用户名: 密码: 验证码:
功能磁共振成像对心肌铁超负荷的定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨MRI对体外不同铁浓度模型定量测量的可行性,并比较1.5T和3.0T磁共振对体外铁浓度模型定量测定的准确性。
     材料和方法:制作2组不同铁浓度梯度的体外模型,一组铁浓度梯度范围为0-5.0mg/ml。另一组铁浓度梯度范围为0-1.00mg/ml。于同一天分别行1.5T和3.0TMR扫描,扫描序列包括短轴位FSE/T1WI、FRFSE/T2WI、T2map和T2*map,扫描范围从溶液顶部至底部。两位研究者分别独自测量体外铁浓度模型的MR图像,测量指标包括T1WI和T2WI信噪比、T2、R2、T2*和R2*值。测量指标的一致性采用组内相关系数分析。铁浓度与T1WI信噪比、T2WI信噪比、T2、R2、T2*和R2*值的关系使用Pearson相关分析。
     结果:两位研究者对体外铁浓度模型MR图像测量指标T1WI信噪比、T2WI信噪比、T2、R2、T2*和R2*值一致性评价的组内相关系数均大于0.900(P<0.001)。T2WI信噪比、T2和T2*值与铁浓度在1.5T和3.0T MR上均呈非线性相关。在1.5T MR上,当铁浓度<1.5mg/ml时,T1WISNR、R2与铁浓度呈显著性正相关(P<0.05);当铁浓度≥1.5mg/ml时,T1WI信噪比、R2与铁浓度呈显著性负相关(P<0.001)。R2*则在铁浓度<2.5mg/ml时,与铁浓度呈显著正性线性相关(P<0.001);铁浓度≥2.5mg/ml时,R2*与铁浓度呈明显负性线性相关(P=0.008)。而在3.0T MR上,当铁浓度<1.5mg/ml时,T1WI信噪比与铁浓度无显著性线性关系(P=0.301);当铁浓度≥1.5mg/ml时,T1WI信噪比与铁浓度呈显著性负相关(P=0.001)。当铁浓度<0.90mg/ml时,R2和R2*值与铁浓度呈正相关(P<0.05);当铁浓度≥0.90mg/ml, R2和R2*值与铁浓度呈显著负相关(P<0.05)。
     结论:MRI对体外不同铁浓度模型的定量测定准确性高、可重复性好和稳定性强,且1.5T MR在测定铁浓度上优于3.0T。
     目的:探讨磁共振T2*map成像定量测量兔心肌铁超负荷模型心肌铁负荷的可行性。
     材料和方法:日本长耳兔11只,10只作为心肌铁超负荷实验组,一只作为正常对照组。大腿深部肌肉注射含铁量为50mg/ml右旋糖酐铁剂(注射剂量为50mg/kg),每周注射一次,共注射12周。11只兔子在注射右旋糖酐铁前全部进行MRI检查,实验组兔注射右旋糖酐铁一周后复查MRI检查。MR扫描序列包括心脏短轴位的双反转恢复-FSE(DIR)、三反转恢复-FSE(TIR)和T2*map序列以及肝脏和双肾轴位FSPGR/T1WI、SSFSE/T2WI和T2*map序列。定量分析兔的心肌竖脊肌信号强度比、肝脏竖脊肌信号强度比、双肾竖脊肌信号强度比及心脏、肝脏、双肾、竖脊肌的T2*和R2*值。动物模型处死后取心脏、肝脏和双肾,固定后行离体标本MRI检查,之后取部分心肝肾组织进行铁沉积病理切片。所有兔子在行MRI检查前一天,抽取3ml静脉血查血清铁。测量参数之间的相关性分析使用Pearson相关。
     结果:心肌T2*、R2*值、DIR心肌/竖脊肌信号强度比与注入铁含量呈显著线性相关(P<0.05),而TIR心肌/竖脊肌信号强度比与注入铁含量无显著性线性相关(P>0.05)。心肌T2*、R2*值与肝T2*、R2*值相关性分析不具有显著性(P>0.05)。肝T2*和R2*与注入铁含量无显著线性相关(P>0.05)。肾T2*、R2*值与注入铁含量具有明显线性相关(P<0.001),而T1WI和T2WI肾/竖脊肌信号强度比与注入铁含量无显著线性相关性(P>0.05)。心肝肾MR测量结果与血清铁无显著相关(P>0.05)。离体心、肾T2*和R2*值与注入铁含量成线性相关(P<0.05),离体肝T2*和R2*值与注入铁含量无线性相关(P>0.05)。心肌T2*的下降趋势与心肌病理学结果相一致。
     结论: MR-T2*map序列可以准确的测量心肌铁超负荷兔的心肌铁负荷,可以为临床铁超负荷患者提供一种集诊断和治疗后监测铁负荷的简便、安全、无创、全面的方法。
     目的:应用MR探讨兔心肌铁超负荷模型的心功能参数与心肌铁负荷程度之间的关系,并评价心功能参数与肝铁浓度之间的关系。
     材料和方法:日本长耳兔11只,10只作为心肌铁超负荷实验组,一只作为正常对照组。对实验组兔按照每只50mg/kg剂量,大腿深部肌肉注射含铁量为50mg/ml右旋糖酐铁,每周注射一次,共注射12周。11只兔子在注射右旋糖酐铁前全部行心脏和肝脏MRI检查,实验组兔开始注射右旋糖酐铁一周后复查MRI。扫描序列包括左心室连续短轴位cine、双反转恢复-FSE(DIR)、三反转恢复-FSE(TIR)和T2*map序列和横轴位肝脏FSPGR/T1WI、SSFSE/T2WI和T2*map序列。定量分析兔的心功能参数和心脏与竖脊肌T2*、R2*值、心肌/竖脊肌信号强度比以及肝与竖脊肌T2*、R2*、T1WI和T2WI肝/竖脊肌信号强度比。动物模型处死后取心脏和肝脏,固定标本后取部分心肝组织进行铁沉积病理切片。所有兔子在行MRI检查前一天,抽取3ml静脉血查血清铁。心功能参数与注入铁含量、血清铁、T2*map测量值的相关关系采用Pearson相关分析。
     结果:左心室心功能参数中LVEDD、LVEDV、LVESV和LVEF与注入铁含量具有显著性的线性相关(P<0.05),右心室心功能参数中RVEDV、RVESV和RVEF与注入铁含量具有线性相关性(P<0.05)。左心室心功能参数中LVSV和LVCO与血清铁具有中等线性相关性,而右心室心功能参数中RVEDV和RVESV与血清铁具有显著线性相关关系(P<0.05)。LVESD、LVEDV、LVESV和LVEF与心肌T2*值呈显著线性相关关系,LVEDD、LVESD、LVEDV、LVESV和LVSV与心肌R2*值具有线性相关性(P<0.05)。右心室心功能参数中,RVEDV和RVESV与心肌T2*呈中等负相关性(P<0.05),而与心肌R2*呈正性线性相关(P<0.05)。心功能参数与肝MR测量结果无显著性差异(P>0.05)。
     结论:MRI是一种简单、方便、全面和有效的评估体内铁负荷的方法,且能同时评价心功能,LVESV较LVEF能更好的反映心肌铁超负荷时的心功能。
     目的:应用磁共振T2*map成像定量测定铁超负荷患者的心肌铁负荷情况,并分析T2*值和其心功能参数之间的关系。
     材料和方法:收集2010年10月至2012年10月在我院血液科住院的铁超负荷患者8例(铁超负荷组)。正常对照组均为健康志愿者,共22例。铁超负荷组和正常对照组均在1.5T磁共振扫描仪上检查,MR扫描序列包括左心室连续短轴位cine和T2*map序列以及肝胰脾T2*map序列。两位研究者分别独自测量所有的MR图像。测量参数包括左右心室心功能参数、左心室16个心肌节段T2*和R2*值、肝胰脾及竖脊肌T2*和R2*值。两位研究者测量的一致性使用组内相关系数评价。铁超负荷组和正常对照组的比较采用独立样本t检验,心、肝T2*值和心功能参数的关系采用Pearson相关分析。
     结果:两位研究者对MR T2*map的心肌、肝胰脾T2*和R2*值以及心功能参数测量的一致性均大于0.900(P<0.001)。有4例铁超负荷患者存在心肌铁超负荷,心肌T2*<20ms心肌节段共30段。8例铁超负荷患者中7例有肝铁超负荷和5例脾铁超负荷患者。铁超负荷组患者肝和脾的T2*值与正常对照组比较有显著差异(P<0.05)。铁超负荷组胰腺和竖脊肌无铁超负荷。左心室心肌壁厚度和右心室心腔内径、双心室的每搏输出量及射血分数都在正常参考范围内。左心室的收缩末期内径较正常对照组明显扩大(P=0.005),而舒张末期内径(LVEDD)、收缩末期心腔容积(LVESV)和舒张末期心腔容积(LVEDV)虽然大于正常对照组,但是不具有统计学差异(P>0.05)。左心室心腔的缩短率在正常值范围内,相比与正常对照组还是明显减低(P=0.004)。心肝T2*值与心功能参数的相关性分析均不具有显著性(P>0.05),且心肝T2*值也不具有显著的相关性(P>0.05)。
     结论:磁共振T2*成像是一种诊断和监测心肌铁超负荷快速、可靠、敏感、无创的方法。LVESD和LVFS有可能代替LVEF成为预测心肌铁超负荷患者心功能的新指标。
Objective: To investigate the feasibility of quantitative assessment of iron concentration invitro model using MRI and compare the accuracy between1.5T and3.0T MR.
     Materials and Methods: Two sets of iron concentration in vitro models, ranging from0mg/ml to5.0mg/ml and from0mg/ml to1.00mg/ml, respectively. The two sets modelswere performed both on1.5T and3.0T MR in the same day. The scanning protocolincluded FSE/T1WI, FRFSE/T2WI, T2map and T2*map on axial section, and scanningrange were from top to bottle of the solution. Two radiologists independently evaluated theMR images of the models.T1WI signal to noise ratio (SNR), T2WI SNR, T2, R2, T2*andR2*values were measured. Intraclass correlation coefficient (ICC) was used to evaluate theagreements of the parameters and Pearson correlation analysis was used to calculate thecorrelation between iron concentration and MR measurement indexes.
     Results: The ICCs of T1WI SNR, T2WI SNR, T2, R2, T2*and R2*values evaluated bytwo radiologists were all more than0.900(P<0.001). The relation between ironconcentration and T2WI SNR, T2and T2*values demonstrated function relation. Wheniron concentration was less than1.5mg/ml, T1WI SNR and R2correlated positively withiron concentration in1.5T MR(P<0.05); while iron concentration was more than1.5mg/ml,T1WI SNR and R2correlated negatively with it(P<0.05). When iron concentration wasless than2.5mg/ml, R2*had a positive correlation with it(P<0.001); while more than 2.5mg/ml, R2*had a negative correlation with it(P=0.008).When iron concentration wasless than1.5mg/ml, T1WI SNR had no significant correlation with it(P=0.301) in3.0T MR;while iron concentration was more than1.5mg/ml, T1WI SNR had a significantly positivecorrelation with it(P=0.001). When iron concentration was less than0.900mg/ml, R2andR2*were positively correlated with it(P<0.05); while it was more than0.900mg/ml, R2and R2*were negatively correlated with it(P<0.05).
     Conclusion: MRI is able to quantitatively evaluate iron concentration in vitro modelaccurately, reproducibly and stably, and it is better on1.5T MR.
     Objective: To discuss whether it is feasible for magnetic resonance T2*map to evaluatemyocardial iron concentration of myocardial iron overload rabbit model.
     Materials and Methods: Eleven rabbits were divided into two groups, myocardial ironoverload group (n=10) and control group (n=1). Iron dextrin (concentration of50mg/ml,dose of50mg/kg) was injected in muscles of thigh once a week, totally12weeks. Beforeiron dextrin ejection, all the11rabbits were performed MRI. The myocardial iron overloadgroup underwent MRI1week after iron dextrin injection. MRI scanning protocol includedcardiac short axial Double inversion recovery-FSE (DIR), Triple inversion recovery-FSE(TIR) and T2*map, as well as liver and kidneys FSPGR/T1WI, SSFSE/T2WI and T2*mapon axial section. Myocardial to erector spinae signal intensity ratio, liver to erector spinaesignal intensity ratio, kidney to erector spinae signal intensity ratio, as well as T2*and R2*of myocardial, liver, kidney and erector spinae were evaluated. After animal models killed,heart, liver and kidneys were fixed in order to undergo MRI and excise for pathologicalslices. All rabbits were withdrawn blood to test serum iron, one day before performed MRI. Pearson correlation analysis was used to evaluate relations among measurement indexes.
     Results: Myocardial T2*, R2*values and DIR myocardial to erector spinae signal intensityratio had linear correlation with injecting iron content(P<0.05), while TIR myocardial toerector spinae signal intensity ratio had no significant correlation with injecting ironcontent. Myocardial T2*and R2*values had no significant correlation with liver T2*andR2*values(P<0.05). Liver T2*and R2*values were not significantly correlated withinjecting iron content(P>0.05). Kidney T2*, R2*had significant correlation with injectingiron content(P<0.001),while T1WI and T2WI kidney to erector spinae signal intensityratio had no significant correlation(P>0.05). MR measurement indexes were notsignificantly correlated with serum iron(P>0.05). T2*and R2*of heart and kidney in vitrohad linear correlation with injecting iron content(P<0.05), while T2*and R2*of liver hadno significant correlation with injecting iron content(P>0.05). The change of myocardialT2*value was consistent with myocardial pathological results
     Conclusion: MR T2*map is able to evaluate myocardial iron concentration of myocardialoverload rabbit model accurately, and to provide a simple, safe, noninvasive and completemodality for iron load diagnosis and follow-up supervision.
     Objective: To determine the relationship between cardiac function parameters andmyocardial iron load of myocardial iron overload rabbit model, and the relationshipbetween cardiac function and hepatic iron concentration.
     Materials and Methods: Eleven rabbits were divided into two groups, myocardial ironoverload group (n=10) and control group (n=1). Iron dextrin (concentration of50mg/ml,dose of50mg/kg) was injected in muscles of thigh once a week, totally12weeks. Before iron dextrin ejection, all the11rabbits were performed MRI. The myocardial iron overloadgroup underwent MRI1week after iron dextrin injection. MR scanning protocol includedcardiac short axial cine, Double inversion recovery-FSE (DIR), Triple inversionrecovery-FSE (TIR) and T2*map, as well as liver FSPGR/T1WI,SSFSE/T2WI andT2*map on axial section. Cardiac function parameters, myocardial to erector spinae signalintensity ratio and liver to erector spinae signal intensity ratio, as well as T2*and R2*ofmyocardial, liver and erector spinae were evaluated. After animal models killed, heart andliver were fixed to excise for pathological slices. All rabbits were withdrawn blood to testserum iron, one day before performed MR. Pearson correlation analysis was used toevaluate relations among cardiac function indexes, injecting iron content, serum iron andT2*map measurement indexes.
     Results: LVEDD, LVEDV, LVESV and LVEF had significant linear correlation withinjecting iron content(P<0.05) and LVSV as well as LVCO has moderate correlation withserum iron(P<0.05). RVEDV, RVESV and RVEF were correlated with injecting ironcontent significantly(P<0.05), as well as RVEDV and RVESV were correlated with serumiron significantly(P<0.05). LVESD, LVEDV, LVESV and LVEF had a significant linearcorrelation with myocardial T2*, as well as LVEDD, LVESD, LVEDV, LVESV and LVSVhad a linear correlation with myocardial R2*(P<0.05). RVEDV and RVESV weremoderate correlated with myocardial T2*and R2*(P<0.05).Cardiac function parametershad no significant correlation with liver T2*and R2*(P>0.05).
     Conclusion: MRI is a simple, convenient, complete and effective modality to evaluate ironload in vivo, and can evaluate cardiac function simultaneously. LVESV may be better thanLVEF to predict cardiac function of myocardial iron overload.
     Objective: To evaluate myocardial load of patients with iron overload by MR T2*map, andrelationship with their cardiac function.
     Materials and Methods: Eight patients with iron overload (iron overload group) wereenrolled in this study from October2010through October2012. The control group werehealthy volunteers (n=22). Iron overload group and control group both underwent theexamination in1.5T MR scanner. The MR protocol included short axial cine, T2*map ofleft ventricle and axial T2*map of abdomen. Two radiologists independently measured allthe MR images. Cardiac function parameters, T2*and R2*values of left ventricle16segments, as well as T2*and R2*values of liver, pancreas, spleen and erector spinae weremeasured. The agreements of two radiologists were evaluate by intraclass correlationcoefficient (ICC). The differences between iron overload group and control group werecalculated by independent sample t-test, as well as relationship between T2*values ofmyocardial and liver and cardiac function parameters were calculated by Pearsoncorrelation analysis.
     Results: The ICCs of T2*and R2*of myocardial, liver, pancreas, spleen and erectorspinae and cardiac function parameters measured by two radiologists were all more than0.900(P<0.001). Four iron overload patient with myocardial iron overload, and T2*valuesof30myocardial segments were less than20ms. Of eight patients with iron overload, sevencases had hepatic iron overload and five cases had spleen iron overload. T2*va lues of liverand spleen between iron overload group and control group had significant differences (P<0.05). Pancreas and erector spinae had no iron overload in iron overload group. Leftventricle wall thickness, dimensions of right ventricle, stroke volume of chambers andejection fraction were all within the reference ranges. Left ventricle end-systolic dimensionwas significantly larger than the control group one (P=0.005). End-diastolic dimension, end-systolic volume and end-diastolic volume were larger than the control group ones, butthe differences had no significance (P>0.05). Left ventricle shortening fraction was inreference range, though it was significantly lower than the control group one (P=0.004). Ithad no significant correlations between myocardial T2*and hepatic T2*(P>0.05), andalso no significant correlations between cardiac function parameters and T2*values ofmyocardium and liver(P>0.05).
     Conclusion: MR T2*is able to diagnose and supervise myocardial iron load promptly,reliably, sensitively and noninvasively. LVESD ad LVFS may substitute LVEF to predictcardiac function of patients with myocardial overload.
引文
1. Hou P, Popat UR, Lindsay RJ, Jackson EF, Choi H. A Practical Approach for a WideRange of Liver Iron Quantitation Using a Magnetic Reso nance Imaging Technique.Radiology Research and Practice2012;2012:1-9.
    2. Alústiza Echeverría JM, Castiella A, Emparanza JI. Quantification of ironconcentration in the liver by MRI. Insights into Imaging2011;3:173-80.
    3.覃薇.去铁酮联合去铁胺治疗重型地中海贫血铁超负荷临床疗效及安全性的Meta分析(硕士学位论文).广西医科大学2009:1-77.
    4. Storey P, Thompson AA, Carqueville CL, Wood JC, de Freitas RA, Rigsby CK. R2*imaging of transfusional iron burden at3T and comparison with1.5T. Journal of MagneticResonance Imaging2007;25:540-7.
    5. Guo H, Au W-Y, Cheung JS, et al. Myocardial T2quantitation in patients with ironoverload at3Tesla. Journal of Magnetic Resonance Imaging2009;30:394-400.
    6.李春燕.肝脏铁超负荷的MRI定量研究(博士学位论文).广西医科大学.2009年:1-99.
    7.赵欣.含铁模型建立及高铁动物体内器官铁沉积规律MRI研究(硕士学位论文).广西医科大学2010:1-55.
    8. Carpenter JP, He T, Kirk P, et al. On T2*Magnetic Resonance and Cardiac Iron.Circulation2011;123:1519-28.
    9. Barnhart HX, Kosinski AS, Haber MJ. Assessing Individual Agreement. Journal ofBiopharmaceutical Statistics2007;17:697-719.
    10. LAVIN PT, FLOWERDEW G. Studies in variation associated with the measurement ofsolid tumors. Cancer1980;46:1286-90.
    11. Erasmus JJ. Interobserver and Intraobserver Variability in Measurement ofNon-Small-Cell Carcinoma Lung Lesions: Implications for Assessment of Tumor Response.Journal of Clinical Oncology2003;21:2574-82.
    12. Gandon Y, Guyader D, Heautot JF, et al. Hemochromatosis: diagnosis andquantification of liver iron with gradient-echo MR imaging. Radiology1994;193:533-8.
    13. St. Pierre TG, Clark PR, Chua-Anusorn W. Measurement and Mapping of Liver IronConcentrations Using Magnetic Resonance Imaging. Annals of the New York Academy ofSciences2005;1054:379-85.
    14. Wood JC. Magnetic resonance imaging measurement of iron overload. Curr OpinHematol2007;14:183-90.
    15. Wood JC. Cardiac Iron Determines Cardiac T2*, T2, and T1in the Gerbil Model ofIron Cardiomyopathy. Circulation2005;112:535-43.
    16. Anderson LJ. Assessment of Iron Overload with T2*Magnetic Resonance Imaging.Progres s in Cardiovascular Diseases2011;54:287-94.
    17. St. Pierre TG. Noninvasive measurement and imaging of liver iron concentrationsusing proton magnetic resonance. Blood2005;105:855-61.
    1. LJ A, S H, B D, et al. Cardiovascular T2-star (T2*) magnetic resonance for the earlydiagnosis of myocardial iron overload. Eur Heart J2001;22:2171-9.
    2. Cohen AR, Galanello R, Pennell DJ, Cunningham MJ, Vichinsky E. Thalassemia.Hematology Am Soc Hematol Educ Program2004:14-34.
    3.朱易萍.地中海贫血的规范化输血治疗.中国输血杂志2010;23:4-6.
    4. Anderson LJ. Assessment of Iron Overload with T2*Magnetic Resonance Imaging.Progres s in Cardiovascular Diseases2011;54:287-94.
    5.石西南,褚嘉,杨昭庆.中国不同省区β地中海贫血基因变异的分布特征.医学综述2011;17:495-6.
    6.陶小君,辜俊梅,陈莲芬,黄佩芬,叶建辉.番禺区8825例育龄妇女地中海贫血监测结果分析.中国妇幼保健2006;21:196-8.
    7.颜秀梅,龙桂芳,白鹰,黎家少. α地中海贫血与围产期相关因素研究(附253例新生儿脐血监测结果).中国优生优育1998;9:30-1.
    8.雷永红,韦慧,陈秀奇,陈亚莲.国内外地中海贫血现状及管理模式发展.2011年全国儿科护理学术交流会议论文集2011:273-4.
    9. Kondur AK, Li T, Vaitkevicius P, Afonso L. Quantificatio n of myocardial iron overloadby cardiovascular magnetic resonance imaging T2*and review of the literature. ClinicalCardiology2009;32:E54-E8.
    10. Neufeld EJ. Oral chelators deferasirox and deferiprone for transfusional iron overloadin thalassemia major: new data, new questions. Blood2006;107:3436-41.
    11. Gujja P, Rosing DR, Tripodi DJ, Shizukuda Y. Iron Overload Cardiomyopathy, BetterUnderstanding of An Increasing Disorder. J Am Coll Cardiol2010;56:1001-12.
    12. Murphy CJ, Oudit GY. Iron-overload cardiomyopathy pathophysiology, diagnosis, andtreatment. Journal of Cardiac Failure2010;16:888-900.
    13.张永,郝嘉,肖颖彬.铁代谢相关心血管疾病的研究进展.中华临床医师杂志(电子版)2012;6:15-7.
    14.王娜,关鹏,常彦忠,段相林.铁代谢与心血管损伤的研究进展.中国老年学杂志2008;28:2167-9.
    15. Anderson GJ, McLaren G. Iron Physiology and Pathophysiology in Humans SpringerScience;2012.
    16. DD. S. Hepatic iron overload: paramagnetic pathology. Radiology1991;179:333-5.
    17.李春燕.肝脏铁超负荷的MRI定量研究(博士学位论文).广西医科大学2009年5月:1-99.
    18. Guo H, Au W-Y, Cheung JS, et al. Myocardial T2quantitation in patients with ironoverload at3Tesla. Journal of Magnetic Resonance Imaging2009;30:394-400.
    19. Roy NBA, Myerson S, Schuh AH, et al. Cardiac iron overload intransfusion-dependent patients with myelodysplastic syndromes. British Journal ofHaematology2011;154:521-4.
    20. He T, Gatehouse PD, Smith GC, Mohiaddin RH, Pennell DJ, Firmin DN.MyocardialT2*measurements in iron-overloaded thalassemia: An in vivo study toinvestigate optimal methods of quantification. Magnetic Resonance in Medicine2008;60:1082-9.
    21. Pennell DJ. T2*magnetic resonance and myocardial iron in thalassemia. Ann NY AcadSci2005;1054:373-8.
    22. Wood JC. Cardiac Iron Determines Cardiac T2*, T2, and T1in the Gerbil Model ofIron Cardiomyopathy. Circulation2005;112:535-43.
    23. Cable EE, Connor JR, Isom HC. Accumulation of Iron by Primary Rat Hepatocytes inLong-Term Culture. American Journal ofPathology1998;152:781-892.
    24. Wood JC. MRI R2and R2*mapping accurately estimates hepatic iron concentration intransfusion-dependent thalassemia and sickle cell disease patients. Blood2005;106:1460-5.
    25. Jensen P-D. Evaluation of iron overload. British Journal of Haematology2004;124:697-711.
    26. Mavrogeni S. Evaluation of myocardial iron overload using magnetic resonanceimaging. Blood Transfus2009;7:183-7.
    27. Carpenter JP, He T, Kirk P, et al. On T2*Magnetic Resonance and Cardiac Iron.Circulation2011;123:1519-28.
    28. St. Pierre TG. Noninvasive measurement and imaging of liver iron concentrationsusing proton magnetic resonance. Blood2005;105:855-61.
    29. Brewer CJ, Coates TD, Wood JC. Spleen R2and R2*in iron-overloaded patients withsickle cell disease and thalassemia major. Journal of Magnetic Resonance Imaging2009;29:357-64.
    1. Tanner M, Galanello R, Dessi C, et al. Myocardial Iron Loading in Patients withThalassemia Major on Deferoxamine Chelation. Journal of Cardiovascular MagneticResonance2006;8:543-7.
    2. Ceci A, Mangiarini L, Felisi M, et al. The Management of Iron Chelation Therapy:Preliminary Data from a National Registry of Thalassaemic Patients. Anemia2011;2011:1-7.
    3. Ladis V, Chouliaras G, Berdoukas V, et al. Relation of chelation regimes to cardiacmortality and morbidity in patients with thalassaemia major: an observational study from alarge Greek Unit. European Journal of Haematology2010;85:335-44.
    4. Lekawanvijit S, Chattipakorn N. Iron overload thalassemic cardiomyopathy: Ironstatus assessment and mechanisms of mechanical and electrical disturbance due to irontoxicity. Can J Cardiol2009;25:213-8.
    5. A.JACOBS, MILLER F, M.WORWOOD, M.R.BEAMISH, C.A.WARDROP. Ferritinin the Serum of Normal Subjects and Patients with Iron Deficiency and Iron Overload.British Medical Journal1972;4:206-8.
    6. St. Pierre TG. Noninvasive measurement and imaging of liver iron concentrationsusing proton magnetic resonance. Blood2005;105:855-61.
    7. Leonardi B, Margossian R, Colan SD, Powell AJ. Relationship of Magnetic ResonanceImaging Estimation of Myocardial Iron to Left Ventricular Systolic and Diasto lic Functionin Thalassemia. JACC: Cardiovascular Imaging2008;1:572-8.
    8. Murphy CJ, Oudit GY. Iron-overload cardiomyopathy pathophysiology, diagnosis, andtreatment. Journal of Cardiac Failure2010;16:888-900.
    9. Wood JC. Cardiac Iron Determines Cardiac T2*, T2, and T1in the Gerbil Model ofIron Cardiomyopathy. Circulation2005;112:535-43.
    10. Ramazzotti A, Pepe A, Positano V, et al. Multicenter validation of the magneticresonance t2*technique for segmental and global quantification of myocardial iron.Journal of Magnetic Resonance Imaging2009;30:62-8.
    11. Ghugre NR, Enriquez CM, Gonzalez I, Nelson MD, Coates TD, Wood JC. MRI detectsmyocardial iron in the human heart. Magnetic Resonance in Medicine2006;56:681-6.
    12.王娜,关鹏,常彦忠,段相林.铁代谢与心血管损伤的研究进展.中国老年学杂志2008;28:2167-9.
    13. Shander A, Berth U, Betta J, Javidroozi M. Iron overload and toxicity implications foranesthesiologists. Journal of Clinical Anesthesia2012;24:419-25.
    14. Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J. Body iron metabolism andpathophysiology of iron overload. Int J Hematol2008;88:7-15.
    15. Wood JC. Cardiac iron across different transfusion-dependent diseases. Blood Rev2008;22:S14-S21.
    16. PIPERNO A. Classification and diagnosis of iron overload. Haematologica1998;83:447-55.
    17. Noetzli LJ, Carson SM, Nord AS, Coates TD, Wood JC. Longitudinal analysis of heartand liver iron in thalassemia major. Blood2008;112:2973-8.
    18. Fleming RE, Ponka P. Iron Overload in Human Disease. N Engl J Med2012;366:348-59.
    19. Marcucci C, Lauer R, Mahajan A. New Echocardiographic Techniques for EvaluatingLeft Ventricular Myocardial Function. Seminars in Cardiothoracic and Vascular Anesthesia2008;12:228-47.
    20. Maceira A, Prasad S, Khan M, Pennell D. Normalized Left Ventricular Systolic andDiastolic Function by Steady State Free Precession Cardiovascular Magnetic Resonance.Journal of Cardiovascular Magnetic Resonance2006;8:417-26.
    21. O’Donnell DH, Abbara S, Chaithiraphan V, Yared K, Killeen RP, Martos R. CardiacMR Imaging of Nonischemic Cardiomyopathies: Imaging Protocols and Spectra ofAppearances. Radiology2012;262:403-22.
    22. Guarise A, Faccioli N, Foti G, Pozzo S, Meneghetti P, Morana G. Role ofechocardiography and cardiac MRI in depicting morpho logical and functional imagingfindings useful for diagnosing hypertrophic cardiomyopathy. La radiologia medica2010;116:197-210.
    23. Pennell DJ. T2*magnetic resonance and myocardial iron in thalassemia. Ann NY AcadSci2005;1054:373-8.
    24.陈莹莹,钱忠明.心脏铁代谢及其相关疾病研究进展.中华心血管病杂志2002;30:59-62.
    25. Berry JD, Dyer A, Cai X, et al. Lifetime Risks of Cardiovascular Disease. N Engl JMed2012;366:321-9.
    26. Positano V, Salani B, Pepe A, et al. Improved T2*assessment in liver iron overload bymagnetic resonance imaging. Magnetic Resonance Imaging2009;27:188-97.
    27. Wood JC. Magnetic resonance imaging measurement of iron overload. Curr OpinHematol2007;14:183-90.
    1. PIPERNO A. Classification and diagnosis of iron overload. Haematologica1998;83:447-55.
    2. Cohen AR, Galanello R, Pennell DJ, Cunningham MJ, Vichinsky E. Thalassemia.Hematology Am Soc Hematol Educ Program2004:14-34.
    3. Kremastinos DT, Farmakis Di, Aessopos At, et al. Thalassemia CardiomyopathyHistory, Present Considerations, and Future Perspectives. Circ Heart Fail2010;3:451-8.
    4.石西南,褚嘉,杨昭庆.中国不同省区β地中海贫血基因变异的分布特征.医学综述2011;17:495-6.
    5.李春燕.肝脏铁超负荷的MRI定量研究(博士学位论文).广西医科大学.2009年:1-99.
    6. Lekawanvijit S, Chattipakorn N. Iron overload thalassemic cardiomyopathy: Ironstatus assessment and mechanisms of mechanical and electrical disturbance due to irontoxicity. Can J Cardiol2009;25:213-8.
    7. Kremastinos DT, Farmakis D, Aessopos A, et al.-Thalassemia Cardiomyopathy:History, Present Considerations, and Future Perspectives. Circulation: Heart Failure2010;3:451-8.
    8. Neufeld EJ. Oral chelators deferasirox and deferiprone for transfusional iron overloadin thalassemia major: new data, new questions. Blood2006;107:3436-41.
    9. Murphy CJ, Oudit GY. Iron-overload cardiomyopathy pathophysiology, diagnosis, andtreatment. Journal of Cardiac Failure2010;16:888-900.
    10. Fernandes JL. Iron chelation therapy in the management of transfusion-related cardiaciron overload. TRANSFUSION2012;52:2256-68.
    11. Aessopos A, Berdoukas V, Tsironi M. Prevention of Cardiomyopathy in Transfusion-Dependent Homozygous Thalassaemia Today and the Role of Cardiac Magnetic ResonanceImaging. Advances in Hematology2009;2009:1-4.
    12. Ghugre NR, Coates TD, Nelson MD, Wood JC. Mechanisms of tissue-iron relaxivity:Nuclear magnetic resonance studies of human liver biopsy specimens. Magnetic Resonancein Medicine2005;54:1185-93.
    13. Alústiza Echeverría JM, Castiella A, Emparanza JI. Quantification of ironconcentration in the liver by MRI. Insights into Imaging2011;3:173-80.
    14. Noetzli LJ, Carson SM, Nord AS, Coates TD, Wood JC. Longitudinal analysis of he artand liver iron in thalassemia major. Blood2008;112:2973-8.
    15. Wood JC. Cardiac Iron Determines Cardiac T2*, T2, and T1in the Gerbil Model ofIron Cardiomyopathy. Circulation2005;112:535-43.
    16. DD. S. Hepatic iron overload: paramagnetic pathology. Radiology1991;179:333-5.
    17. Isokawa M, Kimura F, Matsuki T, et al. Evaluation of bone marrow iron by magneticresonance imaging. Ann Hematol1997;74:269-74.
    18. Gelman N, Gorell JM, Barker PB, et al. MR imaging of human brain at3.0Tpreliminary report on transverse relaxation rates and relation to estimated iron content.Radiology1999;210:759-67.
    19. Argyropoulou MI, Metafratzi Z, Kiortsis DN, Bitsis S, Tsatsoulis A, Efremidis S. T2relaxation rate as an index of pituitary iron overload in patients with beta-thalassemia major.AJR Am J Roentgenol2000;175:1567-9.
    20. LJ A, S H, B D, et al. Cardiovascular T2-star (T2*) magnetic resonance for the earlydiagnosis of myocardial iron overload. Eur Heart J2001;22:2171-9.
    21. Harmatz P, Vichinsky E, Moyer TP, et al. Variability in Hepatic Iron Concentration inPercutaneous Needle Biopsy Specimens From Patients With Transfusional Hemosiderosis.American Journal of Clinical Pathology2005;123:146-52.
    22. Pennell DJ. T2*magnetic resonance and myocardial iron in thalassemia. Ann NY AcadSci2005;1054:373-8.
    23. Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR2010Expert Consensus Document on Cardiovascular Magnetic Resonance. Journal of theAmerican College of Cardiology2010;55:2614-62.
    24. Kirk P, He T, Anderson LJ, et al. International reproducibility of single breathhold T2*MR for cardiac and liver iron assessment among five thalassemia centers. Journal ofMagnetic Resonance Imaging2010;32:315-9.
    25. Kondur AK, Li T, Vaitkevicius P, Afonso L. Quantification of myocardial iron overloadby cardiovascular magnetic resonance imaging T2*and review of the literature. ClinicalCardiology2009;32:E54-E8.
    26. Marcucci C, Lauer R, Mahajan A. New Echocardiographic Techniques for EvaluatingLeft Ventricular Myocardial Function. Seminars in Cardiothoracic and Vascular Anesthesia2008;12:228-47.
    27. From AM, Maleszewski JJ, Rihal CS. Current Status of Endomyocardial Biopsy. MayoClinic Proceedings2011;86:1095-102.
    28. Wood JC. Magnetic resonance imaging measurement of iron overload. Curr OpinHematol2007;14:183-90.
    29. He T, Kirk P, Firmin DN, et al. Multi-center transferability of a breath-hold T2technique for myocardial iron assessment. Journal of Cardiovascular Magnetic Resonance2008;10:11.
    30. Positano V, Salani B, Pepe A, et al. Improved T2*assessment in liver iron overload bymagnetic resonance imaging. Magnetic Resonance Imaging2009;27:188-97.
    31. Brewer CJ, Coates TD, Wood JC. Spleen R2and R2*in iron-overloaded patients withsickle cell disease and thalassemia major. Journal of Magnetic Resonance Imaging2009;29:357-64.
    32. Ramazzotti A, Pepe A, Positano V, et al. Multicenter validation of the magneticresonance t2*technique for segmental and global quantification of myocardial iron.Journal of Magnetic Resonance Imaging2009;30:62-8.
    33. Ou P, Zhao Y, Fawal SE, Banka P, Powell AJ. Cardiac T2*measurements in patientswith iron overload: a comparison of imaging parameters and analysis technique. MagneticResonance Imaging2012;30:641-8.
    34. Mavrogeni S. Evaluation of myocardial iron overload using magnetic resonanceimaging. Blood Transfus2009;7:183-7.
    35.吴学东,井远方,裴夫瑜, et al.磁共振成像(T2*)检测重型地中海贫血患者心脏、肝脏铁负荷及其临床意义.南方医科大学学报2013;33:249-52.
    1. Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J. Body iron metabolism andpathophysiology of iron overload. Int J Hematol2008;88:7-15.
    2. Roy NBA, Myerson S, Schuh AH, et al. Cardiac iron overload in transfusion-dependent patients with myelodysplastic syndromes. British Journal of Haematology2011;154:521-4.
    3. Fleming RE, Ponka P. Iron Overload in Human Disease. N Engl J Med2012;366:348-59.
    4. Fernandes JL. Iron chelation therapy in the management of transfusion-related cardiaciron overload. TRANSFUSION2012;52:2256-68.
    5. Christoforidis Ai, Haritandi A, Tsitouridis I, et al. Correlative Study of IronAccumulation in Liver, Myocardium, and Pituitary Assessed With MRI in YoungThalassemic Patients. J Pediatr Hematol Oncol2006;28:311-5.
    6. Pepe A, Meloni A, Rossi G, et al. Cardiac and hepatic iron and ejection fraction inthalassemia major: Multicentre prospective comparison of combined Deferiprone andDeferoxamine therapy against Deferiprone or Deferoxamine Monotherapy. Journal ofCardiovascular Magnetic Resonance2013;15:1.
    7. Jensen P-D. Evaluation of iron overload. British Journal of Haematology2004;124:697-711.
    8. Fischer R, Harmatz PR. Non-invasive assessment of tissue iron overload. Hematology2009:215-21.
    9. Gujja P, Rosing DR, Tripodi DJ, Shizukuda Y. Iron Overload Cardiomyopathy, BetterUnderstanding of An Increasing Disorder. J Am Coll Cardiol2010;56:1001-12.
    10. From AM, Maleszewski JJ, Rihal CS. Current Status of Endomyocardial Biopsy. MayoClinic Proceedings2011;86:1095-102.
    11. Murphy CJ, Oudit GY. Iron-overload cardiomyopathy pathophysiology, diagnosis, andtreatment. Journal of Cardiac Failure2010;16:888-900.
    12. Chu WCW, Au WY, Lam WWM. MRI of cardiac iron overload. JOURNAL OFMAGNETIC RESONANCE IMAGING2012;36:1052-9.
    13. Ruddell RG, Ramm GA. Hepatic Pathobiology of Iron Overload.2012:357-83.
    14. Harmatz P, Vichinsky E, Moyer TP, et al. Variability in Hepatic Iron Concentration inPercutaneous Needle Biopsy Specimens From Patients With Transfusional Hemosiderosis.American Journal of Clinical Pathology2005;123:146-52.
    15. Ghugre NR, Gonzalez-Gomez I, Butensky E, et al. Patterns of hepatic iron distributionin patients with chronically transfused thalassemia and sickle cell disease. AmericanJournal of Hematology2009;84:480-3.
    16. Wood JC. Magnetic resonance imaging measurement of iron overload. Curr OpinHematol2007;14:183-90.
    17. Olivieri NF, Brittenham GM. Iron-Chelating Therapy and the Treatment ofThalassemia. Blood1997;89:739-61.
    18. Sheth S. SQUID biosusceptometry in the measurement. Pediatr Radiol2003;33:373-7.
    19. A J, MR B, M A. The Measurement of Circulating Ferritin. J Clin Pathol1972;25:1003.
    20. A.JACOBS, MILLER F, M.WORWOOD, M.R.BEAMISH, C.A.WARDROP. Ferritinin the Serum of Normal Subjects and Patients with Iron Deficiency and Iron Overload.British Medical Journal1972;4:206-8.
    21. PIPERNO A. Classification and diagnosis of iron overload. Haematologica1998;83:447-55.
    22. Hundley WG, Bluemke DA, Finn JP, et al. ACCF/ACR/AHA/NASCI/SCMR2010Expert Consensus Document on Cardiovascular Magnetic Resonance. Journal of theAmerican College of Cardiology2010;55:2614-62.
    23. Myerson SG, Holloway CJ, Francis JM, Neubauer S. Cardiovascular magneticresonance (CMR)–An update and review. Progress in Nuclear Magnetic ResonanceSpectroscopy2011;59:213-22.
    24. Price AN, Cheung KK, Cleary JO, Campbell AE, Riegler J, Lythgoe MF.Cardiovascular Magnetic Resonance Imaging in Experimental Models. The OpenCardiovascular Medicine Journal2010;4:278-92.
    25. Lee S-W. Magnetic Resonance Reporter Gene Imaging. Theranostics2012;2:403-12.
    26. Ghugre NR, Coates TD, Nelson MD, Wood JC. Mechanisms of tissue-iron relaxivity:Nuclear magnetic resonance studies of human liver biopsy specimens. Magnetic Resonancein Medicine2005;54:1185-93.
    27. STEINER RE. New imaging techniques their relation to conventional radiology.BRITISH MEDICAL JOURNAL1982;284:1580-2.
    28. Ramazzotti A, Pepe A, Positano V, et al. Multicenter validation of the magneticresonance t2*technique for segmental and global quantification of myocardial iron.Journal of Magnetic Resonance Imaging2009;30:62-8.
    29. He T, Kirk P, Firmin DN, et al. Multi-center transferability of a breath-hold T2technique for myocardial iron assessment. Journal of Cardiovascular Ma gnetic Resonance2008;10:11.
    30. McCarville MB, Hillenbrand CM, Loeffler RB, et al. Comparison of whole liver andsmall region-of-interest measurements of MRI liver R2*in children with iron overload.Pediatric Radiology2010;40:1360-7.
    31. Alústiza Echeverría JM, Castiella A, Emparanza JI. Quantification of ironconcentration in the liver by MRI. Insights into Imaging2011;3:173-80.
    32. Tziomalos K, Perifanis V. Liver iron content determination by magnetic resonanceimaging. World J Gastroenterol2010;16:1587-97.
    33. Alústiza JM, Castiella A, De Juan MD, Emparanza JI, Artetxe J, Uranga M. Ironoverload in the liver diagnostic and quantification. European Journal of Radiology2007;61:499-506.
    34. Y G, D G, JF H, et al. Hemochromatosis: diagnosis and quantification of liver iron withgradient-echo MR imaging. Radiology1994;193:533-8.
    35. Positano V, Salani B, Pepe A, et al. Improved T2*assessment in liver iron overload bymagnetic resonance imaging. Magnetic Resonance Imaging2009;27:188-97.
    36. St. Pierre TG. Noninvasive measurement and imaging of liver iron concentrationsusing proton magnetic resonance. Blood2005;105:855-61.
    37. Rose C, Vandevenne P, Bourgeois E, Cambier N, Ernst O. Liver iron contentassessment by routine and simple magnetic resonance imaging procedure in highlytransfused patients. European Journal of Haematology2006;77:145-9.
    38. Sirlin CB, Reeder SB. Magnetic Resonance Imaging Quantification of Liver Iron.Magnetic Resonance Imaging Clinics of North America2010;18:359-81.
    39. St. Pierre TG, Clark PR, Chua-Anusorn W. Measurement and Mapping of Liver IronConcentrations Using Magnetic Resonance Imaging. Annals of the New York Academy ofSciences2005;1054:379-85.
    40. Wu X, Tan Y, Mao H, Zhang M. Toxic effects of iron oxide nanoparticles on humanumbilical vein endothelial cells. International Journal of Nanomedicine2010;5:385-9.
    41. LJ A, S H, B D, et al. Cardiovascular T2-star (T2*) magnetic resonance for the earlydiagnosis of myocardial iron overload. Eur Heart J2001;22:2171-9.
    42. Wood JC. MRI R2and R2*mapping accurately estimates hepatic iron concentration intransfusion-dependent thalassemia and sickle cell disease patients. Blood2005;106:1460-5.
    43. Pennell DJ, Carpenter JP, Firmin DN, Kilner PJ, Mohiaddin RH, Prasad SK. Review ofJournal of Cardiovascular Magnetic Resonance2011. Journal of Cardiovascular MagneticResonance2012;14:78.
    44. Ghugre NR, Wood JC. Relaxivity-iron calibration in hepatic iron overload: Probingunderlying biophysical mechanisms using a Monte Carlo model. Magnetic Resonance inMedicine2011;65:837-47.
    45. Kim D, Jensen JH, Wu EX, Sheth SS, Brittenham GM. Breathhold multiecho fastspin-echo pulse sequence for accurateR2measurement in the heart and liver. MagneticResonance in Medicine2009;62:300-6.
    46. Neufeld EJ. Oral chelators deferasirox and deferiprone for transfusional iron overloadin thalassemia major: new data, new questions. Blood2006;107:3436-41.
    47. Storey P, Thompson AA, Carqueville CL, Wood JC, de Freitas RA, Rigsby CK. R2*imaging of transfusional iron burden at3T and comparison with1.5T. Journal of MagneticResonance Imaging2007;25:540-7.
    48. Wood JC, Fassler JD, Meade T. Mimicking liver iron overload using liposomal ferritinpreparations. Magnetic Resonance in Medicine2004;51:607-11.
    49. Sohn YS, Ghoti H, Breuer W, et al. The role of endocytic pathways in cellular uptakeof plasma non-transferrin iron. Haematologica2011;97:670-8.
    50. Porter JB, Lin K-H, Beris P, et al. Response of iron overload to deferasirox in raretransfusion-dependent anaemias: equivalent effects on serum ferritin and labile plasma ironfor haemolytic or production anaemias. European Journal of Haematology2011;87:338-48.
    51. Lekawanvijit S, Chattipakorn N. Iron overload thalassemic cardiomyopathy: Ironstatus assessment and mechanisms of mechanical and electrical disturbance due to irontoxicity. Can J Cardiol2009;25:213-8.
    52. Kirk P, He T, Anderson LJ, et al. International reproducibility of single breathhold T2*MR for cardiac and liver iron assessment among five thalassemia centers. Journal ofMagnetic Resonance Imaging2010;32:315-9.
    53. Aessopos A, Berdoukas V, Tsironi M. Prevention of Cardiomyopathy inTransfusion-Dependent Homozygous Thalassaemia Today and the Role of CardiacMagnetic Resonance Imaging. Advances in Hematology2009;2009:1-4.
    54. Wood JC, Glynos T, Thompson A, et al. Relationship between labile plasma iron, liveriron concentration and cardiac response in a deferasirox monotherapy trial. Haematologica2011;96:1055-8.
    55. Noetzli LJ, Carson SM, Nord AS, Coates TD, Wood JC. Longitudinal analysis of heartand liver iron in thalassemia major. Blood2008;112:2973-8.
    56. Pathare A, Taher A, Daar S. Deferasirox (Exjade) significantly improves cardiac T2*in heavily iron-overloaded patients with β-thalassemia major. Annals of Hematology2009;89:405-9.
    57. Kontoghiorghes GJ, Kolnagou A. Deferiprone versus desferrioxamine in thalassaemia,and T2*validation and utility. The Lancet2003;361:184.
    58. Pierre TGS. Deferiprone versus desferrioxamine in tha lassaemia, and T2*validationand utility. The Lancet2003;361:182.
    59. Cohen AR, Galanello R, Pennell DJ, Cunningham MJ, Vichinsky E. Thalassemia.Hematology Am Soc Hematol Educ Program2004:14-34.
    60. Olson LJ, Edwards WD, Jr. DRH, Jr. FAM, Nordstrom LA, Baldus WP.Endomyocardial biopsy in hemochromatosis clinicopathologic correlates in six cases.Journal of the American College of Cardiology1989;13:116-20.
    61. Kondur AK, Li T, Vaitkevicius P, Afonso L. Quantification of myocardial iron overloadby cardiovascular magnetic resonance imaging T2*and review of the literature. ClinicalCardiology2009;32:E54-E8.
    62. Carpenter JP, He T, Kirk P, et al. On T2*Magnetic Resonance and Cardiac Iron.Circulation2011;123:1519-28.
    63. Ghugre NR, Enriquez CM, Gonzalez I, Nelson MD, Coates TD, Wood JC. MRI detectsmyocardial iron in the human heart. Magnetic Resonance in Medicine2006;56:681-6.
    64. Leonardi B, Margossian R, Colan SD, Powell AJ. Relationship of Magnetic ResonanceImaging Estimation of Myocardial Iron to Left Ventricular Systolic and Diastolic Functionin Thalassemia. JACC: Cardiovascular Imaging2008;1:572-8.
    65. Wood JC. Cardiac Iron Determines Cardiac T2*, T2, and T1in the Gerbil Model ofIron Cardiomyopathy. Circulation2005;112:535-43.
    66. He T, Gatehouse PD, Smith GC, Mohiaddin RH, Pennell DJ, Firmin DN.MyocardialT2*measurements in iron-overloaded thalassemia: An in vivo study toinvestigate optimal methods of quantification. Magnetic Resonance in Medicine2008;60:1082-9.
    67. Wood JC, Ghugre N. Magnetic resonance imaging assessment of excess iron inthalassemia, sickle cell disease and other iron overload diseases. Hemoglobin2008;32:85-96.
    68. Argyropoulou MI, Metafratzi Z, Kiortsis DN, Bitsis S, Tsatsoulis A, Efremidis S. T2relaxation rate as an index of pituitary iron overload in patients with beta-thalassemia major.AJR Am J Roentgenol2000;175:1567-9.
    69. Gelman N, Gorell JM, Barker PB, et al. MR imaging of human brain at3.0Tpreliminary report on transverse relaxation rates and relation to estimated iron content.Radiology1999;210:759-67.
    70. Isokawa M, Kimura F, Matsuki T, et al. Evaluation of bone marrow iron by magneticresonance imaging. Ann Hematol1997;74:269-74.
    71. Drakonaki E, Papakonstantinou O, Maris T, Vasiliadou A, Papadakis A, GourtsoyiannisN. Adrenal glands in beta-thalassemia major: magnetic resonance (MR) imaging featuresand correlation with iron stores. European Radiology2005;15:2462-8.
    72. PapakonstantinouO, Ladis V, KostaridouS, et al. The pancreas in β-thalassemia major:MR imaging features and correlation with iron stores and glucose disturbunces. EuropeanRadiology2006;17:1535-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700