用户名: 密码: 验证码:
CD226分子在小鼠脑内的表达及其功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CD226分子是一种分子量为~65kDa的跨膜糖蛋白,属于免疫球蛋白超家族成员,是一种细胞粘附分子(cell adhesion molecule,CAM)。自1985发现该分子以来,人们对CD226分子的基因、结构、表达、分布及功能做了大量研究,并且证实该分子广泛参与机体免疫系统多种重要的生物学功能,包括T细胞的增殖与分化,血小板的活化与凝集,NK细胞的杀伤等。然而,有关机体免疫系统以外CD226分子表达和功能的研究却未见报道。近些年来,越来越多的研究表明许多本来表达于免疫系统的CAM也表达和分布于神经系统,并且与中枢神经系统(central nervous system,CNS)内突触发生和突触结构可塑性调节等功能密切相关。
     CAM是一种广泛分布于机体内的跨膜糖蛋白,在细胞间的识别与粘附过程中发挥重要作用,进而广泛参与机体多种重要的生理功能,包括胚胎发育、细胞信号转导、炎症及肿瘤转移等等。近些年来,包括neurexin、neuroligin、cadherin、Nectin、NCAM(neural cell adhesion molecule,神经细胞粘附分子)以及SynCAM在内的一些CAM家族成员,已经被证实表达和分布于机体神经系统内,并且在突触发生过程中的靶向识别、突触分化、以及学习记忆过程中突触的可塑性调节方面发挥了重要作用。
     迄今为止,有关CD226分子在神经系统表达和分布的研究尚未见报道,但是越来越多的证据显示CD226分子可能分布于CNS内并且参与重要的生理功能。首先,CD226分子与其他分布于神经系统内的CAM分子结构类似,表现为这些分子的胞膜外区都有若干个免疫球蛋白超家族V样结构域,胞浆区末端均有一段能够与细胞骨架特定结构结合的保守序列。其次,最近的研究表明Nectin家族成员Nectin-2/CD112及Nectin样分子(Nectin-like molecule,Necl)家族成员Necl-5/CD155是CD226的配体,而Nectin及Necl家族中的不少分子已被证实表达于神经系统,并且分别分布于特定脑区的突触前膜和/或突触后膜。
     本研究综合运用分子生物学、免疫学及形态学等多种研究方法,在国际上首次证实了CD226分子在小鼠神经系统内的表达和分布以及该分子在小鼠生后发育过程中表达和分布的变化;证实了在体外培养条件下,外源性CD226及CD155分子能够显著促进海马神经元的生长发育,并且在神经突起生长过程中发挥了靶向识别作用;证实了缺氧不同时间后海马神经元内CD226分子表达水平逐渐下调,且缺血性脑血管病患者及脑肿瘤患者血清中可溶型CD226分子水平发生上调。具体研究内容如下:
     1.首先运用RT-PCR及Western blotting方法,从mRNA和蛋白水平证实了CD226分子主要表达于小鼠脑内的海马和小脑组织;免疫组织化学结果显示,在成年小鼠脑内CD226分子主要分布于海马CA3区透明带及邻近的齿状回门区,小脑皮质颗粒细胞间隙以及Purkinje细胞胞体,荧光双标结果显示CD226分子与突触标志物Synaptophysin、Syntaxin以及PSD-95广泛共存,而与神经元标志物NeuN以及星形胶质细胞标志物GFAP(glial fibrillary acidic protein,神经胶质酸性蛋白)没有共存,免疫电镜结果进一步证实CD226分子可能分布于上述脑区的突触前膜和突触后膜;而在小鼠生后发育早期,P12以前CD226分子并不表达于其成年时分布脑区,而是一过性表达于与上述脑区具有密切纤维联系的邻近或者远离的神经核团内。
     2.成功对新鲜分离的胎鼠海马神经元细胞进行体外培养,并且运用免疫荧光染色方法观察了体外培养不同时间海马神经元的细胞形态以及CD226分子的表达情况;运用脂质体转染的方法,成功地将mCD22(6murine CD226,小鼠CD226)-GFP或mCD155(murine CD155,小鼠CD155)-RFP两种质粒转染入Hela细胞,并将其与新鲜分离的胎鼠海马神经元细胞进行共培养,进而证实在体外培养条件下,外源性CD226及CD155分子能够显著促进海马神经元的生长发育,主要表现为神经突起数量增多和长度增加,而且外源性CD226及CD155分子还能促进神经突起向表达它们的Hela细胞进行生长并且发生纤维联系,发挥了靶向识别作用。
     3.成功建立新鲜分离的胎鼠海马神经元细胞缺氧模型,运用免疫荧光染色方法观察了细胞缺氧不同时间后神经元形态的改变及CD226分子表达的变化;运用Western blotting方法证实了随着细胞缺氧时间的延长,神经元内CD226分子的表达水平逐渐下调,缺氧24h后几乎完全消失。运用改良的夹心酶联免疫吸附实验(enzyme linked immunosorbent assay,ELISA)证实,缺血性脑血管病患者及脑肿瘤患者血清中可溶型CD226分子的水平显著高于正常人。
     总而言之,本次实验在国际上首次证实了CD226分子表达和分布于神经系统,并且对CD226分子在神经元生长发育过程中发挥的作用、以及疾病时CD226分子表达水平的变化进行了初步探讨,为进一步研究CD226分子在神经系统内可能参与的生理功能及其分子机制奠定了基础。
CD226, a member of immunoglobulin superfamily, is a ~65kDa transmembrane glycoprotein. As a cell adhesion molecule (CAM), CD226 has been widely studied about its gene, structure, expression and localization in the immune system and has been identified to be involved in several important biological functions including T cell proliferation and differentiation, platelet activation and aggregation, NK cell cytotoxicity and so on. However, the presence of CD226 in the other systems beside immune system has not been reported yet. But recently, more and more members of CAM, which were initially present in the immune system, have been identified to be present in the central nervous system (CNS) and play important roles in synaptogenesis and synaptic plasticity.
     CAMs are mainly membrane glycoproteins that mediates cell-cell adhesion and play essential roles in various functions, including embryonic development, cell signal transduction, inflammation, and tumor metastasis. During the last two decades, an increasing number of the CAM family members, such as neurexin, neuroligin, cadherin, Nectin, NCAM(neural cell adhesion molecule), and SynCAM, have been demonstrated to be located in the CNS and play important roles not only in initial target recognition as well as in synapse specification and maturation during synaptogenesis, but also in synaptic plasticity during learning and memory processes.
     Although the expression of CD226 in the CNS has not been reported yet, several lines of evidence have indicated that CD226 might be present and have important roles in the CNS. As a member of the immunoglobulin superfamily, CD226 possesses the typical structure of the other identified members of CAM reported in the CNS: single-spanning membrane proteins with several Ig(immunoglobulin)-like extracellular domains and an intracellular tail containing a PDZ-binding motif characterized by a conserved sequence. Furthermore, CD226 has recently been identified as the receptor for Nectin-2/CD112 and Necl (Nectin-like molecule) family member Necl-5/CD155 while many Nectin and Necl family members have been identified to be localized on the pre- and post-synaptic membrane.
     Molecular biological, immunological and morphological methods have been employed in our present research and the major achievements are: CD226 has been identified to be expressed and localized in the murine brain during adulthood and postnatal development. Exogenous CD226 and CD155 would not only evidently promote the growth and development of hippocampal neurons but also assist target recognition during neurite growth in vitro. The level of CD226 in the hippocampal neurons gradually decreased after hypoxia while the level of soluble CD226 in the serum of cerebral ischemic and tumor patients increased. The details are as following:
     1. CD226 mRNA and protein in the murine hippocampus and cerebellum was detected by RT-PCR and Western blotting, respectively. Furthermore, immunohistochemical staining revealed that CD226 was mainly distributed in the hilus of the dentate gyrus and stratum lucidum aligned along the pyramidal cells in the hippocampal CA3 area, the interspaces of granular cells and the somata of the Purkinje cells in the cerebellar cortex during adulthood. Double-staining results revealed that CD226 co-localized well with synaptic marker proteins including Synaptophysin, Syntaxin and PSD-95 while it didn’t co-localize with NeuN or GFAP (glial fibrillary acidic protein). Ultrastructural analysis revealed that CD226 was located both on the pre-synaptic membrane and post-synaptic membrane. During postnatal development, CD226 could not be detected at its adult locations until postnatal day 12; however, it was temporally expressed in the somata of neighboring or distant nuclei associated with its adult location.
     2. Freshly dissected hippocampal neurons of embryonic mouse were successfully cultured in vitro. Immunofluonrescent staining was employed to observe the CD226 expression in the hippocampal neurons at different time point during culture in vitro. Two different plasmids, mCD226(murine CD226)-GFP or mCD155(murine CD155)-RFP, was successfully transfected into Hela cells by liposome transfection method. Then the transfected Hela cells were co-cultured with the freshly dissected hippocampal neurons of embryonic mouse. The co-culture of transfected Hela cells and neurons indicated that exogenous CD226 and CD155 would not only evidently promote the growth and development of hippocampal neurons by increasing the quantity and length of the neurite but also assist target recognition for the neurite by guiding them to head for the transfected Hela cells and establish fiber connections.
     3. Hypoxia model of freshly dissected hippocampal neurons was successfully established and immunofluonrescent staining was used to observe the morphological changes of the hippocampal neurons and CD226 expression in them at different time point after hypoxia. Western blotting analysis revealed that CD226 expression in the hippocampal neurons was gradually down-regulated after hypoxia and vanished at 24h after hypoxia. Sandwich enzyme linked immunosorbent assay (ELISA) results indicated that the soluble CD226 in the serum of cerebral ischemic and tumor patients was evidently up-regulated when compared with that of the healthy control.
     In conclusion, our present study identified the expression and distribution of CD226 in the CNS for the first time, investigated the possible role of CD226 during the growth and development of hippocampal neurons and demonstrated the changes of CD226 expression in different diseases, which established the foundation for further exploration of the physiological functions and molecule mechanism of CD226 in the CNS.
引文
1. Burns GF, Triglia T, Werkmeister JA, Begley CG, Boyd AW. TLiSA1, a human T lineage-specific activation antigen involved in the differentiation of cytotoxic T lymphocytes and anomalous killer cells from their precursors. J Exp Med 1985; 161: 1063-1078.
    2. Scott JL, Dunn SM, Jin B, Hillam AJ, Walton S, Berndt MC, Murray AW, Krissansen GW, Burns GF. Characterization of a novel membrane glycoprotein involved in platelet activation. J Biol Chem 1989; 264: 13475-13482.
    3. Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, Kitamura T, Nicholl J, Sutherland GR, Lanier LL, Phillips JH. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 1996; 4: 573-581.
    4. Sherrington PD, Scott JL, Jin B, Simmons D, Dorahy DJ, Lloyd J, Brien JH, Aebersold RH, Adamson J, Zuzel M, Burns GF. TLiSA1 (PTA1) activation antigen implicated in T cell differentiation and platelet activation is a member of the immunoglobulin superfamily exhibiting distinctive regulation of expression. J Biol Chem 1997; 272: 21735-21744.
    5. Jian JL, Zhu CS, Xu ZW, Ouyang WM, Ma DC, Zhang Y, Chen LJ, Yang AG, Jin BQ. Identification and characterization of the CD226 gene promoter. J Biol Chem 2006; 281: 28731-28736.
    6.张新海,李德敏,欧阳为明,贾卫,谢鑫,陈丽华,宁双飞,张赟,金伯泉.小鼠CD226(PTA1)的基因克隆及其异型.中国免疫学杂志2002; 18(6): 371-375.
    7. Shibuya K, Lanier LL, Phillips JH, Ochs HD, Shimizu K, Nakayama E, Nakauchi H, Shibuya A. Physical and functional association of LFA-1 with DNAM-1 adhesionmolecule. Immunity 1999; 11: 615-623.
    8. Ralston KJ, Hird SL, Zhang X, Scott JL, Jin B, Thorne RF, Berndt MC, Boyd AW, Burns GF. The LFA-1-associated molecule PTA-1 (CD226) on T cells forms a dynamic molecular complex with protein 4.1G and human discs large. J Biol Chem 2004; 279: 33816-33828.
    9. Tian F, Li D, Xia H, Liu X, Jia W, Sun C, Sun K, Jin B. Isolation of cDNAs encoding gibbon and monkey platelet and T cell activation antigen 1 (PTA1). DNA Seq 1999; 10: 155-161.
    10. Heaney ML, Golde DW. Soluble cytokine receptors. Blood 1996; 87: 847-857.
    11. Hooper NM, Karran EH, Turner AJ. Membrane protein secretases. Biochem J 1997; 321 ( Pt 2): 265-279.
    12. Martinez-Lorenzo MJ, Anel A, Alava MA, Pineiro A, Naval J, Lasierra P, Larrad L. The human melanoma cell line MelJuSo secretes bioactive FasL and APO2L/TRAIL on the surface of microvesicles. Possible contribution to tumor counterattack. Exp Cell Res 2004; 295: 315-329.
    13. Levine SJ. Molecular mechanisms of soluble cytokine receptor generation. J Biol Chem 2008; 283: 14177-14181.
    14. Gonzalez PA, Carreno LJ, Figueroa CA, Kalergis AM. Modulation of immunological synapse by membrane-bound and soluble ligands. Cytokine Growth Factor Rev 2007; 18: 19-31.
    15. Murakami S. Soluble interleukin-2 receptor in cancer. Front Biosci 2004; 9: 3085-3090.
    16. Rose-John S, Scheller J, Elson G, Jones SA. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol 2006; 80: 227-236.
    17. Moss ML, Sklair-Tavron L, Nudelman R. Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nat ClinPract Rheumatol 2008; 4: 300-309.
    18.贾卫,金伯泉,李琦,闵密克,刘雪松.可溶性PTA1分子的发现及其检测方法的建立.细胞与分子免疫学杂志2000; 16(4): 282-284.
    19.宁双飞,贾卫,张新海,杨琨,李琦,刘雪松,金伯泉.检测可溶型CD226双mAb夹心ELISA的建立及初步应用.细胞与分子免疫学杂志2003; 19(2): 192-194.
    20. Chen L, Xie X, Zhang X, Jia W, Jian J, Song C, Jin B. The expression, regulation and adhesion function of a novel CD molecule, CD226, on human endothelial cells. Life Sci 2003; 73: 2373-2382.
    21.周武庆,宁双飞,贾卫,金伯泉,崔盘根,杨雪源.银屑病患者血清中可溶性血小板T细胞活化抗原1的检测.中华皮肤科杂志2003; 36(3):159-160.
    22.董光龙,王为忠,吴国生,宋维亮,李开宗,贾卫,金伯泉.血清sPTA1与人活体小肠移植急性排斥反应的相关性评价.免疫学杂志2000; 16(6): 439-441.
    23.李州利,石炳毅,蔡明,钱叶勇,莫春柏,贾卫,金伯泉.血小板T细胞活化抗原1与移植肾急性排斥反应的相关性.肾脏病与透析肾移植杂志2003; 12(3): 229-233.
    24.李州利,石炳毅,蔡明,杜国胜,洪宝发,贾卫,金伯泉.血清sPTA1在判别肝移植术后急性排斥反应的作用.军医进修学院学报2006; 27(2): 91-92.
    25.宁双飞,贾卫,刘京梅,张新海,杨琨,李琦,刘雪松,金伯泉.肾综合症出血热患者血清可溶性CD226/PTA1的检测及意义.细胞与分子免疫学杂志2002; 18(3): 283-284.
    26. Ye X, Zhang Z, Jiang Y, Han X, Wang Y, Zhang M, Liu J, Geng W, Dai D, Shi W, Shang H. Expression of human CD226 on T cells and natural killer cells and of soluble CD226 in plasma of HIV-1-infected Chinese patients. Viral Immunol 2006; 19: 576-581.
    27. Kojima H, Kanada H, Shimizu S, Kasama E, Shibuya K, Nakauchi H, Nagasawa T, Shibuya A. CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J Biol Chem 2003; 278: 36748-36753.
    28. Tao D, Shangwu L, Qun W, Yan L, Wei J, Junyan L, Feili G, Boquan J, Jinquan T. CD226 expression deficiency causes high sensitivity to apoptosis in NK T cells from patients with systemic lupus erythematosus. J Immunol 2005; 174: 1281-1290.
    29. Ma D, Sun Y, Lin D, Wang H, Dai B, Zhang X, Ouyang W, Jian J, Jia W, Xu X, Jin B. CD226 is expressed on the megakaryocytic lineage from hematopoietic stem cells/progenitor cells and involved in its polyploidization. Eur J Haematol 2005; 74: 228-240.
    30. Bachelet I, Munitz A, Mankutad D, Levi-Schaffer F. Mast cell costimulation by CD226/CD112 (DNAM-1/Nectin-2): a novel interface in the allergic process. J Biol Chem 2006; 281: 27190-27196.
    31. Jin B, Scott JL, Vadas MA, Burns GF. TGF beta down-regulates TLiSA1 expression and inhibits the differentiation of precursor lymphocytes into CTL and LAK cells. Immunology 1989; 66: 570-576.
    32. Bottino C, Castriconi R, Moretta L, Moretta A. Cellular ligands of activating NK receptors. Trends Immunol 2005; 26: 221-226.
    33.张赟,贾卫,韩卫宁,曹云新,金伯泉. CD226在NK细胞亚群上表达规律与功能关系的研究.中国免疫学杂志2004; 20(11): 735-738.
    34.张赟,程光,韩卫宁,曹云新,金伯泉.超抗原对NK细胞CD226分子表达与功能的调节.细胞与分子免疫学杂志2006; 22(1): 4-6.
    35.张赟,程光,尤向辉,张红梅,任军,金伯泉.自体外周血造血干细胞移植后造血重建中CD226分子在NK细胞上表达的变化.标记免疫分析与临床2005; 12(3): 152-154, 134.
    36. van der Merwe PA. Formation and function of the immunological synapse. Curr Opin Immunol 2002; 14: 293-298.
    37. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. The immunological synapse: a molecular machine controlling T cell activation. Science1999; 285: 221-227.
    38. Shibuya K, Shirakawa J, Kameyama T, Honda S, Tahara-Hanaoka S, Miyamoto A, Onodera M, Sumida T, Nakauchi H, Miyoshi H, Shibuya A. CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J Exp Med 2003; 198: 1829-1839.
    39. Shirakawa J, Shibuya K, Shibuya A. Requirement of the serine at residue 329 for lipid raft recruitment of DNAM-1 (CD226). Int Immunol 2005; 17: 217-223.
    40. Vyas YM, Mehta KM, Morgan M, Maniar H, Butros L, Jung S, Burkhardt JK, Dupont B. Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J Immunol 2001; 167: 4358-4367.
    41. Reymond N, Imbert AM, Devilard E, Fabre S, Chabannon C, Xerri L, Farnarier C, Cantoni C, Bottino C, Moretta A, Dubreuil P, Lopez M. DNAM-1 and PVR regulate monocyte migration through endothelial junctions. J Exp Med 2004; 199: 1331-1341.
    42.陈丽华,张新海,佘义朝,刘雪松,金伯泉. CD226分子参与内皮细胞黏附功能的形态学证据.细胞与分子免疫学杂志2003; 19(4): 397-399.
    43. Dardalhon V, Schubart AS, Reddy J, Meyers JH, Monney L, Sabatos CA, Ahuja R, Nguyen K, Freeman GJ, Greenfield EA, Sobel RA, Kuchroo VK. CD226 is specifically expressed on the surface of Th1 cells and regulates their expansion and effector functions. J Immunol 2005; 175: 1558-1565.
    44. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 2003; 198: 557-567.
    45. Tahara-Hanaoka S, Shibuya K, Onoda Y, Zhang H, Yamazaki S, Miyamoto A, Honda S, Lanier LL, Shibuya A. Functional characterization of DNAM-1 (CD226) interactionwith its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 2004; 16: 533-538.
    46. Pende D, Bottino C, Castriconi R, Cantoni C, Marcenaro S, Rivera P, Spaggiari GM, Dondero A, Carnemolla B, Reymond N, Mingari MC, Lopez M, Moretta L, Moretta A. PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol Immunol 2005; 42: 463-469.
    47. Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S, Honda S, Yasui T, Kikutani H, Shibuya K, Shibuya A. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med 2008; 205: 2959-2964.
    48. Gilfillan S, Chan CJ, Cella M, Haynes NM, Rapaport AS, Boles KS, Andrews DM, Smyth MJ, Colonna M. DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J Exp Med 2008; 205: 2965-2973.
    49. Akins MR, Biederer T. Cell-cell interactions in synaptogenesis. Curr Opin Neurobiol 2006; 16: 83-89.
    50. Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W. Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci 2003; 94: 655-667.
    51. Miyoshi J, Takai Y. Nectin and nectin-like molecules: biology and pathology. Am J Nephrol 2007; 27: 590-604.
    52. Fuchs A, Colonna M. The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. Semin Cancer Biol 2006; 16: 359-366.
    53. Ogita H, Takai Y. Nectins and nectin-like molecules: roles in cell adhesion, polarization, movement, and proliferation. IUBMB Life 2006; 58: 334-343.
    54. Sakamoto Y, Ogita H, Komura H, Takai Y. Involvement of nectin in inactivation of integrin alpha(v)beta(3) after the establishment of cell-cell adhesion. J Biol Chem 2008; 283: 496-505.
    55. Zelano J, Wallquist W, Hailer NP, Cullheim S. Expression of nectin-1, nectin-3,N-cadherin, and NCAM in spinal motoneurons after sciatic nerve transection. Exp Neurol 2006; 201: 461-469.
    56. Satoh-Horikawa K, Nakanishi H, Takahashi K, Miyahara M, Nishimura M, Tachibana K, Mizoguchi A, Takai Y. Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities. J Biol Chem 2000; 275: 10291-10299.
    57. Inagaki M, Irie K, Ishizaki H, Tanaka-Okamoto M, Morimoto K, Inoue E, Ohtsuka T, Miyoshi J, Takai Y. Roles of cell-adhesion molecules nectin 1 and nectin 3 in ciliary body development. Development 2005; 132: 1525-1537.
    58. Fabre S, Reymond N, Cocchi F, Menotti L, Dubreuil P, Campadelli-Fiume G, Lopez M. Prominent role of the Ig-like V domain in trans-interactions of nectins. Nectin3 and nectin 4 bind to the predicted C-C'-C"-D beta-strands of the nectin1 V domain. J Biol Chem 2002; 277: 27006-27013.
    59. Fabre-Lafay S, Garrido-Urbani S, Reymond N, Goncalves A, Dubreuil P, Lopez M. Nectin-4, a new serological breast cancer marker, is a substrate for tumor necrosis factor-alpha-converting enzyme (TACE)/ADAM-17. J Biol Chem 2005; 280: 19543-19550.
    60. Fabre-Lafay S, Monville F, Garrido-Urbani S, Berruyer-Pouyet C, Ginestier C, Reymond N, Finetti P, Sauvan R, Adelaide J, Geneix J, Lecocq E, Popovici C, Dubreuil P, Viens P, Goncalves A, Charafe-Jauffret E, Jacquemier J, Birnbaum D, Lopez M. Nectin-4 is a new histological and serological tumor associated marker for breast cancer. BMC Cancer 2007; 7: 73.
    61. Kakunaga S, Ikeda W, Itoh S, Deguchi-Tawarada M, Ohtsuka T, Mizoguchi A, Takai Y. Nectin-like molecule-1/TSLL1/SynCAM3: a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes. J Cell Sci 2005; 118:1267-1277.
    62. Gruber-Olipitz M, Yang JW, Slavc I, Lubec G. Nectin-like molecule 1 is a high abundance protein in cerebellar neurons. Amino Acids 2006; 30: 409-415.
    63. Park J, Liu B, Chen T, Li H, Hu X, Gao J, Zhu Y, Zhu Q, Qiang B, Yuan J, Peng X, Qiu M. Disruption of Nectin-like 1 cell adhesion molecule leads to delayed axonal myelination in the CNS. J Neurosci 2008; 28: 12815-12819.
    64. Tosney KW, Watanabe M, Landmesser L, Rutishauser U. The distribution of NCAM in the chick hindlimb during axon outgrowth and synaptogenesis. Dev Biol 1986; 114: 437-452.
    65. DiFiglia M, Marshall P, Covault J, Yamamoto M. Ultrastructural localization of molecular subtypes of immunoreactive neural cell adhesion molecule (NCAM) in the adult rodent striatum. J Neurosci 1989; 9: 4158-4168.
    66. Jorgensen OS. Neural cell adhesion molecule (NCAM) as a quantitative marker in synaptic remodeling. Neurochem Res 1995; 20: 533-547.
    67. Ronn LC, Pedersen N, Jahnsen H, Berezin V, Bock E. Brain plasticity and the neural cell adhesion molecule (NCAM). Adv Exp Med Biol 1997; 429: 305-322.
    68. Ronn LC, Hartz BP, Bock E. The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Exp Gerontol 1998; 33: 853-864.
    69. Theodosis DT, Bonhomme R, Vitiello S, Rougon G, Poulain DA. Cell surface expression of polysialic acid on NCAM is a prerequisite for activity-dependent morphological neuronal and glial plasticity. J Neurosci 1999; 19: 10228-10236.
    70. Ryan TA. NCAM and vesicle cycling: the importance of good glue in the long run. Neuron 2001; 32: 759-761.
    71. Markram K, Gerardy-Schahn R, Sandi C. Selective learning and memory impairments in mice deficient for polysialylated NCAM in adulthood. Neuroscience 2007; 144: 788-796.
    72. Rao A, Harms KJ, Craig AM. Neuroligation: building synapses around the neurexin-neuroligin link. Nat Neurosci 2000; 3: 747-749.
    73. Dean C, Scholl FG, Choih J, DeMaria S, Berger J, Isacoff E, Scheiffele P. Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci 2003; 6: 708-716.
    74. Nam CI, Chen L. Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc Natl Acad Sci U S A 2005; 102: 6137-6142.
    75. Lise MF, El-Husseini A. The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol Life Sci 2006; 63: 1833-1849.
    76. Chih B, Gollan L, Scheiffele P. Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 2006; 51: 171-178.
    77. Zeng X, Sun M, Liu L, Chen F, Wei L, Xie W. Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila. FEBS Lett 2007; 581: 2509-2516.
    78. Levinson JN, El-Husseini A. A crystal-clear interaction: relating neuroligin/neurexin complex structure to function at the synapse. Neuron 2007; 56: 937-939.
    79. Fabrichny IP, Leone P, Sulzenbacher G, Comoletti D, Miller MT, Taylor P, Bourne Y, Marchot P. Structural analysis of the synaptic protein neuroligin and its beta-neurexin complex: determinants for folding and cell adhesion. Neuron 2007; 56: 979-991.
    80. Craig AM, Kang Y. Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol 2007; 17: 43-52.
    81. Levinson JN, El-Husseini A. Building excitatory and inhibitory synapses: balancing neuroligin partnerships. Neuron 2005; 48: 171-174.
    82. Rosales CR, Osborne KD, Zuccarino GV, Scheiffele P, Silverman MA. A cytoplasmic motif targets neuroligin-1 exclusively to dendrites of cultured hippocampal neurons. Eur J Neurosci 2005; 22: 2381-2386.
    83. Suckow AT, Comoletti D, Waldrop MA, Mosedale M, Egodage S, Taylor P, ChesslerSD. Expression of neurexin, neuroligin, and their cytoplasmic binding partners in the pancreatic beta-cells and the involvement of neuroligin in insulin secretion. Endocrinology 2008; 149: 6006-6017.
    84. Varoqueaux F, Jamain S, Brose N. Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol 2004; 83: 449-456.
    85. Cifuentes-Diaz C, Nicolet M, Goudou D, Rieger F, Mege RM. N-cadherin expression in developing, adult and denervated chicken neuromuscular system: accumulations at both the neuromuscular junction and the node of Ranvier. Development 1994; 120: 1-11.
    86. Beesley PW, Mummery R, Tibaldi J. N-cadherin is a major glycoprotein component of isolated rat forebrain postsynaptic densities. J Neurochem 1995; 64: 2288-2294.
    87. Inoue A, Sanes JR. Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates. Science 1997; 276: 1428-1431.
    88. Benson DL, Tanaka H. N-cadherin redistribution during synaptogenesis in hippocampal neurons. J Neurosci 1998; 18: 6892-6904.
    89. Bruses JL. Cadherin-mediated adhesion at the interneuronal synapse. Curr Opin Cell Biol 2000; 12: 593-597.
    90. Tanaka H, Shan W, Phillips GR, Arndt K, Bozdagi O, Shapiro L, Huntley GW, Benson DL, Colman DR. Molecular modification of N-cadherin in response to synaptic activity. Neuron 2000; 25: 93-107.
    91. Togashi H, Abe K, Mizoguchi A, Takaoka K, Chisaka O, Takeichi M. Cadherin regulates dendritic spine morphogenesis. Neuron 2002; 35: 77-89.
    92. Suzuki A, Suzuki R, Furuno T, Teshima R, Nakanishi M. N-cadherin plays a role in the synapse-like structures between mast cells and neurites. Biol Pharm Bull 2004; 27: 1891-1894.
    93. Elste AM, Benson DL. Structural basis for developmentally regulated changes in cadherin function at synapses. J Comp Neurol 2006; 495: 324-335.
    94. Mysore SP, Tai CY, Schuman EM. Effects of N-cadherin disruption on spine morphological dynamics. Front Cell Neurosci 2007; 1: 1.
    95. Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 2007; 8: 11-20.
    96. Mysore SP, Tai CY, Schuman EM. N-cadherin, spine dynamics, and synaptic function. Front Neurosci 2008; 2: 168-175.
    97. Vaughn JE. Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 1989; 3: 255-285.
    98. Sanes JR, Lichtman JW. Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 1999; 22: 389-442.
    99. Mueller BK. Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 1999; 22: 351-388.
    100. Sanes JR, Yamagata M. Formation of lamina-specific synaptic connections. Curr Opin Neurobiol 1999; 9: 79-87.
    101. Sanes JR, Lichtman JW. Can molecules explain long-term potentiation? Nat Neurosci 1999; 2: 597-604.
    102. Benson DL, Schnapp LM, Shapiro L, Huntley GW. Making memories stick: cell-adhesion molecules in synaptic plasticity. Trends Cell Biol 2000; 10: 473-482.
    103. Benson DL, Colman DR, Huntley GW. Molecules, maps and synapse specificity. Nat Rev Neurosci 2001; 2: 899-909.
    104. Garner CC, Zhai RG, Gundelfinger ED, Ziv NE. Molecular mechanisms of CNS synaptogenesis. Trends Neurosci 2002; 25: 243-251.
    105. Rougon G, Hobert O. New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. Annu Rev Neurosci 2003; 26: 207-238.
    106. Yamagata M, Sanes JR, Weiner JA. Synaptic adhesion molecules. Curr Opin Cell Biol 2003; 15: 621-632.
    107. Tahara-Hanaoka S, Miyamoto A, Hara A, Honda S, Shibuya K, Shibuya A. Identification and characterization of murine DNAM-1 (CD226) and its poliovirus receptor family ligands. Biochem Biophys Res Commun 2005; 329: 996-1000.
    108. Morrison ME, Racaniello VR. Molecular cloning and expression of a murine homolog of the human poliovirus receptor gene. J Virol 1992; 66: 2807-2813.
    109. Eberle F, Dubreuil P, Mattei MG, Devilard E, Lopez M. The human PRR2 gene, related to the human poliovirus receptor gene (PVR), is the true homolog of the murine MPH gene. Gene 1995; 159: 267-272.
    110. Chadeneau C, LeMoullac B, LeCabellec M, Mattei M, Meflah K, Denis MG. Isolation and chromosomal location of mE4, a novel murine gene of the immunoglobulin superfamily. Mamm Genome 1996; 7: 636-637.
    111. Denis MG. Characterization, cloning and expression of the Tage4 gene, a member of the immunoglobulin superfamily. Int J Oncol 1998; 12: 997-1005.
    112. Baury B, Masson D, McDermott BM, Jr., Jarry A, Blottiere HM, Blanchardie P, Laboisse CL, Lustenberger P, Racaniello VR, Denis MG. Identification of secreted CD155 isoforms. Biochem Biophys Res Commun 2003; 309: 175-182.
    113. Sakisaka T, Takai Y. Biology and pathology of nectins and nectin-like molecules. Curr Opin Cell Biol 2004; 16: 513-521.
    114. Sloan KE, Stewart JK, Treloar AF, Matthews RT, Jay DG. CD155/PVR enhances glioma cell dispersal by regulating adhesion signaling and focal adhesion dynamics. Cancer Res 2005; 65: 10930-10937.
    115. Takai Y, Miyoshi J, Ikeda W, Ogita H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 2008; 9: 603-615.
    116. Mueller S, Wimmer E. Recruitment of nectin-3 to cell-cell junctions through trans-heterophilic interaction with CD155, a vitronectin and poliovirus receptor thatlocalizes to alpha(v)beta3 integrin-containing membrane microdomains. J Biol Chem 2003; 278: 31251-31260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700