75-88.
    40.De Water R,Boeve ER,van Miert PPMC,et al. Pathological and immunocytochemical changes in chronic calcium oxalate nephrolithiasis in the rat. Scanning Microsc,1996,10:577-590.
    41.Nippon,Hinyokika,Gakkai Zasshi. Significance of macrophage and cytokines in expression of stone matrix,1996,87:865-874.
    42.De Water R,Noordermeer C,Houtsmuller AB,et al.The role of macrophages in nephrolithiasis in rats:An analysis of the renal interstitium.Am J Kidney Dis,2000,36:615-625.
    43. Griendling KK, Sorescu D, Ushio-Fukai M: NAD(P)H oxidase: Role in cardiovascular biology and disease. Circ Res, 2000,86: 494–501.
    44.Zalba G, JoséGS, Moreno MU, et al. Oxidative stress in arterial hypertension. Role ofNAD(P)H oxidase. Hypertension,2001,38: 1395–1399.
    45. Yang S, Madyastha P, Bingel S, et al. A new superoxide-generating oxidase in murine osteoclasts. J Biol Chem, 2001,276: 5452–5458.
    46. Jones SA, Hancock JT, Jones OTG, et al. The expression of NADPH oxidase components in human glomerular mesangial cells: Detection of protein and mRNA for p47phox, p67phox, and p22phox. J Am Soc Nephrol, 1995, 5: 1483–1491.
    47.Shiose A, Kuroda J, Tsuruya K,et al. A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem, 2001,276: 1417–1423.
    48.Radeke HH, Cross AR, Hancock JT, et al. Functional expression of NADPH oxidase components (a- and b-subunits of cytochrome b558 and 45-kDa flavoprotein) by intrinsic human glomerular mesangial cells. J Biol Chem, 1991,266: 21025–21029.
    49.Griendling KK, Ushio-Fukai M. Reactive oxygen species as mediators of angiotensinⅡsignaling. Cardiovasc Res, 2000,91: 21–27.
    50.Ozaki M, Deshpande SS, Angkeow P, et al. Inhibition of the rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo. FASEB J, 2000,14: 418–429.
    51. Nath KA, Norby SM: Reactive oxygen species and acute renal failure. Am J Med, 2000,109: 655–678.
    52. Ueda N, Kaushal G P, Shah SV. Apoptotic mechanisms in acute renal failure. Am J Med,2000,108, 403–415.
    53. Li J M, Shah A M. ROS Generation by Nonphagocytic NADPH Oxidase:Potential Relevance in Diabetic Nephropathy . J Am Soc Nephrol, 2003,14: S221–S226.
    54. Chabrashvili T, Tojo A, Onozato M L,et al. Expression and Cellular Localization of Classic NADPH Oxidase Subunits in the Spontaneously Hypertensive Rat Kidney. Hypertension,2002,39:269-274.
    55. Zou A-P, Li N, Cowley AW Jr. Production and actions of superoxide in the renal medulla.Hypertension, 2001,37: 547–553.
    56. Lerman LO, Nath KA, Rodriguez-Porcel M,et al. Increased oxidative stress in experimental renovascular hypertension. Hypertension, 2001, 37: 541–546.
    57. Zalba G, JoséGS, Moreno MU,et al. Oxidative stress in arterial hypertension. Role of NAD(P)H oxidase. Hypertension,2001,38: 1395–1399.
    58. Asaba K, Tojo A, Onozato ML, et al. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int,2005,67:1890-1898.
    59.Toblli JE, Cao G, Casas G, et al. NF-KappaB and chemokine-cytokine expression in renal tubulointerstitium in experimental hyperoxaluria. Role of the renin-angiotensin system. Urol Res,2005,33:358-367.
    60.Toblli JE, Ferder L, stella I, et al.Protective role of enalapril for hyperoxaluric tubulointerstitial lesions of hyperoxaluria. J Urol,2002,166:275-280.
    61.Toblli JE, Ferder L, Stella I, et al. Effects of angiotensinⅡsubtype 1 receptor blockade by losartan on tubulointerstitial lesions caused by heperoxaluria. J Urol ,2002,168:1550-1555.
    62. Umekawa T, Hatanaka YJ,Takashi K,et al.Effect of AngiotensinⅡreceptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys.J Am Soc Nephrol,2004,15:635-644.
    63. Khan SR. Experimental CaOx nephrolithiasis and the formation of human urinary stones. Scann Microsc,1995,9: 89–100.
    64. Aihara K, Byer KJ, Khan SR. Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int,2003,64: 1283–1291.
    65.Khan SR. Animal models of kidney stone formation: an analysis. World J Urol,1997,15: 236–243.
    66. De Water R, Boeve ER, van Miert PP, et al. Experimental nephrolithiasis in rats: the effect of ethylene glycol and vitamin D3 on the induction of renal calcium oxalate crystals. Scann Microsc,1996,10: 591–601.
    67.Khan SR, Glenton P. Deposition of calcium phosphate and calcium oxalate crystals in the kidneys. J Urol,1995,153:811–817.
    68. Fan J,Glass MA, Chandhoke PS. Impact of ammonium chloride administration on a rat ethylene glycol urolithiasis model. Scann Microsc,1999,13:299–306.
    69. Robinson M, Pond CL, Laurie RD et al. Subacute and subchronic toxicity of ethylene glycol administered in drinking water to Sprague–Dawley rats. Drug Chem Toxicity,1990,13: 43–47.
    70. Eder AF, McGrath CM, Dowdy YG et al. Ethylene glycol poisoning: toxicokinetic and analytical factors affecting laboratory diagnosis.Clin Chem,1998,44: 168–177.
    71. Green ML, Hatch M, Freel RW. Ethylene glycol induces hyperoxaluria without metabolic acidosis in rats. Am J Physiol Renal Physiol,2005,289:F536–F543.
    72. Poldelski V, Johnson A, Wright S et al. Ethyelene glycol mediated tubular injury: identification of critical metabolites and injury pathways. Am J Kidney Dis,2001,38: 339–348.
    73.Khan SR, Glenton PA,Byer KJ. Modeling of hyperoxaluric calcium oxalate nephrolithiasis:Experimental induction of hyperoxaluria by hydroxyl-L-proline.Kidney Int,2006,165:1173–1181.
    74. Morrow JD , Roberts LJ. The isoprostanes: unique bioactive products of lipid peroxidation. Prog Lipid Res, 1997,36: 1–21.
    75.Toblli JE, Stella I, Cavanagh Ed,et al. Enalapril Prevents Tubulointerstitial Lesions by Hyperoxaluria. Hypertension,1999,33:225-231.
    76.Nath K. The tubulointerstitium in progressive renal disease. Kidney Int,1998,54:992-994.
    77. Engels F, Renirie BF, Hart BA,et al. Effects of apocynin, a drug isolated from the roots of Picrorhiza kurroa, on arachidonic acid metabolism. FEBS Lett,1992,305:254–256.
    78. Evans JL, Goldfine ID, Maddux BA, et al.Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes.Endocrine Rev, 2002, 23: 599-622.
    79.Onozato ML,Tojo A,Goto A,et al.Oxidative stress and nitric oxide synthase in rat diabetic nephropathy:effect of ACEI and ARB.Kidney Int,2002,61:186-194.
    80.Dodd-o EM, Pearse DB. Effect of the NADPH oxidase inhibitor apocynin on ischemia-reperfusion lung injury. Am J Physiol Heart Circ Physiol, 2000,279: H303–H312.
    81.洪华,曾进胜,王莹,等.阿托伐他汀对大鼠缺血再灌注脑组织中NADPH氧化酶源性超氧阴离子的抑制作用.中国病理生理杂志,2008,24(7):1345-1350.
    82.赵志宏,鲍晓峰,单江,等.大鼠心肌梗死后心肌NADPH氧化酶亚单位p22phox的表达.中国病理生理杂志,2005,21(11):2106-2110.
    83. Adler S, Huang H. Oxidant stress in kidneys of spontaneously hypertensive rats involves both oxidase overexpression and loss of extracellular superoxide dismutase. Am J Physiol Renal Physiol,2004 ,287:907-913.
    84.Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res,2000,86:494–501.
    85.Lavigne MC, Malech HL, Holland SM, et al. Genetic demonstration of p47phox-dependent superoxide anion production in murine vascular smooth muscle cells. Circulation,2001,104:79–84.
    86.Suh YA, Arnold RS, Lassegue B, et al. Cell transformation by the superoxide-generating oxidase Moxl. Nature,1999,401:79–82.
    87.Geiszt M, Kopp JB, Varnai P, et al. Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci,2000,9:8010–8014.
    88. Li NJ, Yi FX, Spurrier J L, et al. Production of superoxide through NADH oxidase in thick ascending limb of Henle’s loop in rat kidney. Am J Physiol Renal Physio,2002,282:1111–1119.
    89. Hanna IR, Taniyama Y, Szocs K, et al. NAD(P)H oxidase derived reactive oxygen species as mediators of angiotensinⅡsignaling. Antixodants Redox Signal,2002,4: 899–914.
    90.Tojo A, Onozato M L, Kobayashi N,et al. AngiotensinⅡand Oxidative Stress in DahlSalt-Sensitive Rat With Heart Failure. Hypertension,2002,40,834-839.
    91. Antus B, Exton MS, Rosivall L. AngiotensinⅡ. A regulator of inflammation during renal disease. Int J Immunopathol Pharmacol, 2001,14: 25–30.
    92. Ushio-Fukai M. Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res,2006,71:226-235.
    93.Kimura S,Zhang GX,Nishiyama A,et al.Role of NADPH oxidase and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensinⅡ.Hypertension,2005,45:860-866.
    94. Gill PS,Wilcox CS.NADPH oxidases in the kidney.Antioxid Redox Signal,2006,8(9-10):1597-1607.
    95. Chabrashvili T, Tojo A, Onozato ML, et al. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney.Hypertension,2002;39:269–274.
    96.钟玲,熊爱华,杨延秀,等.乙二醇复制肾结石模型给药途径和方法的比较.中国病理生理杂志,2000,16(4):381-382.
    97. Erdem A, Gundogan NU, Usubutun A, et al. The protective effect of taurine against gentamicin-induced acute tubular necrosis in rats.Nephrol Dial Transplant,2000,15:1175-1182.
    98. Mozaffari MS, Schaffer SW. Chronic taurine treatment ameliorates reduction in saline-induced diuresis and natriuresis. Kidney Int,2002, 61:1750–1759.
    99. Trachtman H, Lu P, Sturman JA. Immunohistochemical localization of taurine in rat renal tissue: studies in experimental disease states. J Histochem Cytochem,1993,41:1209-1216.
    100. Wang L, Zhang L, Yu Y, et al. The protective effects of taurine against early renal injury in STZ-induced diabetic rats, correlated with inhibition of renal LOX-1-mediated ICAM-1 expression.Ren Fail,2008,30:763-771.
    101. Manna P, Sinha M, Sil PC. Taurine plays a beneficial role against cadmium-inducedoxidative renal dysfunction. Amino Acids,2008 [Epub ahead of print]
    102. Sener G, Sehirli O, Ip?i Y, et al. Protective effects of taurine against nicotine-induced oxidative damage of rat urinary bladder and kidney. Pharmacology,2005,74:37-44.
    103.Huxtable RJ. Physiological action of taurine. Physiol Rev,1992,72:101–163.
    104. Schaffer S, Azuma J, Takahashi K, Mozaffari M: Why is taurine cytoprotective? Adv Exp Med Biol, 2003, 526, 307–321.
    105.兰志相,邓耀良.牛磺酸保护高能冲击波致肾脏损伤的实验研究.中华泌尿外杂志,2007,29(5):271-273.
    106.常林,赵晶,徐建兴,等.牛磺酸拮抗同型半胱氨酸诱导的线粒体呼吸链自由基生成和同型半胱氨酸抑制线粒体牛磺酸转运体.中国病理生理杂志,2004,20:1126-1133.
    107. Wan FS, Li GH, Zhang J, et al. Protective effects of taurine on myocardial mitochondria and their enzyme activities in rate with severe burn. Zhonghua Shao Shang Za Zhi. 2008 ,24(3):171-174.
    108. Parvez S, Tabassum H, Banerjee BD, et al.Taurine prevents tamoxifen-induced mitochondrial oxidative damage in mice. Basic Clin Pharmacol Toxicol,2008,102:382-387.
    109.Takahahsi K, Azuma M, Baba A, et al . Taurine improves angiotensinⅡ-induced hypertrophy of cultured neonatal rat heart cells. Adv Exp Med Biol,1998,442:129-135.
    110. Mozaffari MS, Miyata N, Schaffer SW. Effects of Taurine and Enalapril on Kidney Function of the Hypertensive Glucose-Intolerant Rat. AJH,2003,16:673–680.
    111. Veena CK, Josephine A, Preetha SP, et al. Mitochondrial dysfunction in an animal model of hyperoxaluria: a prophylactic approach with fucoidan. Eur J Pharmacol,2008,28;579(1-3):330-336.
    112.Poldelski V, Johnson A, Wright S et al. Ethyelene glycol mediated tubular injury: identification of critical metabolites and injury pathways. Am J Kidney Dis,2001,38: 339–348.
    113. Rasmusson RL, Davis DG, Lieberman M. Amino acid loss during volume regulatorydecrease in cultured chick heart cells. Am J Physiol Cell Physiol,1993,264: C136–C145.
    114.Schaffer S, Takahashi K, Azuma J. Role of osmoregulation in the actions of taurine. Amino Acids, 2000,19: 527–546.
    115.Wu QD,Wang JH, Fennessy F, et al.Taurine prevents high-glucose-induced human vascular endothelial cell apoptosis. Am J Physiol Cell Physiol,1999,277: C1229–C1238.
    116.Tsujimoto Y , Shimizu S. The voltage-dependent anion channel: an essential player in apoptosis. Biochimie,2002,84:187–193.
    117. Hansen SH, Andersen ML, Birkedal H, et al.The important role of taurine in oxidative metabolism. Adv Exp Med Biol,2006,583:129-135.
    118.梁雅静,李才,侯芳玉.牛磺酸对乙醇醛细胞毒性的抑制作用.吉林大学学报(医学版).2005,31(2):249-252.
    119. Li Y, Arnold JM, Pampillo M,et al. Taurine prevents cardiomyocyte death by inhibiting NADPH oxidase-mediated calpain activation.Free Radic Biol Med, 2009,46:51-61.
    120. Robinson JM.Reactive oxygen species in phagocytic leukocytes. Histochem Cell Biol ,2008,130:281–297.
    121龚非力,沈关心,李卓娅,等.医学免疫学[M].北京:科学出版社,2000:173-174.
    122. Bergstrand A,Collste LG,Franksson C,et al.Oxalosis in renal transplants following methoxy flurane anaesthesia.Br J Anaesth,1972,44:569-574.
    123. Seljelid R,Eskeland T. The biology of macrophages: I. General principles and properties.Eur J Haematol,1993,51:267-275.
    124.Lehnert BE.Pulmonary and thoracic macrophage subpopulations and clearance of particles from the lung.Environ Health Perspect,1992,97:17-46.
    125. Lieske JC, Deganello S.Nucleation, adhesion, and internalization of calcium-containing urinary crystals by renal cells.J Am Soc Nephrol, 1999,10:S422-S429.
    126. De Bruijn WC,BoevéER,van Run PR,et al.Etiology of calcium oxalate nephrolithiasis in rats.Can this be a model for human stone formation? Scanning Microsc,1995,9:103-104.
    127. Khan SR, Shevock PN, Hackett RL. Acute hyperoxaluria, renal injury and calcium oxalate urolithiasis.J Urol,1992,147:226-230.
    128. De Water R, Noordermeer C, van der Kwast, et al.Calcium oxalate nephrolithiasis in rats: The effect of renal crystal deposition on the cellular composition of the renal interstitium.Am J Kidney Dis, 1999,33:761-770.
    129. Khan SR.Animal models of kidney stone formation:An analysis. World J Urol,1997,15:236-243.
    130. McKee MD, Nanci A.Secretion of osteopontin by macrophages and its accumulation at tissue surfaces during wound healing in mineralised tissues:A potential requirement for macrophage adhesion and phagocytosis. Anat,1996,245:394-409.
    131. Nippon,Hinyokika,Gakkai Zasshi. Significance of macrophage and cytokines in expression of stone matrix. Nippon Hinyokika Gakkai Zasshi,1996,87:865-874.
    132. Paliege A, Parsumathy A, Mizel D, et al. Effect of apocynin treatment on renal expression of COX-2, NOS1, and rennin in Wistar-Kyoto and spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol, 2006,290: R694–R700.
    133. Hannken T, Schroeder R, Stahl RA, etc. AngiotensinⅡ-mediated expression of p27Kip1 and induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals. Kidney Int, 1998, 54: 1923-1933.
    134.陈志强,姚林方,叶章群.特发性草酸钙结石研究现状.临床泌尿外科杂志,2005,20(5):257-260.
    135.叶章群.泌尿系结石研究现况与展望.中华实验外科杂志,2005,22(3):261-262.
    1. Parmar MS .Kidney stones. BMJ,2004,328:1420-1424.
    2. Khan SR. CaOx crystal interaction with renal epithelium, mechanism of crystal adhesion and its impact on stone development. Urol Res,1995,23:71-79.
    3.Thamilselvan S, Byer KJ, Hackett RL, et al. Free radical scavengers,catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells.J Urol,2000,164(1):224-229.
    4. Huang MY, Chaturvedi LS,Koul S,et al. Oxalate stimulates IL-6 production in HK-2 cells,a line of human renal proxima tubular epithelial cells.Kidney Int,2005,68(2):497-503.
    5. Umekawa T, Chegini N,Khan SR.Increased expression of monocyte chemoattractant protein-1(MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate,phosphate and uricacid crystals. Nephrol Dial Transplant,2003,18(4):664-669.
    6. Umekawa T, Byer K, Uemura H, et al.Diphenyleneiodium(DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushinte crystal-induced upregulation of MCP-1 in NRK52E cells. Nephrol Dial Transplant,2005,20(5):870-878.
    7.Habibzadegah-Tari P, Byer KJ, Khan SR.Reactive oxygen species mediated calcium oxalatecrystal-induced expression of MCP-1 in HK-2 cells.Urol Res,2006,34(1):26-36.
    8. Miller C, Kennington L, Cooney R, et al. Oxalate toxicity in renal epithelial cells: characteristics of apoptosis and necrosis. Toxicol Pharmacol,2000,162:132-138.
    9.Umekawa T, Iguchi M, Uemura H, et al. Oxalate ions and calcium oxalate crystal-induced up-regulation of osteopontin and monocyte chemoattractant protein-1 in renal fibroblasts .BJU Int,2006,98(3):656-660.
    10. Lieske JC, Hammes MS, Hoyer JR, et al. Renal cell osteopontin production is stimulated by CaOx monohydrate crystals. Kidney Int,1997,51:679–686.
    11.Toblli JE, Ferder L, stella I, et al. Protective role of enalapril for hyperoxaluric tubulointerstitial lesions of hyperoxaluria. J Urol,2002,166:275-280.
    12. Toblli JE, Ferder L, Stella I, et al. Effects of angiotensinⅡsubtype 1 receptor blockade by 1osatan on tubulointerstitial lesions caused by heperoxaluria. J Urol ,2002,168:1550-1555.
    13. Umekawa T, Hatanaka YJ,Takashi K,et al.Effect of AngiotensinⅡreceptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys.J Am Soc Nephrol,2004,15:635-644.
    14. Huang H-S, Ma M-C, Chen C-F, et al. Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology,2003,61:1123-1128.
    15. Khan SR. Role of renal epithelial cells in the initiation of calcium oxalate stones. Nephron Exp Nephrol ,2004,98:55-60.
    16. DeWater R, Noordermeer C, van der Kwast TH, et al. CaOx nephrolithiasis in rats: the effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis ,1999, 33:761-771.
    17. Nath K. The tubulointerstitium in progressive renal disease. Kidney Int,1998,54:992-994.
    18. Tungsanga K, Sriboonlue P, Futrakul P, et al. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol Res,2005, 33(1):65-69.
    19. Khand FD, Gordge MP, Robertson WG, et al. Mitochondrial superoxide production during oxalate mediated stress in renal epithelial cells. Free Radic Biol Med ,2002,32:1339-1350.
    20. Meimaridou E, Jacobson J, Seddon AM, et al. Crystal and microparticle effects on MDCK cellsuperoxide production: Oxalate-specific mitochondrial membrane potential changes. Free Radic Biol Med ,2005,38:1553–1564.
    21. Shiose A, Kuroda J, Tsuruya K. A novel superoxide producing NADPH oxidase in kidney. J Biol Chem,2001,276:1417-1423.
    22. Hanna IR, Taniyama Y, Szocs K, et al. NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensinⅡsignaling. Antioxid Redox Signal,2002,4:899-914.
    23. James EA, Galceran JM, Raij L. AngiotensinⅡinduces superoxide anion production by mesangial cells. Kidney Int,1998,54:775-784.
    24. Thamilselvan S, Menon M.Vitamin E therapy prevents hyperoxaluria-induced calcium oxalate crystal deposition in the kidney by improving renal tissue antioxidant status. BJU Int,2005;96(1):117-126.
    25. Huang HS, Chen J, Chen CF, et al.Vitamin E attenuates crystal formation in rat kidneys: roles of renal tubular cell death and crystallization inhibitors. BJU Int, 2006,70(4):699-710.
    26. Marin V, Montero-Julian FA, Gres S, et al.The IL-6-soluble IL-6 R alpha autocrine loop of endothelial activation as an intermediate between acute and chronic inflammation: an experimental model involving thrombin. J Immunol,2001,167:3435-3442.
    27.王军,叶章群,宋波,等.α-亚麻酸对草酸钙结石大鼠细胞因子的影响.临床泌尿外科杂志,2005,20(10):634-636.
    28. Engene R, Santlogo L, Rark E, et al. Urinary IL-6 is elevated in patients with urlithiasis. J Urol, 1998,160:2284-2288.
    29.Toblli JE, Cao G, Casas G, et al. NF-KappaB and chemokine-cytokine expression in renal tubulointerstitium in experimental hyperoxaluria. Role of the renin-angiotensin system. Urol Res,2005;33(5):358-367.
    30.Khan SR, Glenton PA,Byer KJ.Modeling of hyperoxaluric calcium oxalate nephrolithiasis:Experimental induction of hyperoxaluria by hydroxyl-L-proline.Kidney Int,2006,165:1173–1181.
    31. Hosaka S, Akahoshi T, Wada C, et al. Expression of the chemokine superfamily in rheumatoid arthritis. Clin Exp Immuno,1994, l97:451–457.
    32. Gonzalo JA, Lloyd CM, Wen D, et al. The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyper responsiveness. J Exp Med,1998,188:157–167.
    33. Huffnagle GB, Strieter RM, Standiford TJ, et al. The role of monocyte chemotactic protein-1 (MCP-1) in the recruitment of monocytes and CD4+ T cells during a pulmonary Cryptococcus neoformans infection. J Immunol,1995,155:4790–4797.
    34. Momma Y, Nagineni CN, Chin MS, et al. Differential expression of chemokines by human retinal pigment epithelial cells infected with cytomegalovirus. Invest Ophthalmol Vis Sci,2003,44:2026–2033.
    35. Rovin BH, Doe N, Tan LC. Monocyte chemoattractant protein-1 levels in patients with glomerular disease. Am J Kidney Dis ,1996,27:640-646.
    36. Snug FL, Zhu TY, Au-Yeung KKW, et al. Enhanced MCP-1 expression during ischemia/reperfusion injury is mediated by oxidative stress and NF-kB. Kidney Int,2002,62:1160-1170.
    37. Umekawa T, Chegini N, Khan SR. Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelial cells. Kidney Int,2002,61:105-112.
    38. Selvam R. Calcium oxalate stone disease: role of lipid peroxidation and antioxidants. Urol Res,2002,30:35-49.
    39. Khan SR.Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res,2005;33(5):349-357.
    40. Misko TP, Highkin MK, Veenhuizen AW, et al. Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. J Biol Chem,1998,273:15646-15653.
    41.Chen XL, Zhang Q, Zhao R, et al. Superoxide, H2O2 and iron are required for TNF-α-induced MCP-1 gene expression in endothelial cells: role of Rac1 and NADPH oxidase. Am J Physiol Heart Circ Physiol,2004,286:H1001-H1007.
    42. Matata BM, Galinanes M. Peroxynitrite is an essential component of cytokines production mechanism in human monocyte through modulation of nuclear factor-kappa B DNA binding activity. J Biol Chem,2002,277:2330-2335.
    43. Hilgers KF, Hartner A, Porst M, et al. Monocyte chemoattractant protein-1 and macrophage infiltrationin hypertensive kidney injury. Kidney Int,2000,58:2408–2419.
    44. Gilbert RE, Wu LL, Kelly DJ,et al. Pathological expression of rennin and angiotensinⅡin the renal tubules after subtotal nephrectomy, implications for the pathogenesis of tubulointerstitial fibrosis. Am J Pathol,1999,155:429-440.
    45. Shiraga H, Min W, Van Dusen WJ, et al. Inhibition of calcium oxalate crystal growth in vitro by uropontin: Another member of the aspartic acid-rich protein superfamily. Proc Natl Acad Sci U S A ,1992,89:426–430.
    46. Hoyer JR. Uropontin in urinary calcium stone formation. Miner Electrolyte Metab,1994,20:385–392.
    47. Worcester EM, Beshensky AM. Osteopontin inhibits nucleation of calcium oxalate crystals. Ann N Y Acad Sci ,1995,21:375–377.
    48. Asplin JR, Arsenault D, Parks JH, et al. Contribution of human uropontin to inhibition of calcium oxalate crystallization. Kidney Int,1998,53:194–199.
    49. Lieske JC, Leonardo R, Toback FG. Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol,1995,268:604–612.
    50.常连胜,冯涛,郭应禄.结石病人尿骨桥蛋白测定的临床意义.中华泌尿外科杂志,2000,21(12):709-711.
    51. Yamate T, Kohri K, Umekawa T, et al. Interaction between osteopontin on Madin-Darby canine kidney cell membrane and calcium oxalate crystals. Urol Int ,1999,62:81–86.
    52. Yasui T, Fujita K, Asai K, et al. Osteopontin regulates adhesion of calcium oxalate crystals to renal epithelial cells. Int J Urol,2002,9:100–108.
    53. Khan SR, Johnson JM, Peck AB, et al. Expression of osteopontin in rat kidneys: Induction during ethylene glycol induced calcium oxalate nephrolithiasis. J Urol , 2002,168:1173–1181.
    54. O’Regan A, Berman JS. Osteopontin: A key cytokine in cell mediated and granulomatous inflammation. Int J Exp Pathol, 2000,81:373–390.
    55. Giachelli CM, Lombardi D, Johnson RJ, et al. Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am J Pathol ,1998,152:353–358.
    56. Cao Z, Cooper ME. Role of angiotensinⅡin tubulointerstitial injury. Semin Nephrol ,2001,21: 554–562.
    57. Ophascharoensuk V, Giachelli CM, Gordon K. Obstructive uropathy in the mouse: Role of osteopontin in interstitial fibrosis and apoptosis. Kidney Int,1999,56:571–580.
    58. Yu XQ, Nikolic Paterson DJ, Mu W, et al. A functional role for osteopontin in experimental crescentic glomerulonephritis in the rat. Proc Assoc Am Physicians, 1998,110:50–64.
    59. Giachelli CM, Lombardi D, Johnson RJ, et al. Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am J Pathol , 1998,152: 353–358.
    60. Ricardo SD, Franzoni DF, Roesener CD, et al. Angiotensinogen and AT(1) antisense inhibition of osteopontin translation in rat proximal tubular cells. Am J Physiol Renal Physiol,200 ,278:708–716.
    61. Diamond JR, kreisberg R, Evans R, et al. Regulation of prominal tubular osteopontin in experimental hydronephrosis in the rat. Kidney Int,1998,54:1501-1509.
    62. Malyankar UM, Almeida M, Johnson RJ, et al. Osteopontin regulation in cultured renal epithelial cells. Kidney Int,1997,51:1766-1773.
    63. Tanifuji C, Suzuki Y, Geot WM,et al. Reactive oxygen species-mediated signaling pathway in angiotensinⅡ-induced MCP-1 expression of proximal tubular cells. Antioxid Redox Signal,2005,7:1261-1268.
    64. Rashid T, Menon M, Thamilselvan S. Molecular mechanism of oxalate-induced free radical production and glutathione redox imbalance in renal epithelial cells: effect of antioxidants. Am J Nephrol ,2004,24:557-568.
    65. Hoyer JR, Otvos L Jr, Urge L, et al .Osteopontin in urinary stone formation. Ann N Y Acad Sc ,1995,760:257-265.
    66. Riese R J, Mandel NS, Wiessner JH, et al.Cell polarity and calcium oxalate crystal adherence to cultured collecting duct cells. Am J Physiol,1992,262:177-184.
    67. Hoyer JR, Wikoff W, Bock SC. J Am Soc Nephrol,1992;3:684-68.
    68. Khan SR.Renal tubular damage/dysfunction: key to the formation of kidney stones.Urol Res2006,34(2):86-91.
    69. Khan SR. Crystal-induced inflammation of the kidneys,results of human, animal model and tissue culture studies. Clin Exp Nephrol,2004,8:75-88.
    70. Maroni PD, Koul S, Chandhoke PS, et al. oxalate toxicity in cultured mouse inner medullary collecting cells. J Urol. 2005:174, 757–760.
    71.Umekawa T, Tsuji H, Uemura H, et al. Superoxide from NADPH oxidase as second messenger for the expression of osteopontin and monocyte chemoattractant protein-1 in renal epithelial cells exposed to calcium oxalate crystals.BJU Int. 2009 Feb 10. [Epub ahead of print]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700