用户名: 密码: 验证码:
对虾与海参高效免疫激活物质的筛选与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择我国重要的海水养殖动物凡纳滨对虾(Litopenaeus vannamei)和刺参(Apostichopus japonicus Selenka)为研究对象,在室内循环水养殖系统中(200 l)进行为期8周的摄食生长实验。探讨(1)甘草酸和大豆异黄酮对凡纳滨对虾生产性能和免疫力的影响;(2)甘草酸、左旋咪唑、核苷酸以及乳铁蛋白对刺参生长、免疫及抗病力的影响。主要研究内容和结果如下:
     1.选用初始体重为(0.233±0.000g)的凡纳滨对虾(L. vannamei)为研究对象,在基础饲料中分别添加50 mg kg-1、100 mg kg-1、150 mg kg-1、200 mg kg-1的甘草酸,制作出4种实验饲料,饲喂凡纳滨对虾8周。结果表明:各处理组对虾的成活率都在82.2-90.0%之间,相互之间没有显著差异。饲料中添加甘草酸可显著提高对虾的特定生长率(SGR) (P<0.05),150和200 mg kg-1添加组对虾特定生长率显著高于50和100 mg kg-1添加组(P<0.05)。饲料中添加甘草酸对凡纳滨对虾体常规成分含量没有产生显著影响(P>0.05)。饲料中添加200 mg kg-1的甘草酸可显著提高凡纳滨对虾血细胞计数(THC)和呼吸爆发活性(P<0.05);当饲料中甘草酸添加量为200 mg kg-1时,凡纳滨对虾血清酚氧化酶(PO)活性和超氧化物歧化酶(SOD)活性显著高于对照组和50 mg kg-1甘草酸添加组,但与150 mg kg-1甘草酸添加组差异不显著(P>0.05)。当饲料中甘草酸的添加量为150 mg kg-1时,凡纳滨对虾血清一氧化氮合酶(NOS)活性显著高于对照组及50和100mg kg-1甘草酸添加组,但与200 mg kg-1甘草酸添加组差异不显著。养殖实验结束后,通过注射对虾致病菌鳗弧菌(Vibrio alginolyticus)进行对虾攻毒实验,结果表明,饲料中添加甘草酸可以显著降低凡纳滨对虾攻毒后10日内的累计死亡率,其中150和200 mg kg-1甘草酸添加组的累计死亡率(10.0%和8.3%)显著低于50 mg kg-1甘草酸添加组(16.7%),但与100 mg kg-1甘草酸添加组(11.7%)差异不显著。本实验可得到以下结论:饲料中添加甘草酸可以提高凡纳滨对虾的特定生长率、免疫力和抗病力;甘草酸在凡纳滨对虾饲料中的建议添加量为200 mg kg-1饲料。
     2.为研究饲料中添加大豆异黄酮对凡纳滨对虾(L. vannamei)生长、免疫及抗病力的影响,实验设五个处理,大豆异黄酮添加水平分别为0(对照组)、5、10、20和40 mg kg-1,养殖周期为56d。结果表明:各处理组对虾成活率在82.2%-91.1%之间,各处理之间无显著差异(P>0.05)。大豆异黄酮添加量在10 mg kg-1以上的3个处理组,凡纳滨对虾的特定生长率(SGR)显著高于对照组及5 mg kg-1处理组(P<0.05),且三个处理间差异不显著。饲料中添加大豆异黄酮对凡纳滨对虾体成分组成没有产生显著影响(P>0.05)。20和40 mg kg-1处理组,凡纳滨对虾的血细胞计数(THC)、呼吸爆发活性(NBT)、酚氧化酶(PO)活性、超氧化物歧化酶(SOD)活性及一氧化氮合酶(NOS)活性均显著高于对照组(P<0.05)。随着饲料中大豆异黄酮添加量的增加,凡纳滨对虾的THC、呼吸爆发活性、PO活性、SOD活性及NOS活性呈剂量依赖性升高,但当添加量为40 mg kg-1时,除NOS外其他各免疫比较均呈现出下降的趋势。攻毒实验结果表明,攻毒后的10天内对照组的累计死亡率显著高于4个添加组,4个添加组的免疫保护力为63%-72%,且相互之间差异不显著。本实验表明:1)饲料中添加大豆异黄酮可以提高凡纳滨对虾的特定生长率、免疫力和抗病力;2)大豆异黄酮在凡纳滨对虾饲料中的建议添加量为20 mg kg-1。
     3.以初始体重为(6.80±0.00g)左右的刺参(A. japonicus Selenka)为研究对象,在基础饲料中分别添加0(对照组)、50、100和200 mg kg-1的甘草酸,配制4种实验饲料。结果表明:饲料中添加甘草酸对刺参的成活率没有显著影响,各处理组均为100%。饲料中添加200 mg kg-1甘草酸可显著提高刺参的特定生长率(SGR) (P<0.05)。饲料中添加甘草酸对刺参体常规成分含量没有产生显著影响。当饲料中甘草酸添加量为200 mg kg-1时,刺参体腔细胞一氧化氮合酶(NOS)活性和溶菌酶(LZM)活性显著高于其他添加组(P<0.05)。当饲料中甘草酸添加量≥100 mg kg-1时,刺参体腔细胞超氧阴离子产量(COP)、超氧化物歧化酶(SOD)活性、酸性磷酸酶(ACP)活性、NOS活性及LZM活性均显著高于对照组及50 mg kg-1添加组(P<0.05)。50 mg kg-1添加组以上各免疫指标与对照组差异不显著(P>0.05)。养殖实验结束后,通过注射刺参腐皮综合症致病菌灿烂弧菌(V. splendidus)进行刺参攻毒实验。攻毒后14d内对照组与50 mg kg-1添加组的累计发病率(分别为38.3%和36.7%)显著高于100和200 mg kg-1添加组(分别为30.0%和26.7%) (P<0.05)。本实验可得到以下结论:饲料中添加200 mg kg-1甘草酸可以提高刺参养殖的产量,同时可以提高刺参的非特异性免疫力和抗病力。
     4.以初始体重为(6.80±0.01g)的刺参(A. japonicus Selenka)为研究对象,以基础饲料为对照组,在基础饲料中分别添加0.01%、0.02%和0.04%的左旋咪唑,配制4种实验饲料。实验结果显示,饲料中添加高含量的左旋咪唑(0.04%)显著提高了刺参的特定生长率(P<0.05),而低含量添加组(0.01%和0.02%)与对照组之间差异不显著(P>0.05)。饲料中添加左旋咪唑对刺参的成活率没有产生影响(P>0.05),各处理组成活率均为100%。饲料中添加左旋咪唑对刺参体常规成分含量没有产生显著影响(P>0.05)。饲料中添加高含量的左旋咪唑(0.04%)显著提高了刺参体腔细胞超氧阴离子产量(COP)、溶菌酶(LZM)活性和一氧化氮合酶(NOS)活性(P<0.05),低含量添加组(0.01%和0.02%)与对照组之间差异不显著(P>0.05)。当饲料中左旋咪唑添加量≥0.02%时,刺参体腔细胞的超氧化物歧化酶(SOD)活性和酸性磷酸酶(ACP)活性显著高于对照组,且0.04%添加组显著高于其余各处理组(P<0.05)。0.01%添加组上述免疫指标与对照组均差异不显著(P>0.05)。8周的饲养实验结束后,采用刺参腐皮综合症致病菌灿烂弧菌(V. splendidus)进行体壁注射攻毒实验。结果显示,饲料中添加0.04%的左旋咪唑显著降低了刺参攻毒后14 d的累计发病率(P<0.05),其余各添加组与对照组差异不显著(P>0.05)。上述结果表明,饲料中添加0.04%的左旋咪唑对刺参的生长、免疫力及抗病力具有较好的促进作用。
     5.以初始体重为(6.80±0.00g)的刺参(A. japonicus Selenka)为研究对象,在配合饲料中分别加入0.00%(对照组)、0.03%、0.06%和0.12%的核苷酸制成4种实验饲料,在室内循环水系统中(200 l)进行为期8周的摄食生长实验。实验结果表明,饲料中添加核苷酸对刺参存活率没有产生影响,各处理组均为100%,但却显著影响其生长。当饲料中添加0.06%和0.12%的核苷酸时,刺参的特定生长率(SGR)显著高于对照组(0.00%)和低添加量组(0.03%)。0.03%添加组与对照组以及高核苷酸添加组间(0.06%添加组与0.12%添加组)的SGR均没有显著差异(P>0.05)。饲料中添加核苷酸对刺参体常规成分含量没有产生显著影响(P>0.05)。当饲料中核苷酸添加量≥0.06%时,刺参体腔细胞溶菌酶(LZM)活性和超氧化物歧化酶(SOD)活性均显著高于对照组和0.03%添加组(P<0.05),且0.06%添加组和0.12%添加组间差异不显著(P>0.05)。饲料中添加0.06%的核苷酸显著提高了刺参体腔细胞一氧化氮合酶(NOS)活性和酸性磷酸酶(ACP)活性(P<0.05),其余添加组与对照组差异不显著(P>0.05)。当饲料中核苷酸添加量为0.06%时,刺参体腔细胞超氧阴离子产量(COP)显著高于对照组与0.03%添加组(P<0.05),但与0.12%添加组差异不显著,0.03%添加组、0.12%添加组以及对照组间没有显著差异(P>0.05)。8周的饲养实验结束后,通过体壁注射刺参腐皮综合症致病菌灿烂弧菌(V. splendidus)进行刺参攻毒实验。在攻毒后的14天内,对照组和0.03%添加组刺参的累计发病率显著高于0.06%添加组和0.12%添加组(P<0.05)。0.03%添加组和对照组间以及0.06%添加组和0.12%添加组间刺参的累计发病率没有显著差异(P>0.05)。本研究结果表明,饲料中添加0.06%的核苷酸可以显著提高刺参的生长和非特异性免疫力,核苷酸可以作为一种安全高效的口服免疫增强剂应用于刺参的养殖生产。
     6.以初始体重(6.80±0.02g)的刺参(A. japonicus Selenka)为研究对象,探讨饲料中添加乳铁蛋白对其生长和非特异性免疫力的影响。分别向每千克基础饲料中添加0(对照组)、50、100和200 mg乳铁蛋白,配制出4种实验饲料,在室内循环水系统中(200 l)进行为期8周的摄食生长实验。实验结果表明,饲料中添加乳铁蛋白对刺参的成活率没有产生影响,各处理组成活率均为100%。当饲料中添加100 mg kg-1乳铁蛋白时刺参特定生长率显著高于对照组(P<0.05)。饲料中添加乳铁蛋白对刺参体常规成分含量没有产生显著影响(P>0.05)。饲料中添加100 mg kg-1乳铁蛋白组刺参体腔细胞超氧阴离子产量(COP)著高于对照组,其余各添加组与对照组差异不显著。当饲料中乳铁蛋白添加量为100和200 mg kg-1时,刺参体腔细胞一氧化氮合酶(NOS)活性、超氧化物歧化酶(SOD)活性和酸性磷酸酶(ACP)活性显著高于对照组,且两个添加组间差异不显著。饲料中添加100 mg kg-1乳铁蛋白组刺参体腔细胞溶菌酶(LZM)活性显著高于对照组及其他添加组。50 mg kg-1乳铁蛋白组刺参体腔细胞上述免疫指标与对照组均没有显著差异。灿烂弧菌(V. splendidus)攻毒实验结果表明,饲料中添加100和200 mg kg-1乳铁蛋白组刺参的累计发病率显著低于对照组。因此,饲料中添加适宜含量的乳铁蛋白可以显著提高刺参生长率和非特异性免疫力。乳铁蛋白可以作为一种安全高效的口服免疫增强剂应用于刺参的养殖生产。
Six feeding trials were conducted in indoor circulating system to investigate the effects of dietary glycyrrhizin, soybean isoflavones, levamisole, nucleotide and bovine lactoferrin on growth, non-specific immunity and disease resistance for shrimp (L. vannamei) and sea cucumber (A. japonicus Selenka). The results are summarized as follows:
     1. The growth response, total haemocyte count (THC), respiratory burst (release of superoxide anion), phenoloxidase (PO), superoxide dismutase (SOD), nitric oxide synthase (NOS) as well as resistance to the pathogen V. alginolyticus were measured in shrimps which had been fed diets supplemented with glycyrrhizin at 0, 50, 100, 150 and 200 mg kg-1 diet for 8 weeks. Dietary glycyrrhizin had no significant influence on survival rate of the shrimps (P>0.05). Significantly higher SGR was observed in the treatments with dietary glycyrrhizin supplementation than that in control (P<0.05). However, no significant differences in body composition were noticed among dietary treatments (P>0.05). Shrimps fed the diet with 200 mg kg-1 glycyrrhizin had significant higher THC, PO activity, respiratory burst activity and SOD activity than that in control (P<0.05). Increased THC, respiratory burst activity and NOS activity were also noticed in shrimps fed diets with 100 or 150 mg kg-1 glycyrrhizin (P<0.05). Significantly lower cumulative mortality after challenge was observed in shrimps fed the diets supplemented with glycyrrhizin (8.33 -16.67%) than that in control group (36.67%) (P<0.05). These results indicated that glycyrrhizin might elevate the function of nonspecific immunity and enhance disease resistance of L. vannamei as well as improve production in shrimp farming.
     2. The growth response, total haemocyte count (THC), respiratory burst (release of superoxide anion), phenoloxidase (PO) activity, superoxide dismutase (SOD) activity, nitric oxide synthase (NOS) activity and resistance to the pathogen Vibrio alginolyticus were measured in the white shrimp (L. vannamei) which had been fed diets supplemented with soybean isoflavones (SI) at 0, 5, 10, 20, 40 mg kg-1 for 8 weeks. Dietary SI had no significant influence on survival rate of the shrimps (P>0.05). Significantly higher SGR was observed in treatments with 10, 20 and 40 mg kg-1 SI supplement than that in control (P<0.05). No significant differences in body composition were noticed among dietary treatments. Shrimps fed a diet with 20 mg kg-1 SI supplementation showed significant increase in THC, PO activity, respiratory burst activity, SOD activity as well as NOS activity (P<0.05). Increased THC, respiratory burst activity, SOD activity and NOS activity were also noticed in shrimps fed the diets with SI supplementation at 10 or 40 mg kg-1 (P<0.05). Significantly lower cumulative mortality after challenge with V. alginolyticus was observed in shrimps fed the diets with SI supplementation (10.0-13.3%) than that in control group (36.7%) (P<0.05). It is therefore concluded that oral administration of SI at 20 mg kg-1 for 8 weeks could enhance the immune ability of shrimps and improve production in shrimp farming.
     3. An 8-week feeding experiment was conducted to evaluate the effects of glycyrrhizin on growth, non-specific immunity of sea cucumber (A. japonicus Selenka) as well as its resistance against V. splendidus. Glycyrrhizin was administered to sea cucumbers through the diets at four levels (0, 50, 100 and 200 mg kg-1 diet, respectively). The basal diet (0 mg kg-1 diet) was used as the control. Each diet was randomly allocated to triplicate groups of sea cucumbers in indoor fiberglass (200 l) tanks with circulating seawater and constant aeration. And each tank was stocked with 30 sea cucumbers (initial average weight 6.80±0.10g). The results showed that dietary glycyrrhizin had no significant influence on survival rate of sea cucumber. Glycyrrhizin supplemented at 200 mg kg-1 significantly enhanced the specific growth rate of sea cucumbers (P<0.05), whereas other supplementation did not (P>0.05). No significant difference in body composition was observed among dietary treatments. Sea cucumbers fed diet with 200 mg kg-1 glycyrrhizin had significantly higher nitric oxide synthase (NOS) activity and lysozyme (LZM) activity than that fed other diets(P<0.05). The intracellular O2- production (COP), LZM, NOS, superoxide dismutase (SOD) and acid phosphatase (ACP) activity in sea cucumbers fed diets with 100 and 200 mg kg-1 glycyrrhizin were significantly higher when compared with the control and 50 mg kg-1 supplementation groups (P<0.05). However, no significant difference of the above immunological parameters was observed between the control and 50 mg kg-1 glycyrrhizin groups (P>0.05). The challenge experiment showed that sea cucumbers fed the diet with 100 and 200 mg kg-1 glycyrrhizin had significantly lower accumulative morbidity compared with the control and 50 mg kg-1 supplementation groups (P<0.05). And no significant difference was observed between 100 and 200 mg kg-1 supplementation groups. These results suggested that feeding glycyrrhizin at a dose of 200 mg kg-1 could enhance growth, non-specific immunity as well as resistance against V. splendidus of sea cucumber (Apostichopus japonicus Selenka).
     4. An 8-week feeding experiment was conducted to evaluate the effects of dietary levamisole on growth, non-specific immunity as well as resistance against V. splendidus of sea cucumber (A. japonicus Selenka) (initial body weight 6.80±0.01 g). Results showed that dietary levamisole has no influence on survival rate of A. japonicus (Selenka) (P>0.05). The specific growth rate (SGR) in sea cucumbers fed diet with 0.04% levamisole was significantly increased when compared with the control group (P<0.05). However, no significant difference in SGR was oberved among 0.01%, 0.02% and the control groups (P>0.05). Dietary levamisole had no significant influence on body composition of A. japonicus (Selenka) (P>0.05). Significantly higher intracellular O2- production (COP), lysozyme (LZM) activity, superoxide dismutase (SOD), nitric oxide synthase (NOS) activity and acid phosphatase (ACP) activity in coelomocyte were observed in sea cucumbers fed the diet with 0.04% levamisole when compared with control group (P<0.05). Increased SOD activity and ACP activity were also noticed in sea cucumbers fed diet containing 0.02% levamisole (P<0.05). The SOD activity and ACP activity in sea cucumbers fed a diet containing 0.04% levamisole were showed significantly higher when compared with the other treatments (P<0.05). After 8 weeks of feeding trial, a challenging test was conducted by injecting the sea cucumbers with Vibrio splendidus. Significantly lower (P<0.05) cumulative morbidity was observed during the following 14 days after challenge in sea cucumbers fed the diet containing 0.04% levamisole than that in the control group. The presents results suggested that 0.04% levamisole supplementation in diet could improve growth, non-specific immunity and disease resistance of sea cucumber.
     5. An 8-week feeding trial was conducted to evaluate the effects of dietary nucleotide on growth, non-specific immunity and disease resistance against V. splendidus of sea cucumber, A. japonicus (Selenka). Nucleotide (GMP) was administered to sea cucumbers through the diets at four levels (0%, 0.03%, 0.06% and 0.12%, respectively). The basal diet (without nucleotide supplementation) was used as control. Each diet was allocated to triplicate groups of sea cucumbers stocked in indoor 200 l circular fiberglass tanks with circulating seawater and constant aeration. And each tank was stocked with 30 sea cucumbers (initial weight 6.80±0.00 g). The results of the feeding trial showed that dietary nucleotide had no significant influence on survival rate of A. japonicus (Selenka). Sea cucumbers fed diets containing 0.06% or 0.12% nucleotide proved to have a significantly better growth than those fed the diet supplemented with 0.03% nucleotide (P<0.05). No significant difference in body composition was observed among dietary treatments. Sea cucumbers fed the diet containing 0.06% dietary nucleotide showed a significant (P<0.05) increase in intracellular O2- production (COP), lysozyme (LZM) activity, superoxide dismutase (SOD), nitric oxide synthase (NOS) activity as well as acid phosphatase (ACP) activity in coelomocyte. Increased LZM activity and SOD activity were also noticed in sea cucumbers fed the diet supplemented with 0.12% nucleotide (P<0.05). No significant difference in the above immune parameters was observed between sea cucumbers fed control diet and fed diet with 0.03% nucleotide supplementation (P>0.05). The challenge trial showed that sea cucumbers fed the diets with 0.06% and 0.12% nucleotide had significantly lower cumulative morbidity compared with the control and 0.03% nucleotide groups (P<0.05), and no significant difference was observed between 0.06% and 0.12% nucleotide groups. These results suggested that feeding nucleotide at a dose of 0.06% could enhance growth, non-specific immunity as well as resistance against V. splendidus of sea cucumber Apostichopus japonicus Selenka.
     6. An 8-week feeding experiment was conducted to evaluate the effects of bovine lactoferrin (LF) on growth as well as non-specific immunity of sea cucumber (Apostichopus japonicus Selenka). Lactoferrin was administered to sea cucumber through the diets at three levels (50, 100 and 200 mg kg-1 diet, respectively). The basal diet (without lactoferrin supplementation) was used as the control diet. The intracellular O2- production (COP), lysozyme (LZM) activity, superoxide dismutase (SOD), nitric oxide synthase (NOS) activity and acid phosphatase (ACP) activity in coelomocyte were measured at day 56. And the specific growth rate (SGR), survival and cumulative mortality after body injection with V. splendidus (100μl V. splendidus suspension at 1×109CFU ml-1 per sea cucumber) were assayed after 56 days feeding period. Dietary lactoferrin had no significant influence on survival rate of sea cucumber. Significantly higher SGR was observed in sea cucumber fed diet containing 100 mg kg-1 lactoferrin than that in control diet. No significant difference in body composition was observed among dietary treatments. Sea cucumbers fed the diet containing 100 mg kg-1 lactoferrin showed significant increase in COP, NOS activity, SOD activity, LZM activity as well as ACP activity (P<0.05). Increased NOS activity, SOD activity and ACP activity were also noticed in sea cucumbers fed the diet containing 200 mg kg-1 lactoferrin (P<0.05). Sea cucumbers fed the diet containing 100 mg kg-1 lactoferrin showed significantly higher LZM activity when compared with other treatments (P<0.05). The highest cumulative morbidity was observed in the sea cucumbers fed the control diet when challenged with injection of V. splendidus. Significantly lower cumulative morbidity at 14 days after challenge was observed in sea cucumber fed diets containing 100 or 200 mg kg-1 lactoferrin compared with the control (P<0.05). These results indicated that lactoferrin might elevate the function of nonspecific immunity and enhance disease resistance of A. japonicus (Selenka) as well as improve production in sea cucumber farming.
引文
艾春香,陈立侨,温小波, 2003. VE对河蟹血清和组织中超氧化物歧化酶及磷酸酶活性的影响.台湾海峡22(1):24-31.
    陈孝煊,吴志新,张厚梅, 2002.大黄与黄连对2种淡水虾血细胞吞噬活性的影响.水生生物学报26(2):201-204.
    崔永明,余龙江,敖明章, 2006.甘草酸的提取及其抑菌活性研究.天然产物研究与开发18:428-431.
    丁君,常亚青,王长海, 2006.不同种海胆体腔细胞类型及体腔液中的酶活力.中国水产科学13(1):33-38.
    都兴范,李树英,石理鑫, 2000.柞蚕免疫活性物质对海珍品生长发育的研究.饲料研究(12):5-6.
    樊绘曾, 2001.海参:海中人参关于海参及其成分保健医疗功能的研究与开发.中国海洋药物4:37-44.
    高绪生,常亚青, 1999.中国经济海胆及其增养殖.北京:中国农业出版社.
    杜爱芳,叶均安,于涟, 1997.复方大蒜油添加剂对中国对虾免疫机能的增强作用.浙江农业大学学报23(3):317-320.
    郭玉娟,陈学年,杨先乐, 2003. A3α肽聚糖投喂南美白对虾试验.淡水渔业33(4):35-37.
    黄桂菊,喻达辉,郭奕惠,等. 2005.大豆异黄酮对鱼类免疫增强作用的初步研究.南方水产1(2):35-40.
    黄辉,李义,郝向举, 2008.左旋咪唑对罗氏沼虾免疫功能及抗病力的影响.淡水渔业38(4):72-75.
    江婷婷,孙永欣,徐永平, 2008.多糖类免疫增强剂对海参肠道菌群的影响.饲料工业29(4):19-20.
    江小锋,樊延俊,丛日山,等.几种免疫促进剂对中国对虾血细胞数量、形态结构以及酚氧化酶产量和活性的影响.水产学报29(1):66-73.
    江晓路,刘树青,长朝晖,等. 1999.多糖对中国对虾免疫功能的影响.中国水产科学6(1):66-68.
    李爱杰, 1998.维生素C对中国对虾营养和免疫作用及最适剂型.粮食与饲料工业62:60-64.
    李继秋, 2004.对虾微生态制剂的研究与应用.研究生学位论文.中国海洋大学.
    李霞,王斌,刘静, 2003.虾夷马粪海胆体腔细胞的类型及功能.中国水产科学10(5):381-385.
    李义,吴婷婷,谭夕东,左旋咪唑对中华绒螯蟹非特异性免疫功能及抗病力的影响.水产学报31(6):785-791.
    梁思析,王爱波.1996.甘草酸—鱼类免疫增强剂.广东饲料(3):25.
    廖玉麟. 1997.中国动物志:棘皮动物门海参刚.北京:科学出版社p.148-150.
    廖玉麟. 2001.我国的海参.生物学通报35(9):1-4.
    刘昌彬,王金星,刘存仁, 2001.非生物环境因子对暴发性流行病病原感染的中国对虾发病的影响.水产学报25(1):58-63.
    刘恒,李光友, 1998.免疫多糖对养殖南美白对虾作用的研究.海洋与湖沼29(2):113-117.
    刘树青,江晓路,牟海津, 1999a.免疫多糖对日本对虾血清酶活性的研究.中国水产科学6(3):111-113.
    刘树青,江晓路,牟海津, 1999b.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用.海洋与湖沼30(30):278-283.
    刘晓云,谭金山,包振民, 2005.刺参体腔细胞的超微结构观察.电子显微学报24(6):613-615.
    罗日详, 1999.中药制剂对中国对虾免疫活性物的诱导作用.海洋与湖沼28(6):573-578.
    马跃华,胡守义, 2006.免疫多糖投喂海参幼体试验.河北渔业(7):22-23.
    孟凡伦, 1999.甲壳动物中酚氧化酶原系统研究评价.海洋与湖沼30(1):110-115.
    孟凡伦,马桂荣, 1999.乳链球菌SB900肽聚糖对中国对虾免疫功能的影响.山东大学学报:自然科学版34(1):88-93.
    苗玉涛,王安利, 2005.核苷酸在苏氏芒鲶配合饲料中的应用效果.广东饲料14(2):36-37.
    牟海津,江晓路,刘树青, 1999.日本对虾溶血素活性的测定及性能研究.海洋与湖沼30(4):362-367.
    彭其胜,郭文场,杨振国, 2007.中国对虾血淋巴液中的凝集素.中国水产科学7(4):14-18.
    阮洪生,葛文中,安红波. 2006.高效液相色谱法测定豆粕中染料木素和大豆苷元的含量.大豆科学25(4):361-363.
    孙舰军, 1999.改善虾池环境增强中国对虾抗病力的研究.海洋学1:3-5.
    谭北平,周歧存,郑石轩, 2004.β-1,3/1,6-葡聚糖制剂对凡纳滨对虾生长及免疫力的影响.高技术通讯14(5):73-77.
    宋晓玲,王秀华,陈国福,等. 2005.肽聚糖制剂提高凡纳对虾抗白斑综合征病毒感染力的研究.高技术通讯15(1):74-78.
    王广军,朱旺明,谭永刚,等. 2006.酵母核苷酸对凡纳滨对虾生长、免疫及抗应激影响的研究.饲料工业27(8):29-32.
    王雷,李光友,毛远兴, 1995.中国对虾血淋巴中抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究.海洋与湖沼26(2):179-184.
    王伟庆,李爱杰, 1998.用免疫消浊法比浊法测定中国对虾血清中的免疫因子.水产学报22(2):170-174.
    王新霞,谭北平,麦康森,等. 2004.β-葡聚糖在中国对虾(Penaeus chinensis)育苗中的应用.高技术通讯14(4):71-75.
    王新霞. 2004.对虾免疫增强剂的研究与应用.研究生学位论文.中国海洋大学.
    王秀华. 2002.肽聚糖对对虾免疫因子的作用及在对虾养殖中的应用.研究生学位论文.中国海洋大学. P17.
    王秀华,宋晓玲, 2004a.肽聚糖制剂对南美白对虾体液免疫因子的影响.中国水产科学11(1):26-30.
    王秀华,宋晓玲, 2004b.肽聚糖制剂对日本对虾非特异性免疫因子的作用.高技术通讯14(5):78-81.
    王宜艳,孙虎山,李光友, 2002.复合免疫药物对中国对虾血淋巴氧化酶和抗氧化酶活力的影响.海洋科学进展20(3):79-83.
    王印庚,荣小军,张春云,等. 2004a.养殖刺参暴发性疾病——“腐皮综合症”的初步研究与防治.齐鲁渔业21(50):44-47.
    王印庚,荣小军. 2004b.我国刺参养殖存在的主要问题与疾病综合预防技术要点.齐鲁渔业21(10):29-31.
    王印庚,荣小军,张春云,等. 2005.养殖海参主要疾病及防治技术.海洋科学29(3):1-7.
    吴志新,陈强,陈昌福, 1998.左旋咪唑对异育银鲫免疫促进作用的初步研究.华中农业大学学报17(4):378-381.
    向枭,向勇,冯君,等. 2002.甲壳素和左旋咪唑对罗非鱼的对比生长试验.饲料工业23(11):43-45.
    徐海圣,徐步进, 2001.甲壳动物细胞及体液免疫机理的研究进展.大连水产学报16(1):41-44.
    阳会军,谭北平,方怀义, 2001.饲料中添加不同水平β-葡聚糖对斑节对虾生长、存活及抗病力的影响.饲料工业22(9):18-19.
    杨清友, 1997.壳聚糖对罗氏沼虾苗的生脏和抗菌防病作用的实验.福建水产(3):17-24.
    杨先乐, 2000.微生态系统与水产动物的健康养殖.内陆水产2:23-24.
    叶淑芳, 1991.中国对虾体液免疫实验方法的探讨.海洋科学6:66-67.
    余祖功,夏德全,吴婷婷, 2006.大豆黄酮对奥利亚罗非鱼生长及相关激素水平、血液生化指标的影响.中国兽医学报26(2):183-185.
    袁成玉,张洪,吴垠, 2006.为生态制剂对幼刺参生长及消化酶活性的影响.水产科学25(12):612-615.
    章跃陵,王三英,彭宣宪, 2004.虾类免疫学的基础和研究应用.海洋科学24(12):26-29.
    张春晓,麦康森,艾庆辉,等. 2008.饲料中添加肽聚糖对大黄鱼生长和非特异性免疫力的影响.水产学报32(3):411-416.
    张春云,王印庚,荣小军. 2006.养殖刺参腐皮综合症病原菌的分离与鉴定.水产学报30(1):118-123.
    张群乐,刘永宏. 1998.海参海胆增养殖技术.青岛:青岛海洋大学出版社p.1-20.
    张璐,艾庆辉,麦康森,等. 2008.肽聚糖对鲈鱼生长和非特异性免疫力的影响.中国海洋大学学报38(4):551-556.
    张罗修, 1998.免疫药物研究与临床应用.上海:上海医科大学出版社15-17.
    赵红霞,张艳秋,黄磊, 2003.虾类的免疫系统与免疫防治.中国兽医杂志39(1):41-44.
    朱伟,麦康森,张百刚,等. 2005.刺参稚参对蛋白质和脂肪需求量的初步研究.海洋科学29(3):54-58.
    庄承纪,刘劲科,杨清友,等. 1998.壳聚糖对罗氏沼虾、斑节对虾苗生长和抗菌防病作用的研究.湛江海洋大学学报18(3):29-34.
    Abe N., Ebina T., Ishida N. 1982. Interferon induction by glycyrrhizin and glycyrrhetinic acid in mice. Microbiol. Immunol. 26:535-539.
    Adam A., 1991. Response of penaeid shrimp to exposure to Vibrio species. Fish Shellfish Immunol. 1:59-70.
    Adámek Z., HamáckováJ., Kouril J., et al. 1996. Effect of ascogen probiotics supplementation on farming success in rainbow trout (Oncorhynchus mykiss) and wels (Silurus glanis) under conditions of intensive culture. Krmiva (Zagerb) 38(1):11-20.
    Aguila A., Brock J., 2001. Lactoferrin: Antimicrobial and diagnostic properties. Biotechnol.Aplicada. 18:76-83.
    Ai Q., Mai K., Zhang L., et al. 2007. Effects of dietaryβ-1,3 glucan on innate immune response of large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immunol. 22:394-402.
    Amberuso D., Johnston R., 1981. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate and an enzymatic generating system. J. Clin. Invest. 67:352-360.
    Anderso R., 1996. Production of reactive oxygen intermediates haemocytes[A]. Nes directions in inverterbrate immunology(eds by S?derh?ll K, Sadaaki I, Vasta G), USA:SOS Publications P109-129.
    Anderson D., 1992. Immunostimulants, adjuvants, and vaccine carriers in fish: applications to aquaculture. Annu. Rev. Fish Dis. 2:281-307.
    Anthony M., Clarkson T., Williams J., 1998. Isoflavones on atherosclerosis: potential mechanisms. Am. J. Clin. Nutr. 68:1390S-1393S.
    AOAC, 1995. Official methods of analysis of official analytical chemists international, 16th edition. Washington, DC, 1018.
    Aono H., Ochara I., Mori K., 1993. Cell type-specific roles in the hemocyte clotting system of the spiny lobster, Panulirus japonicus. Comp. Biochem. Physiol. 205(A):11-15.
    Arjmandi B., Khan D., Jume S., et al. 1997. The ovarian hormone deficiency-induced hypercholesterolemia is reversed by soy protein and the synthetic isoflavone, ipriflavone. Nutr. Res. 17(5):885-894.
    Armstrong P., Quigley J., Richles F., 1990. The limulus blood cell secretesα2-Macroglobulin when activated. Biol. Bull. 178:137-143.
    Arnold R., Brewer M., Gauthier J., 1980. Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect. Immun. 28:893-898.
    Arnold D., Di Biase A., Marchetti M., et al. 2002. Antiadenovirus activity of milk proteins: lactoferrin prevents viral infection. Antivir. Res. 53:153-158.
    Arora A., Nair M., Strasburg G., 1998. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch. Biochem. Biophys. 356:133-141.
    Baba T., Watase Y., Yoshinoga Y., 1993. Activation of mononuclear phagocyte function by levamisole in carp. Nippon Suican Gakkaishi 59:301-307.
    Barnes S., Kirk M., Coward L., 1994. Isoflavones and their conjugates in soy foods– extraction conditions and analysis by HPLC mass-spectrometry. J. Agric. Food Chem. 42:2466-2474.
    Barnes S., Kim H., DarIey-Usmar V., et al. 2000. Beyond ERαand ERβ: Estrogen receptor binding is only part of the isoflavone story. J. Nutr. 130:6565-6575.
    Baruah N., Prasad K., 2001. Efficacy of levamisole as an immunostimulant in Macrobrachium rosenbergii (De man). J. Aquac. Trop. 16:149-158.
    Baruah N., Prasad K., 2005. Influence of dietary intake of levamisole on growth and survival of Macrobrachium rosenbergii (Palaemonidae, de Man). Asian Fisheries Science 18:25-31.
    Bayeye S., Elass E., Nazuruier J., et al. 1999. Lactoferrin, a multifunctional glycoprotein involved in the modulation of the inflammatory process. Clin. Chem. Lab. Med. 37:281-286.
    Bayme G., 1990. Phagocytosis and non-self recognition in invertebrates phagocyteosis appears to be an ancient line of defence. Bioscience 40:723-731.
    Blalock J., 1989. A molecular basis for bi-directional communication between the immune and neuroendocrine system. J. Physiol. Rev. 69: 1-32.
    Boonyaratpalin S., Boonyaratpalin M., 1995a. Effects of peptidoglucan(PG) on growth, survival, immune responses and tolerance to stress in black tiger shrimp, Penaeus monodon. Disease in Asian Aquaculture 11:469-477.
    Booyaratpalin, S., Boonyaratpalin M., Supamattaya K., et al. 1995b. Effects of peptidoglycan (PG) on growth, survival, immune response, and tolerance to stress in black tiger shrimp, Penaeus monodon. In: Shariff M, Arthur J R, Subasinghe P, (Eds.), Disease in Asian aquaculture Vol. 11, Fish health section, Asian Fisheries Society, Manila, Philippines. pp. 469-477.
    Borda E., Martinez-Puig D., Cordoba X., 2003. A balanced nucleotide supply makes sense. Feed Mix. 11:24-26.
    Borges J., Jensch-Junior B., Garrdo P., 2005. Phagocytic amoebocyte subpopulations in the pericisceral coelom of the sea urchin Lytechinus variegatus(Lamarch, 1816). J. Exp. Zoolog. A Comp. Exp. Biol. 303(3):241-248.
    Bortner C., Miller R., Arnold R., 1986. Bactericidal effect of lactoferrin on Legionella pneumphila. Infect. Immun. 51:373-377.
    Bradford M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
    Burrells C., William P., Southage P., et al. 2001a. Dietary nucleotides: a novel supplement in fish feeds 2. Effects on vaccination, salt water transfer, growth rate and physiology of Atlantic salmon. Aquaculture 199:171-184.
    Burrells C., William P., Forno P., 2001b. Dietary nucleotides: a novel supplement in fish feed 1. Effects on resistance to diseases in salmonids. Aquaculture 199:159-169. Cai Q., Wei H., 1996. Effect of dietary genistein on antioxidation enzyme activities in Sencar mice. Nutr. Cancer 25:1-7.
    Campa-Cordova A., Hernandez-Saavedra N., Philippis R., 2002. Generation of superoxide anion and SOD activity in haemocytes and muscle of American white shrimp(Litopenaeus vannamei) as a response toβ-1,3-glucan and sulphated polysaccharide. Fish Shellfish Immunol. 12:353-366.
    Canicatti C., 1990. Lysosomal enzyme pattern in Holothuria polii coelomocytes. Journal of Invertebrate Pathology 56:70(4).
    Carver J., 1994. Dietary nucleotides: cellular immune, intestinal and hepatic system effects. J. Nutr. 124(Suppl. 1S):144S-148S.
    Carver J., Walker W., 1995. The role of nucleotides in human nutrition. J. Nutr. Biochem. 6:58-72.
    Chand R., Sahoo P., Kumari J., et al. 2006. Dietary administration of bovine lactoferrin influences the immune ability of the giant freshwater prawn Macrobrachium rosenbergii (de Man) and its resistaance against Aeromonas hydrophila infection and nitrite stress. Fish Shellfish Immunol. 21:119-129.
    Chang C., Chen H., Su M., et al. 2000. Immuomodulation by dietaryβ-1, 3-glucan in the brooders of the black tiger shrimp Penaeus monodon. Fish Shellfish Immunol. 10:505-514.
    Chang C., Su M., Chen H., Liao I., 2003. Dietaryβ-1,3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish Immunol. 15:297-310.
    Chen C., Chen X., Riichi K., 2000. Adjuvant effect of glycyrrhizin in vaccines against bacterial septicemia in mandarinfish Siniperca chuatsi Basilewsky.华中农业大学学报19(3):256-260.
    Chen J., 2004. Present status and prospects of sea cucumber industry in China. Roma: Advances in sea cucumber aquaculture and management. FAO Fisheries Technical Paper 25-38.
    Cheng W., Chen J., 2003. Effects of temperature, pH, salinity and ammonia on the phagocyticactivity and clearance efficiency of giant freshwater prawn Macrobrachium rosenbergii to Lactococcus farvieae. Aquaculture 219:111-121.
    Cheng W., Liu C., Kuo C., et al. 2005. Dietary administration of sodium alginate enhances the immune ability of white shrimp Litopenaeus vannamei and its resistance against V. alginolyticus. Fish Shellfish Immunol. 18:1-12.
    Choudhury D., Pal A., Sahu N., et al. 2005. Dietary yeast RNA supplementation reduces mortality by Aeromonas hydrophila in rohu (Labeo rohita L.) juveniles. Fish Shellfish Immunol. 19:281-291.
    Cirarasu T., Sivaram V., Immanuel G., et al. 2006. Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, Penaeus monodon with reference to haematological, biochemical and immunological changes. Fish Shellfish Immunol. 21:372-384.
    Clow L., Gross P., Shih C-S., 2000. Expression of SpC3, the sea urchin complement component, in response to lipopolysaccharide. Immunogenetics 51:1043-1044.
    Cohen N., Sigel M., 1982. The reticuloendothelial system, London: Plenum. Publ. Comp. 257-282.
    Conand C., 2004. Present status of world sea cucumber resources and utilization: An international overview. p.13-25. In: Lovatelli A., Conand C., Purcell S., Uthicke S., Hamel J., and Mercier A., (eds). Advances in sea cucumber aquaculture and management. FAO Fisheries Technical Reports No. 463, FAO, Rome p.425.
    Cosgrove M., 1998. Nucleotides. Nutrition 14:748-751.
    Coward L., Barnes N., Setchell K., et al. 1993. Genistein, daidzein and theirβ-glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets. J. Agric. Food Chem. 41:1961-1967.
    Crance J., Leveque F., Biziagos E., 1994. Studies on mechanism of action of glycyrrhizin against hepatitis A virus replication in vitro. Antiviral Res. 23:63-76.
    Destoumieux D., Bulet P., Rodriguez J., 1997. Penaeidins: A new family of antimicrobial peptides isolated from the Penaeus vannamei(Decapode). J. Biol. Chem. 272:28398-28406.
    DiSilvestro R., Goodman J., Dy E., et al. 2005. Soy isoflavone supplementation elevates erythrocyte superoxide dismutase, but not plasma ceruloplasmin in postmenopausal breastcancer survivors. Breast Cancer Res. Trea. 89:251-255.
    Djangmah J., 1970. Effects of feeding and starvation on copper in the blood and hepatopancreas and on blood proteins of Crangon villgaris(Fabricius). Com. Biochem. Physiol. 32:709-731.
    Dolmatova L., Eliseykina M., Timchenko N., et al. 2003. Generation of reactive oxygen species in different fractions of the coelomocytes of Holothurian Eupentacta fraudatrix in response to the thermostable toxin of Yersinia pseudotuberculosis in vitro. Chin. J. Oceanol. Limnol. 21(4):293-304.
    Dolmatova L., Eliseikina M., Romashina V., 2004. Antioxidant Enzymatic Activity of Coelomocytes of the Far East Sea Cucumber Eupentacta fraudatrix. Journal of Evolutionary Biochemistry and Physiology 40(2):126-135(10).
    Edahiro T., Hamoguchi M., Kusuda R., 1990. Effect of glycyrrhizine against streptococcal infection of young yellowtail, Seriola quinqueradiata. Suisanzoshoku 38:239-243.
    Edds K., 1993. Cell biology of echinoid coelomocytes. I. Diversity and characterization of cell types. J. Invert. Pathol. 63:173-178.
    Eliseikna M., Magarlamov T., 2002. Coelomocyte morphology in the holothurians Apostichopus japonicus (Aspidochirota:Stichopodidae) and Cucumaria japonica (Dendrochirota: Cucumariidae). Russian Journal of Marine Biology 28(3): 197-202.
    Ellis A., 1990. Lysozyme assays. In Stolen J., Fletcher T., Anderson D., Robertsen B., Van Muiswinkel W., editors. Techniques in fish immunology. Fair Haven, NJ: SOS Publications p.101-103.
    Esteban M., Rodriguez A., Cuesta A., et al. 2005. Effects of lactoferrin on non-specific immune responses of gilthead seabream (Sparus auratus L.). Fish Shellfish Immunol. 18:109-124.
    Farnaud S., Evans R., 2003. Lactoferrin-a multifunctional protein with antimicrobial properties. Mol. Immunol. 40:395-405.
    Findlay V., Munday B., 2000. The immunomodulatory effects of levamisole on the nonspecific immune system of Atlantic salmon, Salmo salar L. J. Fish Dis. 23(6):369-378.
    Fridovich I., 1989. Superoxide dismutases an adaptation to a paramagnetic gas. J. Biol. Chem. 264:7761–7764.
    Gahr M., Speer C., Damerau B., et al. 1991. Influence of lactoferrin on the function of human polymorphonuclear leucocytes and monocytes. J. Leukoc. Biol. 49:427-433.
    Gil A., 2002. Modulation of the immune response mediated by dietary nucleotides. Eur. J. Clin. Nutr. 56(Suppl.3):S1-S4.
    Giovanni E., David J., Francois Y., 2007. Activation of endothelial nitric oxide synthase by dietary isoflavones: Role of NO in Nrf2-mediated antioxidant gene expression. Cardiovasc. Research. 75:261-274.
    Gollas-Galván T., Hernández-López J., Vargas-Albores F., 1997. Effect of calcium on the prophenoloxidase system activation of the brown shrimp (Penaeus californiensis, Holmes). Comp. Biochem. Physiol. 117A:419-425.
    Gopalakannan A., Arul V., 2006. Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture 255:179-187.
    Greiner L., Stahly T., Stabel T., 2001. The effect of dietary soy genistein on pig growth and viral replication during a viral challenge. J. Anim. Sci. 79:1272-1279.
    Grimble G., Westwood O., 2000. Nucleotides. In: German J., Keen C., (Eds), Nutrition and Immunology: Principles and Practice. Humana Press Inc., Totowa, NJ, USA, p.135-144.
    Gross P., Al-Sharifw Z., Clow L., 1999. Echinoderm immunity and the evolution of the complement system. Dev. Comp. Immunol. 23(4-5): 429-442.
    Gross P., Clow L., Smith L., 2000. SpC3, the complement homologus from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenet 51:1034-1044.
    Harada M., 1981. Protein phosphatase activity of calf intestinal alkaline phosphatase. Experientia 37:547-548.
    Harzsch S., Glotzner J., 2002. An immunohistochemical study of structure and development of the nervous system in the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Anostraca) with remarks on the evolution of the arthropod brain. Arthropod Struct. Dev. 30:251-270.
    Hatakeyama T., Kohzjki H., Nagatomo H., 1994. Purification and characterization of four Ca super(2+)-dependent lectins from marine invertebrate, Cueumaria eehinata. J. Biochem. Tokyo. 116(1):209-214.
    Hatakeyama T., Nagatomo H., Yamasaki N., 1995. Interaction of the Hemolytic Lectin CEL-III from the Marine Invertebrate Cucumariaechinata with the Erythrocyte Membrane. J. Biol.Chem. (270): 3560-3564.
    Haug T., Kiuul A., Styrvold O., 2002. Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria fromdosa (Holothuroidea), and Asterias rubens (Asteroidea). J. Invertebr. Pathol. 81(2):94-102.
    Hernández-López J., Gollas-Galván T., 1996. Activation of the prophenoloxidase system of the brown shrimp (Penaeus californiensis, Holmes). Comp. Biochem. Physiol. 113C:61-66.
    Herriott M., Jiang H., Stewart C., et al. 1993. Mechanistic differences between migration inhibitory factor (MIF) and IFN gamma for macrophage activation. J. Immunol. 150(10):4524-4531.
    Howe D., Barrows L., Lindstrom N., et al. 2002. Nitric oxide inhibits Coxiella burnetii replication and parasitophorous vacuole maturation. Infect. Immun. 70:5140-5147.
    Huang X., Zhou H., Zhang H., 2006. The effect of Sargassum fusiforme polysaccharide extracts on vibriosis resistance and immune activity of the shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol. 20:750-757.
    Hwang J., Wang J., Morazzoni P., et al. 2003. The phytoestrogen equol increases nitric oxide availability by inhibiting superoxide production: an antioxidant mechanism for cell-mediated LDL modification. Free Radical Bio. Med. 34(10):1271-1282.
    Ikeda I., Hosokawa H., Shimeno S., et al. 1991. Feeding stimulant activity of nucleotides, trytophan, and their related compounds of jack mackerel. Nipppon Suisan. Gakkaishi 57:1539-1542.
    Ispir U., Yonar M., 2007. Effects of levamisole on phagocytic activity of rainbow trout (Oncorhynchus mykiss W.). Acta Vet. Brno 76:493-497.
    Itami T., Takahashi Y., Tsuchihira E., 1994. Enhancement of disease resistance of kuruma prawn Penaeus japonicus and increase in phagocytic activity of prawn hemocytes after oral administration ofβ-1,3-glucan Schizophyllan. In: Chou L. et al. Eds., The Third Asian Fisheries Forum. Asian Fisheries Socitey, Manila, Philippines pp.375-378.
    Itami T., Asano M., Tokushige K., et al. 1998. Enhancement of disease resistance of kuruma shrimp, Penaeus japonicus, after oral administeration of peptidoglycan derived from Bifidobacterium. Aquaculture 165:277-288.
    Ito T., Matsutani T., Mori K., Nomura T., 1992. Phagocytosis and hydrogen peroxide productionby phagocytes of the sea urchin Strongylocentrotus nudus. Dev. Comp. Immunol. 16(4):287-294.
    Itoh K., Kumagai K., 1983. Augmentation of NK activity by several anti-inflammatory agents. Int Cong Series No 641. Excerpta Medica. 460-464.
    Jang S., Marsden M., Kim Y., et al. 1995. The effect of glycyrrhizin on rainbow trout, Oncorhynchus mykiss (Walbaum), leucocyte responses. J. Fish Dis. 18:307-315.
    Jiang G., Yu R., Zhou M., 2004. Modulatory effects of ammonia-N on the immune system of Penaeus japonicus to virulence of white spot syndrome virus. Aquaculture 241:61-75.
    Johansson M., S?derh?ll K., 1988. Isolation and purification of a cell adhesion factor from crayfish blood cells. J. Cell Biol. 106:1795-1803.
    Johansson M., Keyser P., Sritunyalucksana K., 2000. Crustacean haemocytes and haematopoiesis. Aquaculture 191:45-52.
    Kajita Y., Sakai M., Atsuta S., 1990. The immunomodulatory effects of levamisole on rainbow trout, Oncorhynchus mrkiss. Fish Pathol. 25:93-98.
    Kakuta I., Kurokura H., 1995. Defensive effect of orally administered bovine lactoferrin against Cryptocaryon irritans infection of red seabream. Fish Pathol. 30:289-290.
    Kakuta I., 1996a. Protective effect of orally administrated bovine lactoferrin against experimental infection of goldfish Carassius auratus with Ichthyophthirius multifiliis. Suisanzoshoku 44:427-432.
    Kakuta I., 1996b. Effect of orally administrated bovine lactoferrin on growth and blood properties of gold fish. Suisanzoshoku 44:419-426.
    Kakuta I., Kurokura H., Nakamura H., et al. 1996. Enhancement of the nonspecific defense activity of the skin mucus of red sea bream by oral administration of bovine lactoferrin. Suisanzoshoku 44:197-202.
    Kakuta I., 1997. Suppression of stress reactions of rainbow trout, Oncorhynchus mykiss, reared at high density by oral administration of bovine lacoferrin. Suisanzoshoku 45:345-350.
    Kamilya D., Ghosh D., Bandyopadhyay S., et al. 2006. In vitro effects of bovine lactoferrin, mushroom glucan and Abrus agglutinin on Indian major carp, catla (Catla catla) head kidney leukocytes. Aquaculture 253:130-139.
    Kanazawa A., 1995. Recent developments in shrimp nutrition and feed industry. Proceedings 5thIWGCN symposium, kagoshima, Japan, April.
    Kanost M., 1999. Serine proteinase inhibitors in arthropod immunity. Dev. Comp. Immunol. 23:291-301.
    Karupiah G., Xie Q., Buller R., et al. 1993. Inhibition of viral replication by interferon-γ- induced nitric oxide synthase. Science 261:1445-1448.
    Kawakami H., Hiratsuka M., Dosako S., 1988. Effects of iron-saturated lactoferrin on iron absorption. Agri. Biol. Chem. 52:903-908.
    Kimura M., Inoue H., Hirabayashi K., et al. 2001. Glycyrrhizin and some analogues induce growth primary cultured adult rat hepatocytes via epidermal growth factor receptors. Eur. J. Pharmacol. 431:151-161.
    Kondo Y., Takano F. 1994. Nitric oxide production in mouse peritoneal macrophages enhanced with glycyrrhizin. Biol. Pharm. Bull. 17(5):759-761.
    Krol R., Hawkins W., Vogelbein W., 1989. Histopathology and ultrastructure of hemocytic response to an acid-fast bacterial infection in cultured Penaeus vannamei. J. Aquat. Anim. Health 1:37-42.
    Kubitza F., Lovshin L., Lovell R., 1997. Identification of feed enhancers for largemouth bass Micropterus salmoides. Aquaculture 148:191-200.
    Kudriavtsev I., Polevshchikov A., 2004. Comparative immunological analysis of echinodern cellular and humoral defense factors. Zh. Obshch. Biol. 65(3): 218-231.
    Kuiper G., Lemmen J., Carlasson B., et al. 1998. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptorβ. Endocrinology 139:4252-4263.
    Kulkarni A., Fanslow W., Rudolph F., et al. 1986. Effect of dietary nucleotides on response to bacterial infections. J. Parenter. Enteral. Nutr. 10:169-171.
    Kumagai A., Yano S., Otomo M., 1957. Study on the corticoid-like action of glycyrrhizin and the mechanism of its action. Endocinol Japan. 4:(1)17-27.
    Kumari J., Swain T., Sahoo P., 2003. Dietary bovine lactoferrin induces changes in immunity level and disease resistance in Asian catfish Clarias batrachus. Vet Immunol Immunopathol. 94:1-9.
    Kumari J., Sahoo P., 2006a. Dietary levamisole modulates the immune response and disease resistance of Asian catfish Clarias batrachus (Linnaeus). Aquaculture Res. 37:500-509.
    Kumari J., Sahoo P., 2006b. Non-specific immune response of healthy and immunocompromisedAsian catfish (Clarias batrachus) to several immunostimulants. Aquaculture 255:133-141.
    Lambris J., Zarkadis., Tort L., Sunyer O., 1997. Phylogeny and Diversity of the third complement component C3. Abstracts of 7th Congress of ISDCI:Session H 143.
    Lea?o E., Guo J., Chang S., et al. 2003. Levamisole enhances non-specific immune response of cobia, Rzhycentron canadum, fingerlings. J. Fish Soc. Taiwan 30:321-330.
    Lee M., Shiau S., 2003. Increase of dietary vitamin C improves haemocyte respiratory burst response and growth of juvenile grass shrimp, Penaeus monodon, fed with high dietary copper. Fish Shellfish Immunol. 14(4) :305– 315.
    Leonardi M., Sandino A., Klempau A., 2003. Effect of a nucleotide-enriched diet on the immune system, plasma cortisol levels and resistance to infectious pancreatic necrosis (IPN) in juvenile rainbow trout (Oncorhynchus mykiss). Bull. Eur. Assoc. Fish Pathol. 23:52–59.
    Li P., Lewis D., Gatlin III D., 2004. Dietary oligonucleotide from yeast RNA influences immune responses and resistance of hybrid striped bass (Morone chrysops×M. saxatilis) to streptococcus iniae infection. Fish Shellfish Immunol. 16:561-569.
    Li J., Lee P., Chen O., Chen W., 2005. Dopamine depresses the immune ability and increases susceptibility to Lactococcus garvieae in the freshwater giant prawn, Macrobrachium rosenbergii. Fish Shellfish Immunol. 19:269-280.
    Li P., Wang X., Gatlin III D., 2006a. Evaluation of levamisole as a feed additive for growth and health management of hybrid striped bass (Morone chrysops×Morone saxatilis). Aquaculture 251:201-209.
    Li G., Guo Y., Zhao D., et al. 2006b. Effects of levamisole on the immune response and disease resistance of Clarias fuscus. Aquaculture 253:212-217.
    Li P., Gatlin III D., 2006c. Nucleotide nutrition in fish: Current knowledge and future applications. Aquaculture 251:141-152.
    Li P., Gatlin III D., Neill W., 2007a. Dietary supplementation of a purified nucleotide mixture transiently enhanced growth and feed utilization of juvenile red drum, Sciaenops ocellatus. J. World Aquaculture Soc. 38(2):281-286.
    Li P., Lawrence A., Castille F., et al. 2007b. Preliminary evaluation of a purified nucleotide mixture as a dietary supplement for Pacific white shrimp Litopenaeus vannamei (Boone). Aquac. Res. 38:887-890.
    Liao I., Su M., Chang C., et al. 1996. Enhancement of the resistance of grass prawn Penaeus monodon against Vibrio damaela infection by beta-1,3-glucan. J. Fish Soc. Taiwan 23:109-116.
    Ligo M., Kuhara T., Uchida Y., et al. 1999. Inhibitory effect of bovine lactoferrin on colon carcinoma 26 lung metastasis in mice. Clin. Exp. Metastas. 17:35-40.
    Liu C., Chen J., 2006. Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immunol. 16: 321-334.
    L?nnerdal B., Iyer S., 1995. Lactoferrin: molecular structure and biological function. Annu. Rev. Nutr. 15:93-110.
    Lorsbach R., Russell S. 1992. A specific sequence of stimulation is required to induce synthesis of the antimicrobial molecule nitric oxide by mouse macrophages. Infect. Immun. 60:2133.
    Low C., Wadsworth S., Burrells C., et al. 2003. Expression of immune genes in turbot (Scophthalmus maximus) fed a nucleotide-supplemented diet. Aquaculture 221:23-40.
    Lygren B., Sveier H., Hjeltnes B., et al.1999. Examination of the immunomodulatory properties and the effect on disease resistance of dietary bovine lactoferrin and vitamin C fed to Atlantic salmon (Salmo salar) for a short-term period. Fish Shellfish Immunol. 9:95-107.
    Mackie A., 1973. The chemical basis of food detection in the lobster Homarus gammarus. Mar. Biol. 21:103-108.
    Marzinzig M., Nussler A., Stadler J., et al. 1997. Improved methods to measure end products of nitric oxide in biological fluids: nitrite, nitrate, and S-nitrosothiols. Nitric Oxide 1:177-189.
    Matsuo K., Miyazano I., 1993. The influence of long-term administration of peptidoglucan on disease resistance and growth of juvenile rainbow trout. Nippon Suisan Gakkaishi 59:1377-1379.
    McElroy S., 1990. Beche-de-mer species of commercial value-an update. Beche-de-mer Inf. Bull. (2):2-7.
    Meng Z., Shao J., Xiang L., 2003. CpG oligodeoxynucleotides activate grass carp (Ctenopharyngodon idellus) macrophages. Dev. Comp. Immunol. 27:313-321.
    Motte E., Peralta F., Villegas V., Cedeno V., Mialhe E., 2001. Evaluation of the effect of Aqua-mos on the hemocyte respiratory burst of shrimp Litopenaeus vannamei, in an“in vitro test”. Aquaculture:Book of Abstracts p.462.
    Mulero V., Esteban M., Mu?oz J., et al. 1998. Dietary intake of levamisole enhances the immuneresponse and disease resistance of the marine teleost gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 8:49-62.
    Multerer K., Smith L., 2004. Two cDNAs from thr purple sea urchin, Strongylocen purpuratus, encoding mosaic proteins with domains found in factor H, factor I, and complement components C6 and C7. Immunogenetics 56(2):89-106.
    Munoz M., Vandenbulcke F., Saulnier D., 2002. Expression and distribution of penaeidin antimicrobial peptides are regulated by haemocyte reactions in microbial challenged shrimp. Eur. J. Biochem. 269(11):2678-2689.
    Naim M., Gestetner B., Zilkah S., et al. 1974. Soybean isoflavones, characterization, determination and antifungal activity. J. Agric. Food Chem. 1974, 22:806-812.
    Orsi N., 2004. The antimicrobial activity of lactoferrin: current status and perspectives. Biometals 17:189-196.
    Ortuno M., 2000. High dietary intake ofɑ-tocopherol acetate enhances the non-specific immune response of gilthead sebream. Fish Shellfish immunol. 10:293-370.
    Pan Y., Rowney M., Guo P., et al. 2007. Biological properties of lactoferrin: an review. Aus. J. Dairy Tech. 62:31-42.
    Parihar M., Javeri T., Hemnani T., et al. 1997. Responses of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropenustes fossilis) to short-term elevated temperature. J. Therm. Biol. 22:151–156.
    Payne R., Bidner T., Southern L., et al. 2001. Dietary effects of soy isoflavones on growth and carcass traits of commercial broilers. Poult Science 80:1201-1207.
    Person-Le Ruyet J., Menu B., Cadena-Roa M., et al. 1983. Use of expanded pellets supplemented with attractive chemical substances for the weaning of turbot (Scophthalmus maximus). J. World Maric. Soc. 14:676-678.
    Pipe R., 1992. Generation of reactive oxygen metabolites by the hemocytes of the mussel Mytilus edulis. Dev. Comp. Immunol. 16:111-112.
    Ratcliffen A., Rowley A., 1981. Invertebrate blood cells. New York:Academic Press New York 513-526.
    Ratcliffe N., Rowley A., Fitzgerald S., 1985. Invertebrate immunity: basic concepts and recent advances. Int. Rev. Cytol. 97(2):183-350.
    Rmadan A., Atef M., 1991. Effects of the biogenic performance enhancer (Ascogen“S”) on growth rate of tilapia fish. Acta. Vet. Scand. 87:S304-S306.
    Ren M., Kuhn G., Wegner J., et al. 2001. Isoflavones, substances with multi-biological and clinical properties. European J. Nutr. 40:135-146.
    Rengpipat S., Phianphak W., Piyatiratitivorakul S., Menasveta P., 1998. Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aquaculture 167:301-313.
    Rengpipat S., Rukpratanporn S., Piyatiratitivorakul S., et al. 2000. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium ( Bacillus S11). Aquaculture 191: 271-288.
    Renoux G., 1980. The general immunopharmacology of levamisole. Drugs 19:89-99.
    Rumsey G., Winfree R., Hughes S., 1992. Nutritional value of dietary nucleic acids and purine bases to rainbow trout (Oncorhynchus mykiss). Aquaculture 108:97-110.
    Sakai M., Otubo T., Atsuta S., et al. 1993. Enhancement of resistance to bacterial infection in rainbow trout, Oncorhynchus mykiss. by oral administration of bovine lactoferrin. J. Fish. Dis. 16:239-247.
    Sakai M., Kobayashi M., Yoahida T., 1995. Activation of rainbow trout, Oncorhynchus mykiss, phagocytic cells by administration of bovine lactoferrin. Comp. Biochem. Physiol. 110B:755– 759
    Sakai M., 1999. Current research status of fish immunostimulants. Aquaculture 172:63-92.
    Sakai M., Taniguchi K., Mamoto K., et al. 2001. Immunostimulant effects of nucleotide isolated from yeast RNA on carp, Cyprinus carpio L. J. Fish Dis. 24:433-438.
    Santiago-Cardona P., Berríos C., Ramírez F., García-Arrarás J., 2003. Lipopolysaccharides induce intestinal serum amyloid A expression in the sea cucumber Holothuria glaberrima. Dev. Comp. Immunol. 27:105–110.
    Shiau S., 1998. Nutrient requirements of penaeid shrimps. Aquaculture 164:77-93.
    Shinada M., Azuma M., Kawai H., et al. 1986. Enhancement of interferon-γproduction in glycyrrhizin-treated human peripheral lymphocytes in response to concanavalin A and surface antigen of hepatitis B virus. Proc. Soc. Exp. Biol. Med. 181:205-210.
    Shinmoto H., Dosako S., Nakajima I., 1992. Antioxidant activity of bovine lactoferrin oniron/ascorbate induced lipid peroxidation. Biosci. Biotechnol. Biochem. 56:2079-2080.
    Smith V., S?derh?ll K., 1991. A comparison of phenoloxidase activity in the blood of marine invertebrates. Dev. Comp. Immunol. 15(4):251-261.
    Smith L., Britten R., Davidson E., 1992. SpCoell: a sea urchin profiling gene expressed specifically in coelomocytes in response to injury. Mol. Biol. Cell. 3:403–414.
    Smith L., Britten R., Davidson E., 1995. Lipopolysaccharide activates the sea urchin immune system. Dev. Comp. Immunol. 19:217-224.
    Smith L., Clow L., Terwlliger D., 2001. The ancestral complement system in sea urchins. Immunological Reviews 180:16-34.
    Simth V., Brown J., Hauton C., 2003. Immunostimulation in crustaceans: does it really protect against infection. Fish Shellfish Immunol. 15:71-99.
    Smith L., Rast J., Brochton V., et al. 2006. The sea urchin immune system. ISJ 3:25-39.
    Swichi A., 1987. Immunomodulating activity of levamisole in spawners carp (Cyprinus carpio L.). J. Fish Biol. 31:245-246.
    Siwicki A., Korwin-Kossakowski M., 1988. The influence of levamisole on the growth of carp (Cyprinus carpio L.) larvae. J. Appl. Ichthyol. 4:178-81.
    Swichi A., 1989. Immunomodulating influence of levamisole on nonspecific immunity in carp (Cyprinus carpio L.). Dev. Comp. Immunol. 13:87-91.
    S?derh?ll K., Hall L., 1984. Liopolysaccharide-induced activation of prophenoloxidase activating system in crayfish haemocyte lysate. Biochem Biophys Acta 797:99-104.
    S?derh?ll K., Smith V., Johansson M., 1986. Exocytosis and uptake of bacteria by isolated haemocyte populations of two crustaceans: ecidence for cellular co-operation in the defence reactions of arthropods. Cell Tissue Research 245:43-49.
    S?derh?ll K., Cerenius L., 1998. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10:23-28.
    S?derh?ll K., 1999. Invertebrate immunity. Dev. Comp. Immunol. 23:263-266.
    Song Y., Hsieh Y., 1994a. Immunostimulation of tiger shrimp(Penaeus monodon) haemocytes for generation of microbicidal substances, Analysis of reactive oxygen species. Dev. Com. Immunol. 18:201-209.
    Song H., Kou G., Song Y., 1994b. Vibriosis resistance induced by glucan treatment in tigershrimp Penaeus monodon. Fish Pathol. 29(1):11-17.
    Song H., Chang H., Her C., 1998. Phenoloxidase activity of hemocytes derived from Penaeus monodon and Macrobrachium rosebergii. Journal of invertebrate pathology 71:26-33.
    Song Y., Huang C., 1999. Application of immunostimulants to prevent shrimp diseases, In: Fingerman M, Nagabhushanam R, editors. Immunobiology and pathology. Recent advances in marine biotechnology, vol. 5. Enfield, New Hampshire, USA: Science Publishers, Inc. p.173-188.
    Sritunyalucksana K., Sithisarn P, Withayachumnarnkul B., et al. 1999. Activation of prophenoloxidase, agglutinin and antibacterial activity in haemolymph of the black tiger prawn, Penaeus monodon, by immunostimulants. Fish Shellfish Immunol. 9:21–30.
    Sritunyalucksana K., S?derh?ll K., 2000. The ProPO and clotting system in crustaceans, Aquaculture 191:53-69.
    Stabli L., Pagliara P., Roch P., 1996. Antibacterial activity in the coelomocytes of the sea urchin Paracentrotus lividus. Comparative Biochemistry and Physiology Part B, Biochemistry and Molecular Biology 113(3):639-644.
    Su M., 1995. Enhancement of grass prawn Penaeus monodon postlarvae viability by beta-1,3-glucan from Schizophyllum commune. Jouranl of Taiwan fisheries research 3:125-132.
    Sun Y., Jin L., Wang T., 2008. Polysaccharides from Astragalus membranaceus promote phagocytosis and superoxide anion(O2-) production by coelomocytes from sea cucumber Apostichopus japonicus in vitro. Comparative Biochemistry and Physiology, Part C 147:293-298.
    Sung H., Kou G., 1994. Vibriosis resistance induced by glucan treatment in tiger shrimp(Penaeus monodon). Fish Pathology 29(1):11-17.
    Symoens I., Rosenthall M., 1977. Levamisole in the modulation of the immune response: The current experimental and clinical state. J. Reticuloendothel. Soc. 21:175-221.
    Takahashi Y., Kondo M., Itami T., 2000. Enhancement of disease resistance against penaeid acute viraemia and induction of virus-inactivating activity in haemolymph of kuruma shrimp, Penaeus japonicus, by oral adminstration of Pantoea agglomerans lipopolysaccharide (LPS). Fish Shellfish Immunol. 10:555-558.
    Takahiro F., Toshirou K., et al. 2003. Efficacy of a glycyrrhizin suppository for the treatment ofchronic hepatitis C:a pilot study. Hepatol. Res. 26:10-14.
    Tamaya T., Sato S., Okada H., 1986. Possible mechanism of steroid action of the plant herb extracts glycyrrhizin, glycyrrhetinic acid, and paeoniflorin: inhibition by plant herb extracts of steroid protein binding in the rabbit. Am. J. Obstet. Gynecol. 155:1134-1139.
    Uauy R., Sringel G., Thomas R., et al. 1990. Effect of dietary nucleotides on growth and maturation of the developing gut in the rat. J. Pediatr. Gastroenterol Nutr. 10:479-503.
    Uauy R., 1994. Nonimmune system responses to dietary nucleotides. J. Nutr. 124(Suppl. 1S):157S-159S.
    Uchida Y., Sekine K., Kuhara T., et al. 1999. Possible chemopreventive effects of bovine lactoferrin on esophagus and lung carcinogenesis in the rat. Jpn. J. Cancer. Res. 90:262-267.
    Wang W., Iigo M., Sato J., et al. 2000. Activation of intestinal mucosal immunity in tumorbearing mice by lactoferrin. Jpn. J. Cancer Res. 91:1022-1027.
    Wang Y, Zhang C, Rong X, et al. 2004. Diseases of cultured sea cucumber (Apostichopus japonicus) in China. p. 297–310. In: Lovatelli A., Conand C., Purcell S., Uthicke S., Hamel J. and Mercier A. (eds). Advances in sea cucumber aquaculture and management. FAO Fisheries Technical Report No. 463, FAO, Rome. p.425.
    Wang S., Chen J., 2005. The protective effect of chitin and chitosan against Vibrio alginolyticus in white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 19:191-204.
    Wang F., Chen J., 2006. The immune response of tiger shrimp Penaeus monodon ant its susceptibility to Photobacterium damselae subsp. damselae under temperature stress. Aquaculture 258:34-41.
    Wang Y., Shan T., Xu Z., et al. 2007. Effects of lactoferrin (LF) on the growth performance, intestinal microflora and morphology of weanling pigs. Anim. Feed Sci. Technol. 135:263-272.
    Wang K, Liu Z, Xu Y, et al. 2008a. Effect of L-ascorbic acid as immunity enhancer for juvenile sea cucumber, Apostichopus japonicus. J. Biotechnol. (article in press).
    Wang F., Yang H., Gabr H., et al. 2008b. Immune condition of Apostichopus japonicus during aestivation. Aquaculture (article in press).
    Wang Y., Xu C., An Z., et al. 2008c. Effect of dietary bovine lactoferrin on performance and antioxidant status of piglets. Anim. Feed Sci. Technol. 140:326-336.
    Welker T., Lim C., Yildirim-Aksoy M., et al. 2007. Growth, immune function, and disease andstress resistance of juvenile Nile tilopia (Oreochromis niloticus) fed graded levels of bovine lactoferrin. Aquaculture 262:156-162.
    Xing J., Leung M., Chia F., 1998. Quantitative analysis of phagocytosis by amoebocytes of a sea cucumber, Holothuria leucospilota. Invertebr. Biol. 117(1):67-74.
    Xing J., Chia F., 2000. Opsonin-like molecule found in coelomic fluid of sea cucumber, Holothria leucospilota. Marine Biology 136:979-986.
    Yokoyama S., Koshio S., Takakura N., et al. 2006. Effect of dietary bovine lactoferrin on growth response, tolerance to air exposure and low salinity stress conditions in orange spotted grouper Epinephelus coioides. Aquaculture 255:507-513.
    Zhang Y., Yoshida T., Isobe K., et al. 1990. Modulation by glycyrrhizin of the cell-surface expression of H-2 class 1 antigens on murine tumor cell lines and normal cell populations. Immunology 70: 405-410.
    Zhang Y., Isobe K., Nagase F., et al. 1993. Glycyrrhizin as a promoter of the late signal transduction for interleukin-2 production by splenic lymphocytes. Immunology 79:528-534.
    Zhang X., Huang C., Qin Q., 2004. Antiviral properties of hamocynin isolated from shrimp Penaeus monodon. Antiviral research 61(2):93-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700