用户名: 密码: 验证码:
吉林省大豆品种遗传改良中光合特性和硝酸还原酶活性变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大豆品种遗传改良过程中,选育的高产大豆品种已整合了多项高产的结构和功能特征。有些形态结构特征是显而易见的,但许多功能特征,特别是生理特性则是在选择过程中易被忽视的。本项研究旨在利用现代测试分析技术,对在常规育种中易被忽视的大豆叶片净光合速率、气孔导度、蒸腾速率等指标进行测定与分析,期望为高产育种提供理论依据。
     试验于2005~2006年在吉林农业大学试验田进行,结果如下:
     1)产量是大豆育种的一个重要指标。吉林省栽培大豆品种遗传改良中,大豆产量从1923年—2005年的82年间增加了1103.7 kg·hm~(-2),平均每年增加13.46 kg·hm~(-2),增加的百分率为95.94%,每年增长1.17%。
     2)随着大豆品种的遗传改良,叶面积指数不断增加。开花期以后叶面积指数与产量呈极显著正相关。1920s-1940s、1950s-1960s、1970s-1980s和1990s-2000s四个年代大豆品种的叶面积指数动态均呈抛物线状态,最大叶面积指数时期均出现在出苗后70天左右,1990s-2000s品种的叶面积指数分别比1920s-1940s、1950s-1960s、1970s-1980s品种的叶面积指数平均高出15.8%、12.0%和8.6%。说明,新品种的叶面积指数比老品种增加快且指数最大值较大,鼓粒期最大叶面积指数稳定期较长,衰退缓慢。这是大豆品种遗传改良中籽粒产量提高的主要原因之一。
     3)在大豆品种遗传改良中,收获指数随品种育成年代和产量的增加而增加。收获指数与产量呈极显著正相关。对干物质积累变化的研究表明,在整个生育期内,不同年代育成的大豆品种植株干物重和籽粒干物质积累均随年代的推进呈线性增加。不同年代大豆品种的植株干物重从出苗到鼓粒盛期(出苗后90天)逐渐增加,到鼓粒盛期达最大值,然后有所下降;大豆籽粒干物质积累从鼓粒初期(出苗后80天)到鼓粒末期(出苗后110天)逐渐增加,到鼓粒末期达最大值,成熟期略有下降。从鼓粒初期到成熟初期的40 d里,1920s-1940s、1950s-1960s、1970s-1980s和1990s-2000s品种的籽粒干重增长速率分别为4.86、5.95、7.09和8.08 g·m~(-2)·d~(-1)。现代品种籽粒增重速度快可能是品种产量提高的主要原因之一。
     4)对五个生育期间大豆叶片净光合速率与品种育成年代的相关分析表明,大豆结荚期叶片净光合速率与品种育成年代呈极显著的正相关,且相关系数最高(r=0.7275~(**))。通过对五个生育期间各个参数的比较和分析发现结荚期是大豆发育的重要时期,它直接决定着光合有效产物的运转和分配,在整个生育期内,大豆的净光合速率的最高值在结荚期,特别是高产的1990s-2000s大豆品种,结荚期的净光合速率要比1920s-1940s大豆品种高25.7%。结荚期是影响大豆产量的关键时期。
     5)对大豆的净光合速率和表观叶肉导度(Pn/Ci)与产量的相关分析表明,在整个生育期内,净光合速率和Pn/Ci与产量皆存在显著或极显著的正相关关系,在苗期的相关系数最小(r=0.4309~*、0.4816~*),结荚期的相关系数最大(r=0.6368~(**)、0.6502~(**))。净光合速率和Pn/Ci可作为高产育种的生理选择指标。
     6)在大豆品种遗传改良中,净光合速率,气孔导度、蒸腾速率、叶绿素含量和比叶重也随品种育成年代推进有不同程度的增加。现代高产品种并不是只具有高的净光合速率,气孔导度、蒸腾速率、叶绿素含量和比叶重等其它与产量形成密切相关的参数也较高,但在这些指标中净光合速率与产量的关系最为密切和稳定。所以,气孔导度、蒸腾速率、叶绿素含量和比叶重可作为品种选择的辅助指标。
     7)瞬时水分利用效率在大豆开花期随品种育成年代推进而降低的变化,到成熟期则随品种育成年代推进而增加。原因是现代品种花期叶片净光合速率提高的同时,蒸腾速率提高得更多。而成熟期老品种水分利用效率降低是由于净光合速率降低更快所致。
     8)叶片胞间CO_2浓度与品种育成年代呈负相关变化。并表现为净光合速率较高的时候,胞间CO_2浓度却较低,而这时气孔导度并不低。这说明随着大豆品种更替当代品种叶片同化CO_2的能力增强。同时也暗示新品种叶片Pn进一步提高可能存在气孔限制。
     9)在大豆发育的关键时期结荚期,叶片净光合速率、气孔导度的日变化呈双峰曲线变化,峰值出现在上午10:00和下午15:00。蒸腾速率呈单峰曲线变化,峰值出现在中午12:00。在整个日变化中,四个年代大豆品种的净光合速率、气孔导度和蒸腾速率的大小顺序为1990s-2000s品种>1970s-1980s品种>1950s-1960s品种>1920s-1940s品种。
     10)大豆鼓粒末期以后,1990s-2000s的品种仍能保持比1920s-1940s、1950s-1960s、和1970s-1980s品种相对较高的PSⅡ最大光化学效率(Fv/Fm)和光系统Ⅱ实际光化学效率(φ_(PSⅡ))。说明,现代品种叶片比老品种衰老缓慢,从而能使光合作用过程顺利进行,为碳同化提供更充足的能量和还原能力。
     11)不同生育时期大豆叶片的硝酸还原酶活性差异较大,硝酸还原酶活性大小为R_2期>V_4期>R_4期>R_6期。同一生育时期不同品种叶片硝酸还原酶活性也有一定差异,在V_4期、R_2期、R_4期和R_6期的变异系数分别为17.6%、8.6%、8.5%和12.7%,存在极显著或显著差异。
     12)大豆品种各生育时期的硝酸还原酶活性均随年代的推进呈线性增长变化,并与育成年代呈显著正相关,相关程度各生育时期大小排序为:V_4期>R_2期>R_6期>R_4期。
     13)在大豆品种遗传改良中,叶片硝酸还原酶活性的提高与产量的增长关系密切。所以,叶片硝酸还原酶活性也可作为大豆高产品种选择的指标之一。
With the genetic improvement in soybean cultivars, selective breeding high production soybeancultivars conformed high-yield structure and function characteristic. Some structure characteristic is choiceresult, but some concealed physiological characteristic hasn't been noted in the choice process. As theimprovement of modern technology, some concealed physiological characteristic may measure using theinstrument surveys definitely. Using modern test analysis technology, we measured and analyzed the netphotosynthetic rate (Pn), stomata conductance (Gs), transpiration (Tr) in the leaves. The expectationprovides the theory basis for the high yield breeding.
     From 2005 to 2006, the experiment was conducted at experimental station of Jilin AgriculturalUniversity, the results as follows:
     Yield is a important index of soybean breeding. With the genetic improvement in soybean in Jilinprovince, the yield has increased 1103.7 kg/hm~2 in the past 82 years from1923—2005, increased 95.94%, or12.5 Kg/hm~2 year and 0.98% in each year.
     Leaf area index (LAI) was increased as the genetic improvement of soybean cultivar. LAI was highlysignificantly positive correlated with yield after flowering stage. LAI was parabola condition, which ofsoybean cultivar in 1920s-1940s, 1950s-1960s, 1970s-1980s, 1990s-2000s .There was the largest leaf areaindex at about 70 days after seedling. The LAI of 1990s-2000s breed were higher 15.8%, 12.0% and 8.6%than that of 1920s-1940s, 1950s-1960s, and 1970s-1980s, respectively. The result showed that the LAI ofnew breed rapidly increased, highly maximum, longer and calm the largest LAI, slow wither comparedwith the old breed. It is a main reason of seed yield increasing as the genetic improvement of soybeancultivar.
     As the increase of yield, harvest index was increase with year of release during the geneticimprovement in soybean cultivars. Harvest index was highly significantly positive correlated with yield.The variation of dry matter accumulation showed that the plant dry matter weight and grain seed dry weightof breeding in different years were increased with the year of release. The plant dry matter weight wasincreased gradually from seedling to middle seed-filling stage (after seedling 90 days). The maximum is atthe middle seed-filling stage, then decline. Dry matter accumulation was increased gradually from beginseed-filling (after seedling 80 days) to end seed-filling stage (after seedling 110 days), the maximum was atthe end seed-filling stage, decline at mature stage. During 40 days from begin seed-filling to endseed-filling stage, the increasing rate of seed dry weight is 4.86,5.95,7.09 and 8.08 g·m~(-2).d~(-1) in soybean cultivar in 1920s-1940s, 1950s-1960s ,1970s-1980s, respectively. It is one of the important factors ofincreased grain yield, that seed dry weight is rise quick in modern soybean cultivars.
     The correlation analysis of leaf photosynthetic rate and the breeding year during the five growth stagesshowed that: the leaf photosynthetic rate was highly significantly positive correlation at the seed-poddingstage, and the related coefficient is the highest (r=0.7275~(**)). Through to five growth stages each parametercomparison and the analysis, we discovered that seed-podding stage is important time of soybean growth. Itwas deciding directly the photosynthesis effective product revolution and assign. At the whole stages,seed-podding stage has the highest net photosynthetic rate, especially the photosynthetic rate of high yieldcultivar breeding after the 1990s-2000s were higher 25.7% than the cultivar of 1920s-1940s at theseed-podding stage. The seed-podding stage is crucial stage that affects the soybean yield.
     The correlation analysis of leaf photosynthetic rate, Pn/Ci and yield showed that: At the whole growthstages, the leaf net photosynthetic rate, Pn/Ci was highly significantly or significantly positive correlationwith yield. The related coefficient(r=0.4309~*、0.4816~*) is the highest in seedling, and the relatedcoefficient(r=0.6368~(**), 0.6502~(**)) is the highest in seed-podding stage. Pn and Pn/Ci could as physiologicalselection indexes of high yield breed.
     During the genetic improvement in soybean cultivars, Pn, Gs, Tr, chlorophyll content and SLW isincreasing with year of release. Pn of modern high yield cultivars wasn't only high, but Gs, Tr, chlorophyllcontent and SLW of the close correlation parameter with the yield forms also high. The yield and Pn hadthe most close and stable relationship in all of index. Therefore, Gs, Tr, chlorophyll content and SLW couldas auxiliary selection indexes of high yield breed.
     Water usage efficiency (WUE) was decreased with year of release in flowering stage, but it wasincreased with year of release in maturity stage. The reason was that the increase of Tr was greater than theincrease of Pn of modern cultivars with year of release in flowering stage. WUE of old cultivars wasdecreased in maturity stage, it is the reason that Pn was reduces quicker than Tr.
     Intercellural CO_2 concentration (Ci) was negative correlated with year of release. Ci was low, when Pnand Gs were high. This indicated that present cultivars leaf assimilates CO_2 the ability strengthens with thesoybean cultivars change. Continually Pn increasing could be limited from stomata in leaves of presentcultivars.
     In seed-podding stage of crucial stage affects the soybean grow, the diurnal variation of Pn and Gswere the "double peek" curve, the peak value appears in the morning 10:00 and afternoon 15:00. Diurnalvariation of Tr was the "one peek" curve, the peak value appears in the 12:00. At the whole diurnalvariation, Pn, Gs ,Tr of four ages soybean cultivars order 1990s-2000s>1970s-1980s>1950s-1960s>1920s-1940s.
     After last phase pod-filling, the maximal efficiency of PSⅡphotochemistry (Fv/Fm) and actual efficiency of PSⅡ(φ_(PSⅡ)) in leaves of soybean cultivars of 1990s-2000s were higher than soybean cultivarsof 1920s-1940s, 1950s-1960s, and 1970s-1980s. The result indicated that newer soybean cultivars leaveswere slower than older soybean cultivars leaves of senescence rate. Therefore high Pn in leaves newersoybean cultivars of could provide more ATP and NADPH.
     The nitrate reductase activity (NRA) in the leaves of soybean was different significantly at everystage. The order of NRA from high to low was: R_2 stage>V_4 stage>R_4stage>R_6 stage. There weredifference in NRA in the leaves of soybean in the same growth stage ,the CV% respectively were17.6%,8.6%,8.5% and 12.7% at V_4 stage, R_2 stage, R_4stage and R_6 stage, there were very significantdifference or significant difference.
     The nitrate reductase activity at different growth stage was increased linearly from 1923 to 2005,andthere was significant positive relationship between NRA and the year of release, the order of relationshiplevel from high to low is : V_4 stage>R_2 stage>R_6 stage>R_4 stage.
     Increasing of Nitrate Reductase Activity (NRA) in the leaves and yield is close in the geneticimprovement in soybean cultivars. Therefore, NRA in the leaves could be one of selection index forhigh-yield soybean cultivars.
引文
[1] Food and Agriculture Organization. The State of Food Insecurity in the World. 1999. Rome.
    [2] Gregory PJ & Ingram JSI. Global change and food and forest production: future scientific challenges. Agric. Ecosyst. Environ. 2000, 82: 3-14.
    [3] 陈应,张群远.国家大豆品种区域试验精确度研究.2003,3.
    [4] 徐克章,张治安.植物生理学.高等教育出版社和吉林大学出版社,2005.
    [5] Wilcox, J. R., W. T. Schapaugh, Jr., R. L. Bernard, R.L. Cooper, W.R.Fehr, andM.H.Niehau.Genetic improvement of soybeans in the Midwest.Crop Sci, 1979,19:803-805.
    [6] Leudders, V. D. Genetic improvement in yield of soybeans.CropSci, 1977,17:971-972.
    [7] Boerma, H. R.: Comparison of past and recently developed soybean cultivars in maturity groups Ⅵ, Ⅶ and Ⅷ. Crop Sci,1979,19: 611-613.
    [8] Voldeng H. D., Cober, E. R., Hume, D. G., Gillard, C., Morrison, M. J. Fifty eight years of genetic improvement of short-season soybean cultivars in Canada. Crop Sci, 1997, 37: 428-431.
    [9] Morrison, M. J., Voldeng, H. D., Cober, E. R.: Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agron. J. 1999, 91: 685-689.
    [10] Ustun, A., Allen, F. L., English, B. C.: Genetic progress in soybean of U. S. Midsouth. Crop Sci, 2001, 41: 993-998.
    [11] 赵团结,盖钧镒,李海旺,等.超高产大豆育种研究的进展与讨论.中国农业科学,2006,39(1):29-37.
    [12] 张海泉,王铁军.大豆育种工作的现状与展望.沈阳农业大学学报,2000.
    [13] Hutchinson, J. B. Crop Plant Evolution. Cambridge University Press. 1965.
    [14] Duvick DN. Genetic contributions to advances in yield in U. S. maize. Maydica 1992,37: 69-79.
    [15] Eyherabide GH, Damilano AL & Colazo JC. Genetic gain for grain yield of maize in Argentina. Maydica 1994, 39:207-211.
    [16] Ivanovic M & Kojic L. Grain yield of maize hybrids in different periods of breeding. Informatsionnyi Byulleten po Kukuruza 1990,8:93-101.
    [17] Russell WA. Genetic improvement of maize yields. Adv. Agron. 1991,46:245-298.
    [18] Tollenaar M. Physiological basis of genetic improvement of maize hybrids in Ontario from 1959 to 1988. Crop Sci. 1991,31:119-124.
    [19] Dwyer LM & Tollenaar M. Genetic improvement in photosynthetic response of hybrid maize cultivars, 1959 to 1988. Can. J. Plant. Sci. 1989, 69: 81-91.
    [20] Specht J. E., D. J. Hume, S. V. Kumudini. Soybean yield potential—a genetic and physiological perspective[J]. Crop Sci. 1999, 39: 1560-1570.
    [21] Specht J. E., J. H. Williams. Chapter 3. Contribution of genetic technology to soybean productivity—Retrospect and pros-pect[M]. 1984, p. 49-74. In W. R. Fehr(ed.)Genetic contribution to yield gains of five major crop plants. CSSA Special Publ. 7. CSSA and ASA, Madison, WI.
    [22] Williams J. H., J. E. Specht. A perspective on yield advances attributable to soybean variety development [M]. 1979, p. 81. In Agronomy abstracts. ASA, Madison, WI.
    [23] Boerma, H. R. Comparison of past and recently developed soybean cultivars in maturity groups Ⅵ, Ⅶ, and Ⅷ[J]. Crop Sci. 1979, 19: 611-613.
    [24] Evans LT & Fischer RA. Yield potential: its definition, measurement, and significance. Crop Sci. 1999, 39: 1544-1551.
    [25] Fasoula D & Fasoula V. Competitive ability and plant breeding. Plant Breed. Rev. 1997, 14: 89-138.
    [26] Loomis RS & Amthor JS. Yield Potential, Plant Assimilatory Capacity, and Metabolic Efficiencies Crop Science 1999, 39: 1584-1596.
    [27] Bernardo R. What If We Knew All the Genes for a Quantitative Trait in Hybrid Crops? Crop Science 2001, 41: 1-4.
    [28] Duvick DN & Cassman KG. Post-Green revolutiontrends in yield potential of temperate maize in the north-central United States. Crop Sci. 1999, 39: 1622-1630.
    [29] Board, J. E., W. Zhang, B. G. Harville. Yield rankings for soybean cultivars grown in narrow and wide rows with late planting dates[J]. Agron. J. 1996, 88: 240-245.
    [30] Kumudini S., D. J. Hume, G. Chu. Genetic improvement in short season soybeans: I. Dry matter accumulation, partitioning, and leaf area duration [J]. Crop Sci. 2001, 41: 391-398.
    [31] 董钻等.大豆品种生产力的比较研究,沈阳农学院学报,1979(3):37-47.
    [32] 常耀中等.大豆高产规律及栽培技术研究,作物学报,1982(1):41-48.
    [33] 胡明祥等.大豆高产株型育种研究,吉林农业科学,1980(3):1-14.
    [34] 董钻等.大豆亩产450斤的生理参数及栽培措施初探险.大豆科学1982,1(2):131-139.
    [35] 郝乃斌等.高光效大豆光合特性的研究,大豆科学,1989,8(3):283-287.
    [36] 林蔚刚等,大豆不同群体叶面积与光强垂直分布初步分析,大豆科学,1996,15(1):56-60.
    [37] 李卫华等.高产大豆品种的高光效特性.生物物理学报,2000 16(2)421-426.
    [38] 张荣贵等,大豆叶面积、净光合生产率与产量的相关性,中国农业科学,1979(1):40-47.
    [39] 孙贵荒,刘晓丽,董丽杰,陈艳秋.大豆叶面积指数消长与产量关系的研究.辽宁农业科学2003(4):13-14.
    [40] Cregan P. B., R. W. Yaklieh. Dry matter and nitrogen accumulation and partitioning in selected soybean genotypes of different derivation [J]. Theor. Appl. Genet. 1986, 72: 782-786.
    [41] Frederick, J. R., J. D. Hesketh. Genetic improvement in soybean: Physiological attributes [M]. 1994, p. 237-286. In G. A. Slater (ed.) Genetic improvement of field crops. Marcel Dekker, Inc., New York.
    [42] Schapaugh W. T., Jr., J. R. Wilcox. Relationship between harvest indices and other plant characteristics in soybeans [J]. Crop Sci. 1980, 20: 529-533.
    [43] Egli, D. B., J. H. Orf, T. W. Pfeiffer. Genotypic variation for duration of seedfill in soybean [J]. Crop Sci. 1984, 24: 587-592.
    [44] Egli,.D. B. Cultivar maturity and potential yield of soybean [J]. Field Crops Res. 1993, 32: 147-158.
    [45] Hanway, J. J., C. R. Weber Dry matter accumulation in eight soybean (Glycine max [L.] Merrill) varieties[J]. Agron. J. 1971, 63: 227-230.
    [46] Gay S., D. B. Egli, D. A. Reicosky. Physiological aspects of yield improvement in soybeans [J]. Agron. J. 1980, 72: 387-391.
    [47] Smith,.J.R., R. L. Nelson. Relationship between seed-filling period and yield among soybean breeding lines [J]. Crop Sci. 1986, 26: 469-472.
    [48] Weber, C. R., R. M. Shibles, D. E. Byth. Effect of plant population and row spacing on soybean development and production [J]. Agron. J. 1996, 58: 99-102.
    [49] Hartwig, E. E. Varietal Development [M]. 1973, p. 187-210. In B. E. Cald-well(ed.)Soybeans: improvement, production, and uses. Agron. Monogr. 16. ASA, CSSA, and SSSA, Madison, WI.
    [50] Shiraiwa, T., U. Hashikawa. Accumulation and partitioning of nitrogen during seed filling old and modem soybean cultivars in relation to seed production[J]. Jpn. J. Crop Sci. 1995, 64: 754-759.
    [51] Morrison M. J., Voldeng H. D.,Cober E.R..Agronomic changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agronomy journal, 2000, 92: 780-784.
    [52] Karmakar, P. G., Bhatnagar, P. S.. Genetic improvement of soybean varieties released in India from 1969 to 1993. Euphytica,1996,90: 95-103.
    [53] 杨秀红,吴宗,张国栋.不同年代大豆品种根系性状演化的研究.中国农业科学,2001,34(3):292-295.
    [54] 费志宏,谢甫绨,朱洪德,张军.黑龙江省早熟大豆品种主要农艺性状演变趋势.中国油料作物学报,2006,28(1):21-24.
    [55] 张礼凤,徐冉,王彩洁.山东大豆品种主要农艺性状的演进.大豆科学,2005,24(3):195-198.
    [56] 费志宏,谢甫绨,朱洪德,张军.黑龙江省中熟大豆品种主要农艺性状演变趋势分析.中国农学通报,2005,21(11):106-109.
    [57] 张恒善,程砚喜,王大秋等.大豆结荚期品种间叶绿素含量差异与产量相关分析,大豆科学,2001,20(4):275-279.
    [58] Buttery B.R.and Buzzell R.I.(赵福洪译).大豆光合作用速率和叶绿素含量之间的关系.光合作用,科学出版社,1979,72-75.
    [59] 朱保葛,柏慧侠,张艳,李社荣,陈修文.大豆叶片净光合速率、转化酶活性与子粒产量的关系.大豆科学,2000,19(4):46-50.
    [60] 冯乃杰,郑殿峰,张玉先,杜吉到.化控种衣剂对大豆叶片叶绿素含量及产量的影响,黑龙江 八一农垦大学学报,2002 14(2):5-8.
    [61] 唐树延,孟继武,杨文杰.大豆光合作用叶绿素a,b间能量传递.大豆科学,1985,4(3):285-291.
    [62] Louwerse W.,W,V.D.Zweerde.Photosynthesis,Transpiration and leaf morphology of phaeolus vulgaris and Zea mays grown at different irradiances in artificial and sun-light[J]. Photosynthetica, 1977, 11(1):11-14.
    [63] 徐根娣,蔡妙珍,刘鹏.硼、锰营养对大豆光合特性的影响.浙江师范大学学报(自然科学版),2004,27(1):62-65.
    [64] 王继安,宁海龙,李文滨.大豆品种间叶绿素含量、RUBP活性、希尔反应活力及其与产量间的关系.东北农业大学学报,2004,35(2):129-134.
    [65] 薛崧,吴小平,冯彩平,张倩,不同氮素水平对旱地小麦叶片叶绿素和糖含量的影响及其与产量的关系.干早地区农业研究,1997,15(1):79-83.
    [66] 胡根海,章建新,唐长青,北疆春大豆生长动态及干物质积累与分配,新疆农业科学,2002,39(5):264-267.
    [67] 陈雯莉,李阜棣,周俊初.用叶绿素含量评价快生型大豆根瘤菌的共生有效性,华中农业大学学报,1996,15(1):46-51
    [68] 傅金民,张庚灵,史春余,颜环环,苏芳.大豆开花后叶片衰老规律的研究,西北植物学报,2000,20(5):796-801
    [69] Mann C C. Genetic engineerings aim to soup up crop photosynthesis. Science,1999,283:314-316.
    [70] Moss, D.N., Musgrave, B. P. Photosynthesis and crop production. In: Brady, N.C.(ed). Advancesin Agronomy. Academic Press. New York and London, 1971, 23:317-336.
    [71] Menz.K.M., Moss.D.D, Cannell.R. Q., Brun.W.A. Screening for photosyntheticefficiency. Crop Sci,1969, 9:692-694
    [72] Marx.J.L. Photorespiration: key to increasing plant productivity. Science, 1973, 179: 365-367.
    [73] Bhagsari. A, Brown. R H. Leaf photosynthesis and its correlation with leaf eara. Crop Science, 1986, 26:127-132.
    [74] Lawlor, D. W. Photosynthesis, production and environment. Journal of Experimental Botany, c1995, 46:1389-1396
    [75] Duncan WG et al, Net photosynthetic rate relative leaf growth rates, and leaf numbers of 22 races of maize grown at eight temperature, Crop Sci, 1968,8670-8674.
    [76] Hanson W.D.Selection for differential productivity among Juvenile Maize plants: Accociate net photosynthetic rate and leaf area changes. Crop Sci., 1971,11334-11339.
    [77] Larson, E. M., Hesketh, J. D., Wooley, J. T., Peters, D.B.: Seasonal variation in apparent photosynthesis among plant stands of different soybean cultivars. Photosynth. Res,1981,2: 3-20.
    [78] Nelson C J. Genetic associations between photosynthesis characteristics and yield: Review of the evidence. Plant physiol Biochem, 1988, 26: 543-554.
    [79] 韩庚辰.玉米主要光合性状与产量的关系及遗传效应分析.作物学报,1982,(4):237-244.
    [80] Sinclair T.R. Analysis of the carbon and nitrogen limitation to soybean. Agron. J, 1976,68:319-324.
    [81] Pandey, C. S.,Singh M. Genotypic variation in photosynthetic efficiency in relation to productivity of gram (Cicer arietinum) genotypes. Indian J Agric Sci, 1996, 66: 466-469.
    [82] Bhatia V. S., Tiwari S. P., Joshi O. P. Inter-relationship of leaf photosynthesis, specific leafweight and leaf anatomical characters in soybean. Indian J Plant Physiol, 1996, 39: 6-9.
    [83] Jiang, GM., Hao, N. B., Bai, K. Z., Zhan, Q.D., Sun, J. Z., GUO, R. J., Ge, Q.Y., Kuang, T. Chain of correlation between variables of gas exchange and yield potential in diferent winterwheat cultivars. Phoyosynthetica, 2000, 38: 227-232.
    [84] Day W.,Chalabi Z.S. Use of models to investigate the link between the modification of photosynthesis characteristics and improved crop yields.Plant physiol Biochem, 1998,26:511-517.
    [85] Ashley, D. A., Boerma, H.R.: Canopy photosynthesis and its association with seed yield in advanced generations of a soybean cross. -Crop Sci, 1989,29:1042-1045.
    [86] 杜维广等.大豆品种(系)间光合活性的差异及其与产量的关系.作物学报,1982(2):131-135.
    [87] 沈允钢.光合作用与作物生产译丛,1980,(1):1-10.
    [88] 张贤泽等.大豆群体的光合速率—测定方法及其与产量的关系.大豆科学,1984,3(2):127-131.
    [89] 李永孝等.夏大豆光合速率与叶龄及水肥条件的关系.大豆科学,1992,11(1):36-42.
    [90] Makine A, Mac T, Chira K. Changes in photosynthetic capacity in rice leaves from emergence through senescence-Analysis from ribulose 1,5-bisphosphate carboxylase and leaf conductance. Plant Physiol, 1984, 25: 511-521.
    [91] Patterson, TG. &Hoss, D. N. Enzymatic changes during the senescence of field-grown wheat.Crop Sci,1980, 20: 19-23.
    [92] 楚奎锡.高产大豆叶面积消长规律和光合势、净同化率与产量相关模型的研究.大豆科学,1988,7(3):215-222.
    [93] Singh, S. P., Lal, K. B., Ram, R. S., Singh K. N. Photosynthetic efficiency and productivity of pigeonpea. Indian Journal of Pulses Research, 1993,6:212-214.
    [94] Wells R, Schulze L. L, Ashley D. A. Cultivar difference canopy apparent photosynthesis and their relationship to seed yield in soybeans. Crop Sci, 1982, 22: 886-890.
    [95] 杜维广等.大豆光合作用与产量关系的研究.大豆科学,1999,18(2):154-159.
    [96] 邹冬生,郑玉尧.大豆叶片光合、蒸腾等生理特性的品种间比较研究.大豆科学,1990,9(1):25-31.
    [97] 许大全.沈允钢.光合作用与作物产量.作物高产光效生理研究进展.科学出版社.1992
    [98] 许大全.光合速率、光合效率与作物产量.生物学通报.1999,34(8):8-10.
    [99] 徐克章,张治安,徐惠凤.高梁叶片比叶重的变化与产量关系的研究.吉林农业大学学报,1998, 20(2):11-13.
    [100]徐 惠风,金研铭,徐克章.向日葵叶片叶绿素和比叶重及其产量研究.农业系统科学与综合研究.2003,2(19):97-100.
    [101] 徐克章,张治安.人参叶片比叶重特性的初步研究[J].吉林农业大学学报,1994,4,(16):39-42.
    [102] 徐克章,苗以农.大豆叶片形态解剖与光合作用速率.大豆科学,1983,2(3):169-173.
    [103] 于海秋,武志海,沈秀瑛,徐克章.水分胁迫下玉米叶片气孔密度、大小及显微结构的变化.吉林农业大学学报,2003,25(3):239-242.
    [104] 李大勇,王晓慧,张治安,等.半野生和栽培大豆叶片某些光合特性的比较[J].中国油料作物学报,2006,28(2):172-175.
    [105] 沈允纲.动态光合作用.第一版.科学出版社.北京.1998.
    [106] Khoo GH, He J & Hew CS. Photosynthetic utilization of radiant energy by CAM Dendrobium flowers. Photosynthetica, 1997, 34: 367-376.
    [107] 杨善元.叶绿素b聚集体和它的能化态的性质.植物生理学报,1989,15:83-87.
    [108] 林世青.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用.植物理理学报.1992.9:1-16
    [109] 张其德.几种不同产量水平水稻品种光合特性的比较.中山大学学报(自然科学)论丛.1989,8:24-29.
    [110] 张其德.运用叶绿素a荧光诱导动力学技术检测水稻生产潜力.生物物理学报,1990,6:152-158.
    [111] 李卫华,卢庆陶,郝乃斌,戈巧英,张其德,蒋高明,杜维广,匡廷云.大豆C4途径与光化学功能的相互关系.植物学报.2000,42:689-692.
    [112] Genty B, Briantais JM & Baker NR. The relationship between the quantum yield of no photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Biochim Biophys Acta, 1989, 99: 87-92.
    [113] 高振福等.不同水分条件下大豆干物重增长的数学模型与应用.大显科学,1986,5:299-304.
    [114] 常耀中.大豆需水规律与灌溉增产效果研究.大豆科学.1983,2:277-285.
    [115] 阎秀峰,许守民,苗以农.大豆光合生理生态的研究.大豆科学,1990,9:221-227.
    [116] 丁希泉等.大豆需水规律与滴灌技术与指标.中国油料,1982,(2):31-35.
    [117] 竹岛博二(汪福勤译).地下水位和大豆产量与光合作用的关系.国外农学-大豆,1983,(3):9-15.
    [118] 汤玉玮,林振武,陈敬祥.硝酸还原酶活力与作物耐肥性的相关性及其在生化育种上应用的探讨.中国农业科学,1985,6:39-45.
    [119] 林振武等.硝酸还原酶活力与作物耐肥性的研究.中国农业科学,1983,8:37-43.
    [120] 李豪哲.大豆叶片硝酸还原酶活力的研究[[J].植物生理学通讯,1986(4):30-32.
    [121] 余让才,李明启.高等植物硝酸还原酶的光调控.植物生理学通讯,1997,33(1):61-65.
    [122] 刘丽,甘志军,王宪泽.植物氮代谢硝酸还原酶水平调控机制的研究进展.西北植物学报,2004, 24(7):1355-1361.
    [123] 周阮宝,谷丽萍.植物硝酸还原酶的研究进展.植物杂志,1994.3:5-7
    [124] 李豪哲.不同大豆品种苗期硝酸还原酶(NR)的活力.科学通报,1986,24:1903-1904.
    [125] 温尚斌,石连旋,王丹生,马福荣,陈宏.大豆叶片光合与呼吸硝酸还原酶活性及可溶性蛋白含量相互关系的探讨.东北师大学报自然科学版,1999,1:67-70
    [126] Eichel K D Berger,R J Lambert F Eef af Divergent phenotypic recurrent selection for nitrate reductase activity in maize Ⅱ Efficient use of fertilizer nitrogen. Crop Science, 1989, 29(6): 1389-1402
    [127] 林振武,陈敬祥,汤玉玮,李豪哲.硝酸还原酶活力与作物耐肥性的研究.Ⅰ.不同耐肥性的水稻、玉米、小麦的硝酸还原酶活力.中国农业科学,1983,3:37-43
    [128] 黄高宝,张恩和,胡恒觉,不同玉米品种氮素营养效率差异的生态生理机制,植物营养与肥料学报,2001.7(3):293-297
    [129] 刘鹏,杨玉爱.硼钼胁迫对大豆叶片硝酸还原酶与硝态氮的影响.浙江大学学报(农业与生命科学版),2000,20(2):151-154
    [130] Deckard E. L., et al.,R.H., Crop Science,1973, 13: 59-66.
    [131] 黄明勤,杨素铀,张仲明,陈敬祥,林振武,汤玉玮.硝酸还原酶活力与作物耐肥性的研究.Ⅳ.玉米幼苗硝酸还原酶活力与品种耐肥性的关系,作物学报,1987,13(1):19-22
    [132] 李豪哲,崔雄范,崔明子,林振武,汤玉炜.硝酸还原酶活力与作物耐肥性的研究Ⅲ北方粳稻品种演变过程中硝酸还原酶活力与品种间性状之间的关系.作物学报,1988,14(2):163-166.
    [133] Werner M.Kaiser and Steven C. Huber, Post-translational regulation of nitrate reductase: mechanism,physiological relevance and environmental triggers.Journal of Experimental Botany,2001, 52 (363):1981-1989
    [134] Ailing M J, Boland G,Willson J H.Relation between acid proteinase activity and redistribution of nitrogen during grain development in wheat[J].Plant Physiol, 1976,3:721-730
    [135] Beevers L. Hageman R H. Nitrate and nitrite reduction[J]. The biochemistry of plants. 1980. 5(3): 115-168
    [136] Jeffrey A. Mertens, Naomasa Shiraishi, and Wilbur H. Campbell, Recombinant Expression of Molybdenum Reductase Fragments of Plant Nitrate Reductase at High Levels in pichia pastoris [J].Plant Physiology,2000,123:743-756
    [137] Andzews M.Plant Cell Environ,1986,9:511.
    [138] Beevers L.,R.H.Hageman., 1969,Ann.Rer.Plant Physiol.20:495-522
    [139] 李雪梅,朱长甫,苗以农,等.大豆植株发育过程中不同部位的硝态氮含量和硝酸还原酶活力的变化[J].植物生理学通讯1993,29(4):263~265.
    [140] 张明生,谢波,谈锋等.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J].中 国农业科学,2003,36(1):13~16.
    [141] 王晓琦,沙伟,徐忠文.亚麻幼苗对干旱胁迫的生理响应[J].作物杂志,2005(_2):13-16.
    [142] 高青海,徐坤,吴燕.茄子砧木品种对低温胁迫的反应[J].中国蔬菜,2005(9):12~15.
    [143] 周以飞,周德银.春播菜用大豆生育时期、农艺性状与品质性状的典范相关分析[J].福建农林大学学报(自然科学版),2005,34(1):11-17.
    [144] 杨文钰,项祖芬,任万君.烯效唑对水稻氮代谢及稻米蛋白质含量的影响[J].中国水稻科学,2005,19(1):63-67.
    [145] 冯佰利,高小丽,赵琳.干旱条件下小麦冠层温度及其性状的关联研究[J].生态学杂志,2005,24 (5):508-512.
    [146] Duvick DN. What is yield? In: Edmeades GO (ed.) Developing drought and low N-tolerant maize. El Batan, Mexico: .CIMMYT. 1997. Pp. 332-335.
    [147] Jorge IS, Hector G, Estela SJ & James RD. Physiological traits associated with mass selection for improved yield in a maize population. Field Crops Res. 1998, 56: 239-246.
    [148] Cui, Z., T. E. Carter, Jr., J. W. Burton. Genetic base of 651 Chinese soybean cultivars released during 1923 to 1995[J]. Crop Sci. 2000a, 40: 1470-1481.
    [149] Cui, Z., T. E. Carter, Jr., J. W. Burton, Genetic diversity patterns in Chinese soybean cultivars based on coefficient of parentage[J]. Crop Sci. 2000b, 40: 1780-179
    [150] 张治安,张美善.植物生理学实验指导.高等教育出版社和吉林大学出版社,2006.
    [151] 唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:中国农业出版社,1997.
    [152] Evans, L T. Crop evolution, Adaptation and yield. Cambridge New York, Cambridge University Press. 1993, 169-267
    [153] 薛恩玉,李文华,姜妍.黑龙江省大豆育成品种农艺性状演化趋势.大豆科学,2006,25(4):445-449
    [154] 吉林省农业科学院大豆研究所.中国大豆品种志[M].北京:农业出版社,1985.
    [155] 吉林省农业科学院大豆研究所.中国大豆品种志(1978~1992)[M].北京:农业出版社,1992.
    [156] 崔章林,盖钧镒,Thomas E.Carter Jr,等.中国大豆育成品种及系谱分析(1923—1995)[M].北京:中国农业出版社.1998.
    [157] Mehetre S. S., B. M. Jamadagni. Biomass partitioning and growth characters in relation to plant architecture in soybean[J]. Soybean Genet. Newsl., 1996, 23: 92-97.
    [158] 孙贵荒,宋书宏,刘晓丽,董丽杰等.辽宁省大豆更普品种主要农艺性状研究[J].大豆科学,2001,20(1):30-34.
    [169] Gifford Roger M., J. H. Thome, W. D Hitz, et al. Crop productivity and photoassimilate partitioning [J]. Science, 1984, 225: 801-808.
    [160] Salado-NavarroL. R., Sinclair T. R., K. Hinson. Yield andreproductivegrowthofsimulated and field—grown soybean. Ⅰ Seed filling duration[J]. Crop Sci., 1986a: 26: 966-970.
    [161] Salado-Navarro L. R., Sinclair T. R., K. Hinson. Yield and reproductive growth of simulated and field—grown soybean. Ⅱ Dry matter allocation and seed growth rate[J]. Crop Sci., 1986b, 26: 971—975.
    [162] Hume D. J., Feindel D. E., Winter J. P., et al. Assimilation partitioning in soybean[c]. World Soybean Research Conference Ⅳ: Proceedings. Buenos Aires, Argentina. 1996, 177-182,
    [163] Cui SY, Yu DY. Estimates of relative contribution ofbiomass, harvest index and yield components to soybean yield improvements in China. Plant Breeding, 2005, (5): 473—476.
    [164] Austin, R. & J. Bingham, R. D. Blackwell, etal. Genetic improvements in winterwheatyields since 1900 and associated physiological changes[J]. J. Agric. Sci. (Cambridge)1980, 94: 675-689.
    [165] Cox T. S., J. P. Shroyer, Liu Ben-Hui, et al. Martin. Genetic improvement in agronomic traits of hard red winter wheat cultivars from 1919 to 1987[J]. Crop Sci. 1988. 28: 756-760.
    [167] 文晓鹏,罗充,樊卫国,等.板栗光合生理的研究((Ⅲ).板栗叶片结构与光合速率.贵州农学院学报,1995,14(3):49-52.
    [168] 魏书奎,于继洲,宣有林,等.核桃叶片的叶绿素含量与光合速率关系的研究[[J].北京农业科学,1994,12(5):31-33.
    [169] 甘银波,涂学文,田任久,大豆的最佳氮肥施用时期研究,大豆科学,1998.17(4):287-291
    [170] 杨琪等.不同类型大豆干物质及氮的动态变化研究.中国农业科学,1995,28(增刊):108-114
    [171] Bolton J. K., Brown R. H., Plant Physiol. 1980, 66: 97-100
    [172] McClendon J H. T'he relationship between the thickness of deciduous leaves and their maximum photosynthetic rate. Amer J Bot, 1962, 49: 320-322
    [173] Orgren WL. Increasing carbon fication by crop plants. In: Hall D et al ed. Proceeding of the 4th International Conference on Photosynthesis. London, 1977, 721-733
    [174] Evans LT and Xiwson HM, Photosynthesis and respiration, by the flag leaf and components of the ear during grain development in wheat. Aust J. Biol. Sci, 1972. 23, 345-254.
    [175] Buttery, B. R., Buzzel, R. I.: Some differences between soybean cultivars observed by growth analysis. Can. J. Plant Sci, 1972, 52: 13-20.
    [176] Ojima M. Improvement of leaf photosynthesis in soybean varieties. Bull. Natl. Inst. Agric. Sci. Ser. D, 1972, 23: 97-154.
    [177] 高辉远,大豆生长发育过程中光合作用及光合效率的调节.1999(博士毕业论文).
    [178] 王空军等.我国1950s-1990s育成的玉米品种叶片光合特性演进规律研究.植物生态学报,2001,25:247-251.
    [179] Frederick, J. R., Woolley, J. T., Hesketh, J. D., Peters, D. B.: Water deficit development in old and new soybean cultivars. Agron. J, 1991, 82: 76-81.
    [180] Wells,R.,L.L.Schuize,D.A.Ashley, et al.Cultivar differences in canopy apparent photosynthesis and theit relationship to seed yield in soybean,Crop Science. 1982,22:886-890.
    [181] 郝乃斌等.大豆育种应用基础和技术研究进展.江苏科学技术出版社,1990,28-35.
    [182] Khanizadeh S DeEll J Hakam N Geibel M (ed.) Fischer M (ed.) Fischer C. Use of chlorophyll fluorescence to evaluate chilling tolerance in strawberry plants 阴.Acta Horticulture, 2000(538): 453-456.
    [183] Archbold DD Clements AM Hietaranta T (ed.) Linna MM (ed.) Palonen P (ed.)Parikka P. Identifying heat tolerant Fragaria accessions using chlorophyll fluorescerxe(J]. Acta Horticulture 2002,1 (567):341-344.
    [184] 史宝胜,徐继忠,马宝,等.S H系砧木光合作用特性的研究(J].河北农业大学学报,2001,24(4):54-57.
    [185] 郑国华.炭疽病浸染对枇杷叶片H_2O_2含量和叶绿素荧光参数的影响(J}.福建农业大学学报,2001,30(3):353-356.
    [186] 赵秀琴,赵明,陆军,等.热带远缘杂交水稻高光效后代在温带的光合特性观察[J].中国农业大学学报2002,7(3):1-6.
    [187] 任士福,史宝胜,王志彦,等.果用型银杏品种叶绿素荧光特性的研究[J].河北农业大学学报,2002,25(2):38-41.
    [188] 张其德,蒋高明,朱新广,等.12个不同基因型冬小麦的光合能力[J].植物生态学报,2001,25(5):532-536.
    [189] Ailing M J, Boland G, Willson J H. Relation between acid proteinaseactivity and redistribution of nitrogen during grain development in wheat[J). Plant Physiol, 1976, 3: 721-730.
    [190] Schrader, L. E., G. L. Ritenour, G. L. Eilrich, et al. Some characteristics of nitrate reductase from higher plants[J]. Plant Physiol, 1968(43): 930-940.
    [191] 汤玉玮,林振武.硝酸还原酶在农业上应用的研究动态.农业科技动态,1985,14{1):1-5
    [192] May L, van Sanford D A,Mackown C T, Cornelius P L. Genetic Variation for nitrogen use in soft red X hard red in winter wheat populations. Crop Sci., 1991, 31:626-630.
    [193] 郑不尧主编.作物生理学导论.北京:北京农业大学出版社,1992.
    [194] 许守民.不同大豆品种硝酸还原酶活性的研究.吉林农业科学,1987,3:89-93[192]
    [195] Lenard B eevers, Hageman R H.Nitrate reduction in higher plants. Ann.Rev. Plant Physiology, 1969, 20: 495-498
    [196] 胡昌浩,王群英.玉米不同叶位叶片叶绿素与光合强度变化规律的研究山东农大学报,1987,20(1):43
    [197] 刘胜利,孔新,任林昌,战勇,李玉梅,魏建军,罗赓彤.新大豆2号高产生育动态及生理生化指标的研究.新疆农业科学,2005,42(4):244-247
    [198] 赵洪祥,徐克章,李大勇,王晓慧,郑洪兵,张治安,杨光宇,杨春明,陆静梅.吉林省不同年代育成大豆品种硝酸还原酶活性变化及其与产量的关系.南京农业大学学报,2007,30(2):94-98
    [199] 张杰,杨传平,邹学忠,等.蒙古栎硝酸还原酶活性、叶绿素及可溶性蛋白含量与生长性状的关系.东北林业大学学报,2005,33(4):4~5.
    [200] 小岛睦男(苗以农等译).关于提高大豆品种光合作用能力的研究.国外大豆生理研究(译文选编),1972,65-69.
    [201] Leonard Beevers. The role of light and nitrate in the induction of nitrate reduction in radish cotyledons and maize seedlings. Plant Physiology, 1965, 40: 691-698
    [202] 郭战玲.不同小麦品种氮效率的差异与氮代谢关键酶活性的关系.河南农业大学硕士学位论文,2005,6:35
    [203] Dalling MJ. The physiological basis of nitrogen redistribution during grain filling in cereals. In: Harper JE, Schrader LE,Howell RW, eds.Exploitation of physiology and genetic variability to enhance crop productibity. Rockville MD: American Society of Plant Physiology, 1985:55-71
    [204] 李春喜,李友军,谷登斌.不同基因型小麦生育期硝酸还原酶活性的比较.麦类作物,1997,17(7):60-63.
    [205] 黄正来,武立权,韩立德.花期追施氮肥对菜用大豆AC_(10)生理指标及产量影响的研究.激光生物学报,2005,14(3):193-196
    [206] 苗以农,朱长甫,姜艳秋,刘学军.大豆不同生育期不同节位叶片的比叶重及叶绿素和全氮含量.中国油料作物学报,1989,4:44-48
    [207] 刘鹏,杨玉美.钼、硼对大豆N代谢的影响[J].植物营养与肥料学报,1999,5(4):347—351
    [208] Fan X H, Tang C, Rengel Z, Nitrate uptake, nitrate reductase distribution and their relation to proton release in five nodulated grain legumes.Annals of Botany,2002,90:315-353.
    [209] Subhash C.Gupta, Leonard Beevers, Regulation of nitrite reductase. Plant Physiology. 1987(83): 750-754.
    [210] 刘方春,聂俊华,刘春生,付连刚,肖秋生.不同施肥措施对土壤硝态氮垂直分布的特征影响.土壤通报,2005,36(1):50-53.
    [211] 叶全宝,张洪程,戴其根,李华,霍中洋,许柯,唐娟.施氮水平和栽插密度对水稻生育中后期硝酸还原酶活性的影响.植物生理学通讯,2005,41(1):41-44.
    [212] 徐克章,黑田荣喜,平野贡.水稻开花后叶片含氮量与光合作用的动态变化及其关系.作物学报,1995,21(2):171-175.
    [213] 张小全,徐德应等,CO_2增长对杉木中龄林针叶光合生理生态的影响.生态学报,2000,20(3)
    [214] 宋建民,田纪春,赵世杰.植物光合碳和氮代谢之间的关系及其调节.植物生理生态学通讯.1998:34(3):230-238
    [215] Huppe H C, Turpin D H. Intergration of carbon and nitrogen metabolism in plant and algal cells. Ann Rev Plan Physiol Plant Mol Biol, 1994,45:577-607
    [216] 孙进东,高煜珠.氮素营养对冬小麦光合与光呼吸的调节.江苏农学院学报,1989:10(4):13-16
    [217] Evans, J. R. Photosynthesis and nitrogen relationships in leaves of C_3 plants. Oecologia. 1989: 78: 9-19
    [218] Bjoerlanan O, Holmgren P Adaptability of the photosynthetic apparatus to light intensity in ecotypes from exposed and shaded habitats. Physiol Plant, 1963,16:889}914
    [219] Terashima I, Evans J R Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant Cell Physiol, 1988,29:143-155
    [220] 沈允钢,施教耐.许大全.动态光合作用.科学出版社,1998
    [221] 戚继忠,宋嘉葆等.叶绿素含量与气象因子关系的灰关联分析.吉林林学院学报,1995,11(3)
    [222] 郑王尧,蒋钟怀等.夏播“京早七号”玉米叶片叶绿素含量消长规律的研究.华北农学报,1988,3(1):21-27
    [223] 杨秋英,翁仁宪,陈清义.大豆之光合成作用与物质生产特性之研究.第二报:冬季大豆光合作用特性,中华农学会报.新1984,126:34—43
    [224] 翁仁宪,陈清义,杨秋英.大豆之光合成作用与物质生产特性之研究.第四报:日长及温度对光合作用之影响.中华农学会报.新1986,133:25-31
    [225] Chapina, F.S., A.J.Bloom,C.H.Filed,and R.H.Waring, Plant responses to multiple environmental factors. BioScience. 1987, 37:4957
    [226] 赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究.生态科学,1998,17(2)
    [227] 龚垒.树木的光合作用与物质生产.北京科学技术出版社.1989
    [228] Greenway K.J., Macdonald, S. E., Lieffers, V J. Is long-lived foliage in Picea mariana an adaptation to nutrient-poor conditions. Oecologia. 1992, 91:184-191
    [229] Evans JR., Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol, 1983, 72:197-202
    [230] 佟屏亚.从植株形态指标评价玉米育种方向.玉米科学,2006,14(6):1-3.
    [231] Zhu G-J,Jiang G-M, Hao N-B,Liu H-Q, Kong Z-H, Du W-G, Man W-Q. Relationship Between ecophysiological features and grin yield in different soybean varieties. Acta Botanica Sinica, 2002, 44, 72-5-730

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700