用户名: 密码: 验证码:
瓦氏黄颡鱼(Pelteobagrus vachelli)脂肪代谢相关基因cDNA的克隆及表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水生动物营养学研究的不断深入和完善,近年来,鱼类的脂类营养已逐渐成为营养学的一个研究热点。迄今不同学者分别从脂类营养与动物的生长性能、生理学参数,以及生化酶和代谢之间的关系等方面做了大量的工作,但从分子水平上,尤其是有关外源营养素与鱼类代谢相关酶基因之间关系的研究仍颇为缺乏。本论文以瓦氏黄颡鱼(darkbarbel catfish, Pelteobagrus vachelli)为研究对象,主要从分子角度探讨了脂肪种类、水平等对瓦氏黄颡鱼幼鱼生长和脂肪代谢的影响,研究结果可以为完善瓦氏黄颡鱼人工饲料配方和全价配合饲料的开发提供参考。
     本论文利用分子生物学技术和生物信息学方法,首先克隆了瓦氏黄颡鱼的主要脂肪代谢相关基因肝脂酶(hepatic lipase, HL),脂肪酸结合蛋白(fatty acid binding protein, FABP),脂肪酸合成酶(fatty acid synthase, FAS)和肉碱酰基转运酶(carnitine acetyltransferase, CAT)的cDNA片段,分析了这些基因的cDNA序列和分子特征,以及在不同组织中的表达模式。在此基础上,进行了室内饲养试验,研究了饲料脂肪种类和水平等对瓦氏黄颡鱼生长参数、脂肪代谢相关基因mRNA表达的影响,探讨了它们在机体脂肪的分解、转运,以及体内合成等过程发挥的作用。
     论文的主要结果和结论如下:
     1瓦氏黄颡鱼脂肪代谢相关基因的研究
     本研究根据GenBnak中提供的生物学信息设计简并引物,采用RT-PCR和克隆测序及生物信息学方法、从瓦氏黄颡鱼肝脏中克隆得到肝脂酶,肝型脂肪酸结合蛋白,心型脂肪酸结合蛋白,脂肪酸合成酶和肉碱酰基转运酶基因的cDNA片段。
     肝脂酶是血液循环中内源性甘油三酯代谢的关键酶之一。本试验克隆了瓦氏黄颡鱼肝脂酶的部分cDNA序列。该片段长为1065bp序列,软件分析获得了343个氨基酸,其序列与斑马鱼(Danio rerio)、日本鳗鲡(Anguilla japonica)、鳜鱼(Siniperca chuatsi)、斜带石斑鱼(Epinephelus coioides)、真鲷(Pagrus major)的肝脂酶具有很高的同源性,分别为73%、68%、67%、66%和65%。经分析,所得瓦氏黄颡鱼肝脂酶氨基酸残基中含有1个糖基化位点,催化中心三联体位点1个和多肽“盖”等主要的结构功能位点,因而该基因属于脂酶家族。定量PCR分析表明肝脂酶只在肝脏组织中表达,表明瓦氏黄颡鱼肝脂酶的表达具有组织特异性,肝脏是分泌肝脂酶及其行使功能的主要场所。
     脂肪酸结合蛋白是一类分子量较小,而对脂肪酸有高亲和力的可溶性蛋白质。本试验采用简并引物扩增获得了瓦氏黄颡鱼脂肪酸结合蛋白部分cDNA序列。肝型脂肪酸结合蛋白cDNA片段长为335bp,软件分析获得111个氨基酸残基,与鲤鱼(Cyprinus carpio)的肝型脂肪酸结合蛋白的氨基酸序列同源性最高,可达到90%。瓦氏黄颡鱼心型脂肪酸结合蛋白cDNA序列片段长为425bp序列,包括26bp 3’端非编码区。软件分析后获得114个氨基酸残基,与斜齿鳊(Rutilus rutilus)的心型脂肪酸结合蛋白氨基酸序列同源性高达85%。结果表明克隆所得基因序列均属于脂肪酸结合蛋白家族。定量PCR分析表明,瓦氏黄颡鱼肝型脂肪酸结合蛋白在肝脏、腹腔脂肪、肌肉和心脏组织有较高的表达量。心型脂肪酸结合蛋白主要在肝脏、脂肪组织和心脏中表达,表明肝脏和腹腔脂肪组织均是肝型和心型脂肪酸结合蛋白表达的主要场所。
     脂肪酸合成酶能催化机体内脂肪酸的从头合成,生成内源性脂肪酸。本试验采用RT-PCR技术成功分离了瓦氏黄颡鱼脂肪酸合成酶cDNA序列片段,序列长为674bp,软件分析后获得216个氨基酸残基,与斑马鱼(D. rerio)脂肪酸合成酶氨基酸序列同源性最高(87%),其次是红原鸡(Gallus gallus,79%)、南方短尾负鼠(Monodelphis domestica,70%)、褐家鼠(Rattus norvegicus,68%)等。定量PCR分析表明,瓦氏黄颡鱼脂肪酸合成酶mRNA在肝脏、肠道、腹腔脂肪、心脏组织的表达水平显著高于肌肉等组织(P<0.05),脂肪酸合成酶mRNA的表达量上升,有利于促进脂肪酸的生物合成,以满足不同组织细胞分化增殖对脂质营养和能量的需要。
     肉碱酰基转运酶属于转运酶家族,能转运从乙酰辅酶A到L-肉碱等酰基基团。本试验获得了瓦氏黄颡鱼肉碱酰基转运酶部分cDNA序列,片段长为494bp,序列软件分析后获得156个氨基酸残基,与斑马鱼(D. rerio)和红原鸡(G. gallus)的肉碱酰基转运酶氨基酸序列同源性分别为81%和70%,分析表明所得序列属于酰基转运酶家族。PCR检测发现瓦氏黄颡鱼肉碱酰基转运酶主要在肝脏、腹腔脂肪组织和肌肉等组织中表达,提示这些组织均为能量代谢的重要场所。
     瓦氏黄颡鱼肝脂酶、心型脂肪酸结合蛋白、脂肪酸合成酶和肉碱酰基转运酶cDNA片段的成功克隆,为研究瓦氏黄颡鱼脂肪代谢提供了基础资料。根据肝脂酶、心型脂肪酸结合蛋白、脂肪酸合成酶和肉碱酰基转运酶的组织表达特点,后续的生长试验中,选择了鱼的肝脏和腹腔脂肪组织为目标靶器官,研究了饲料脂肪种类和水平对瓦氏黄颡鱼的生长和脂肪代谢的影响。
     2饲料脂肪种类对瓦氏黄颡鱼的生长和脂肪代谢相关基因表达的影响
     研究了饲料中不同脂肪种类对瓦氏黄颡鱼幼鱼生长、主要脂肪代谢相关基因表达的影响。试验以鱼粉和豆粕为蛋白源,分别添加8%的全鱼油、豆油、猪油、混合油1(豆油和鱼油混合=3:1)、混合油2(豆油和鱼油混合=1:3),配制了等氮等能的5种饲料。每组设三重复,投喂初始平均体重约为1.0 g的幼鱼80天。结果表明,鱼油、豆油、混合油1和混合油2饲料4个处理组均表现出较好的生长趋势,终末体重和特定生长率分别达到7.67g、7.47g、8.21g、8.31g和2.52%、2.50%、2.65%、2.63%,均显著高于猪油组6.13g和2.32%(P<0.05)。饲料脂肪源对瓦氏黄颡鱼的腹腔脂肪率和肝体指数无显著影响,腹腔脂肪率分别为3.52%,4.49%,3.70%,3.92%,4.42%;肝体指数分别为2.66%,2.88%,3.06%,3.08%,2.54%。根据所得的结果,可以认为短期内以豆油作为脂肪源不会显著影响瓦氏黄颡鱼的生长。
     定量PCR分析主要脂肪代谢相关基因mRNA表达显示,在肝脏组织中,混合油2组的脂蛋白脂酶,肝脂酶,肝型脂肪酸结合蛋白和肉碱酰基转运酶mRNA表达量均显著高于其它组(P<0.05)。而猪油组能促进脂肪酸合成酶mRNA表达上调,且显著高于其它组(P<0.05)。同时,在腹腔脂肪组织中,脂蛋白脂酶和肝型脂肪酸结合蛋白mRNA表达具有组织特异性,各组间均无显著差异。混合油1组脂肪酸合成酶表达显著高于鱼油组(P<0.05),而其它组间无显著差异。肉碱酰基转运酶mRNA的表达在混合油1和混合油2组中表现为上调,且显著高于猪油组(P<0.05)。混合油2组饲料中多不饱和脂肪酸百分含量(46%)最高,能促进肝脏脂蛋白脂酶、肝脂酶、肝型脂肪酸结合蛋白和肉碱酰基转运酶mRNA的表达显著上调(P<0.05),提高饲料多不饱和脂肪酸的利用率,从而促进了瓦氏黄颡鱼幼鱼的生长。上述结果提示,不同的饲料脂肪种类主要通过调节瓦氏黄颡鱼肝脏的脂蛋白脂酶和肝脂酶分解脂蛋白的能力,使得肝型脂肪酸结合蛋白转运脂肪酸、脂肪酸的合成活动发生相应的变化,最终使机体生长和代谢所需的脂肪酸得到满足。
     3脂肪水平对瓦氏黄颡鱼幼鱼的生长和脂肪代谢相关基因表达的影响
     探讨了饲料中不同脂肪水平对瓦氏黄颡鱼幼鱼生长和主要脂肪代谢相关基因表达的影响。以鱼粉和脱脂豆粕为饲料蛋白源,鱼油和大豆油等比例混合为脂肪源,分别配制含有5%,11%和20%三个脂肪水平的等氮饲料。试验组每组各设三个重复,投喂初始平均体重1.0g左右的幼鱼,70天后5%、11%和20%处理组平均体重分别为8.45g、7.92g、6.94g。经统计分析,5%和11%处理组的终末体重、特定生长率显著高于20%处理组。从生长试验来看,饲料脂肪水平对瓦氏黄颡鱼的生长有显著的影响,随着饲料脂肪水平增加,腹腔脂肪率显著升高(P<0.05),分别是2.56%,4.27%和6.06%;但随饲料脂肪水平提高,鱼的肝体指数没有显著变化,分别为2.59%;2.47%和2.58%。
     对主要脂肪代谢相关基因mRNA的定量PCR分析显示,随着饲料脂肪水平的升高,肝脏脂蛋白脂酶,肝脂酶和肝型脂肪酸结合蛋白的mRNA表达水平显著提高(P<0.05);而脂肪酸合成酶和肉碱酰基转运酶的mRNA表达水平却显著下降(P<0.05),肉碱酰基转运酶mRNA表达在11%处理组和20%处理组之间无显著差异(P>0.05)。同时,在腹腔脂肪组织中,11%处理组脂蛋白脂酶基因mRNA的表达量显著低于20%处理组(P<0.05),略低于5%处理组。肝型脂肪酸结合蛋白mRNA表达在11%处理组中最低,并显著低于5%处理组(P<0.05)。肉碱酰基准转运酶mRNA表达在20%处理组最高,显著高于11%处理组和5%处理组(P<0.05)。此外,5%处理组脂肪酸合成酶表达水平显著高于11%处理组和20%处理组(P<0.05)。上述研究结果表明,饲料脂肪水平会影响肝脏和腹腔脂肪组织脂肪代谢相关基因mRNA的表达;过高的饲料脂肪水平,能通过增强肝脏和腹腔脂肪组织中的脂肪分解,促进脂肪酸转运,抑制脂肪酸生成等环节来调节脂肪的代谢,以减少脂肪在机体内组织器官的沉积。
     4瘦素对瓦氏黄颡鱼脂肪代谢相关基因表达的影响
     本试验分析了腹腔注射小鼠瘦素重组蛋白对瓦氏黄颡鱼肝脏脂肪代谢的影响。试验设置4个处理组,分别注射20μg/100μl,5μg/100μl,磷酸缓冲液(PBS,100μl)和未注射空白组(对照组),每个组含三个重复,每个重复放养9尾试验鱼(体重30±0.5g)。对试验鱼隔天注射一次,连续饲养15天,按常规饲养投喂和管理。试验结果表明,与未注射组的鱼相比,注射不同含量的瘦素均能显著地提高鱼肝脏中肉碱酰基转运酶mRNA的表达量(P<0.05),但不同注射剂量的各瘦素处理组间无显著性差异。低瘦素浓度组能显著地促进肝型脂肪酸结合蛋白mRNA的表达(P<0.05),但注射瘦素会显著抑制脂肪酸合成酶mRNA的表达,且随注射浓度的增加,其mRNA的表达随之明显下降(P<0.05)。此外,瘦素注射能增加脂蛋白脂酶和肝脂酶mRNA的表达,但均与对照组无显著差异(P>0.05)。结果提示外源瘦素可能是通过促进肝型脂肪酸结合蛋白mRNA的表达,增加了体内脂肪酸的转运能力;同时,由于脂肪酸合成酶mRNA表达水平的降低,抑制了体内脂肪酸的合成,从而促进机体脂肪代谢活动,维持鱼体的脂肪贮存量和能量的平衡。
Due to the importance of dietary lipid utilization in fish rearing, increasing attention has been paid to different aspects of fish lipid nutrition. However, different explanations have been proposed but the exact mechanisms behind these observations have not been completely clarified. So this study was conducted to investigate that the lipid level and source effect the growth and lipid metabolism related gene expression of freshwater omnivorous darkbarbel catfish, Pelteobagrus vachelli.
     1 Cloning and tissues expression of the lipid metabolism related gene in darkbarbel catfish, Pelteobagrus vachelli
     To investigated the lipid nutritional regulation of lipid molecular metabolism of fish, hepatic lipase (HL), fatty acid binding protein (FABP), fatty acid synthase (FAS) and carnitine acetyltransferase (CAT) gene of darkbarbel catfish P. vachelli were isolated from the liver. (1):The partial cDNA of HL (1065bp) was cloned, and was capable of encoding 343 amino acids residues, and showed significant identity to the HL gene of Danio rerio (73%). The partial deduced amino acids residues carried conserved features of this family, and found the"lid"sites. HL gene mRNA expression was detected in liver, but not in gill, muscle, intestine, spleen, heart and brain. (2)The length of cloned liver and heart FABP (L-and H-FABP) cDNA sequences were 335 and 425bp, and encoded 111 and 114 amino acids residues, respectively. Homologous alignment analysis showed L-and H-FABP gene had 82% and 85% identity to that of Cyprinus carpio and Rutilus rutilus, respectively. FABP gene mRNA was mainly distributed in liver, visceral adipose tissue, muscle and heart for liver FABP, and in liver, visceral adipose tissue and heart for heart FABP. (3):The partial cDNA of FAS gene consisted of 674bp, finding 216 amino acids residues. Sequence comparison showed that the partial FAS amino acids residues had the highest identity with D. rerio (90%). FAS transcripts were detected in all sampled tissues, and significantly distributed in liver, visceral adipose tissue, muscle, intestine, heart. (4):cDNA encoding CAT mRNA was obtained from the liver, partial cDNA with 494bp encoded 156 amino acids residues. Comparison the sequence of CAT amino acids residues showed the highest identity with D. rerio (81%).
     2 Effect of lipid sources on the growth and expression of related metabolism gene of lipid of darkbarbel catfish, Pelteobagrus vachelli
     The effects of dietary lipid sources on fatty acid absorption and expression regulation of genes related to lipid metabolism in darkbarkbel catfish, Pelteobagrus vachelli, were evaluated. Fingerlings of P. vachelli (1.0±0.2 g) were fed five experimental diets with fish oil (FO), soybean oil (SO), pig oil (PO),75% fish oil and 25% soybean oil (Mix group 1), 25% fish oil and 75% soybean oil (Mix group 2) as lipid sources respectively for 80 days. Fish weight gains of SO, M1 and M2 groups were similar to those of FO group, but total replacement of fish oil by PO significantly reduced fish weight gain (P<0.05). Though there were increasing trends in hepatosomatic index (HSI) and intraperitoneal fat ratio (IPF) of fish feeding SO, M1, M2 and PO deits, no significant differences were found (P<0.05). Fish of PO group had higher SFA fraction and lower PUFA fraction in feces relative to those feeding FO diets. Fish of SO, M1 and M2 groups had significantly higher PUFA fraction and lower SFA fraction (p<0.05) in feces, and the PUFA fraction in feces increased with the replacement content of fish oil by soybean oil. Furthermore, replacement of fish oil with SO, PO and 75% SO could significantly increased the fatty acid binding protein (FABP) and fatty acid synthase (FAS) gene expressions in liver and adipose tissue (P<0.05), and significantly reduced the carnitine acyltransferase gene expression in liver (P<0.05). No significant changes were found in lipoprotein lipase (LPL) gene expression in liver and adipose tissue, and hepatic lipase (HL) gene expression in liver (P<0.05). All these findings could suggest that soybean oil could increase lipid biosynthesis and slow down the lipid catabolism of P. vachelli. Therefore, partly replacement of fish oil by soybean oil did not reduce the weight gain of darkbarkbel catfish.
     3 Effect of lipid level on the growth and expression of related lipid metabolism gene of lipid of darkbarbel catfish, Pelteobagrus vachelli
     An experiment was conducted to determine the effect of dietary lipid levels on growth performance and expression regulation of genes of darkbarbel catfish, P. vachelli juveniles cultured in plastic boxes. Three isonitrogenous diets (42% dietary protein) with increasing dietary lipid concentration (5%,11%,20% of dry material, DM) were fed to satiation to triplicate groups of 30 fish (mean weight:1.0±0.1 g) for 70 days. Fish weight gains of 5% lipid and 11% lipid groups were similar, but weight gains of 20%lipid group significantly reduced (P<0.05). Furthermore, intraperitoneal fat ratio (IPF) significantly increased with lipid level (P<0.05), but no significant differences were found for hepatosomatic index (HSI) between different lipid level diets (P<0.05). Furthermore, in liver, the mRNA expression of LPL, HL and L-FABP significantly increased, FAS and CAT significantly reduced with the augment of diet lipid level (P<0.05). In visceral adipose tissue, gene expression characterization of lipid metabolism was multiplex. Both LPL and L-FABP mRNA expression were the highest in 5% lipid group. The 20% lipid group significantly increased the expression of CAT mRNA, but there was no significant difference between 5% lipid and 11% lipid groups. CAT mRNA was the highest in 20% lipid group. However, the FAS transcripts was decreased with increasing of dietary lipid level (P<0.05), but there was no significant difference between 11% and 20% lipid groups. These results suggested that increasing dietary lipid level could induce the metabolism of lipid in liver and visceral adipose tissue, and reduce the lipid biosynthesis.
     4 Effect of murine leptin injections on expression of the related metabolism gene of lipid of darkbarbel catfish, Pelteobagrus vachelli
     An experiment was conducted to determine the effect of leptin on regulation of genes related to lipid metabolism in darkbarkbel catfish, Pelteobagrus vachelli, were evaluated. The darkbarbel catfish, P. vachelli, (30±0.5g) were injected daily with higher murine leptin (20μg/100μl), lower murine leptin (5μg/100μl), phosphate-buffered saline (PBS), or simply handled without injection for 15 days. At the end of the experiment, fish were assayed for expression regulation of genes related to lipid metabolism in liver. Injecting leptin could remarkably increase the mRNA expression of CAT and L-FABP, but no significant difference was found between high and low concentration. Though there were increasing trends with leptin injection for HL and LPL mRNA expression, but no significant differences were found in all groups (P<0.05). However, the FAS mRNA expression in leptin treated groups was significantly decreased. These results suggest that fish respond to murine leptin injections by increasing fat transport, and depressing the lipid biosynthesis.
引文
Agellon, L.B., Toth M.J. Thomson A.B., Intracellular lipid binding proteins of the small intestine. Mol Cell Biochem.,2002(239),79-82.
    Agius, L., Wright, P. D., Alberti, K. G., Camitine acyltransferases and acyl-CoA hydrolases in human and rat liver. Clin. Sci.,1987(73),3-10
    Ahima, R.S, Flier, J.S. Leptin. Annu. Rev. Physiol.,2000(62),413-37.
    Akiyama, T.E., Ward, J.M., Gonzalez F.J. Regulation of the liver fatty acid-binding protein gene by hepatocyte nuclear factor 1 alpha (HNF1 alpha)-alterations in fatty acid homeostasis in HNF1 alpha-deficient mice. J Biol. Chem.,2000(275),27117-22
    Albalat, A., Gomez-Requeni, P., Rojas P., et al., Nutritional and hormonal control of lipolysis in isolated gilthead sea bream(Sparus aurata) adipocytes. Am. J. Physiol.,2005 (289), 259-65
    Albalat, A., Sanchez-Gurmaches, J., Gutierrez, J., Navarro, I., Regulation of lipoprotein lipase activity in rainbow trout (Oncorhynchus mykiss) tissues. Gen. Comp. Endocrinol., 2006(146),226-35
    Alvarez M.J., Diez A., Lopez-Bote C., et al, Short-term modulation of lipogenesis by macronutrients in rainbow trout(Oncorhynchus mykiss) hepatocytes. Br. J. Nutr., 2000(84),619-28
    Alvarez, M.J., Lopez-Bote, C.J., Diez, A., et al., Dietary fish oil and digestible protein modify susceptibility to lipid peroxidation in the muscle of rainbow trout Oncorhynchus mykiss and sea bass Dicentrarchus labrax. Br. J. Nutr.,1998(80),281-89
    Applebaum-Bowden D., Lipases and lecithin:cholesterol acyltransferase in the control of lipoprotein metabolism. Curr. Opin. Lipidol.,1995(6),130-135.
    Arantzamendi, L.,2002. Effect of dietary lipids on production, composition and lipolytic activity in commercial fish. PhD Thesis, University of Las Palmas de Gran Canaria, Spain.
    Arzel, J., Martinez-Lopez, F.X., Metailler, R., et al., Effect of dietary lipid on growth performance and body composition of brown trout(Salmo trutta) reared in seawater. Aquaculture 1994(123),361-375
    Bai, Y., Zhang, S., Kim, K.S. et al., Obese gene expression alters the ability of 30A5 preadipocytes to respond to lipogenic hormo, J. Biol. Chem.1996(271),13939-13942.
    Baker, D., Larsen, D., Swanson, P., Dickhoff, W.W., Long-term peripheral treatment of immature coho salmon(Oncorhynchus kisutch) with human leptin has no clear physiological effect. General and Comparative Endocrinology,2000(118),134-138.
    Beamish, F.W.H., Medland, T.E., Protein sparing effects in large rainbow trout, Salmo gairdneri. Aquaculture,1986(55),35-42
    Beauchamp, M.C., Renier, G, Homocysteine induces protein kinase C activation and stimulates c-fos and lipoprotein lipase expression in macrophages. Diabetes 2002(51), 1180-1187
    Beenakkers, A. M., klingenber, G M., carnitine-coenzyme a transacetylase in mitochondria from various organs, Biochim. Biophys.Acta,1964(84),205-207.
    Bell, J.G., Dick, J.R., Mc Vicar, A.H., et al., Dietary sunflower lineseed and fish oils affected phospholipid fatty acid composition, development of cardiac lesions, phospholipase activity and eicosanoid production in Atlantic salmon, Salmo salar. Prostaglandins, Leukotrienes Essent. Fatty Acids,1993(49),119-127.
    Bell, J.G., Tocher, D.R., Farnada, B.M., et al., The effect of dietary lipids on polyunsaturated fatty acid metabolism in Atlantic salmon(Salmo salar) under parr-smolt transformation. Lipids,1997(32),525.
    Bellardi, S., Bianchini, M.L., Domenis, L., Palmegiano, G.B., Effect of feeding schedule and feeding rate on size and number of adipocytes in rainbow trout Oncorhynchus mykiss. J. World Aquac. Soc.,1995(26),80-83.
    Berg, G. A., Siseles, N., Gonzalez, A. I., et al., Higher values of hepatic 1 ipace activity in postmenopause relationship with atherogenic intermediated density and low density lipoproteins. Menopause.,2001(8),51-57.
    Bernlohr, D.A., Simpson, M.A., Vogel Hertzel, A., Banaszak, L.J., Intracellular lipid-binding proteins and their genes. Annu. Rev. Nutr.,1997(17),277-303.
    Bidwell, C. A., Frank, G. R., et al. Cloning and expression of procine obese gene. Anim Biotech,1997(8),191-206.
    Bieber, L. L. and Farrell, S.0. (1983) in The Enzymes (Boyer, P. D., ed.), pp.627-644, Academic Press, New York
    Bimbo, A.P.,1990. Production of fish oil. Ch6 in fish oils nutrition. In:Stansby, M.E. (Ed.), Van Nostrand Reinhold, New York, pp.141-180.
    Bjornsson, B.T.h., Sundell, K., Jonsson, E., et al.,2004. Gutintegrity-Gastrointestinal Functions and Food Intake Regulation in Salmonids:Impact of Dietary Vegetable Lipids. Goteborgs Universitet, Goteborg.
    Black, D., Skinner, E.R., Changes in plasma-lipoproteins and tissue lipoprotein-lipase and salt-resistant lipase activities during spawning in the rainbow-trout (Salmo gairdnerii R). Comp. Biochem. Physiol.,1987 (88),261-267.
    Bolasina, S.,N. and Fenucci, J. L., Effects of dietary lipid level on growth, survival and body compositionof Brazilian codling (Urophycis brasiliensis Kaup,1858), Revista de Biologia Marina y Oceanografia,2007(1),23-27
    Braun, J.E.A., Severson, D.L., Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem. J.,1992(287),337-347
    Brice, A., Berrard, S., Raynaud, B., et al., Complete sequence of a cDNA encoding an active rat choline acetyltransferase:A tool to investigate the plasticity of cholinergic phenotype expression J. Neurosci. Res.,1989(23),266-273
    Brown, N. F., Anderson, R. C., Caplan, S. L., et al. Catalytically important domains of rat carnitine palmitoyltransferase II as determined by site-directed mutagenesis and chemical modification. Evidence for a critical histidine residue. J Biol. Chem.,1994(269), 19157-19162.
    Caballero, M.J., Izquierdo, M.S., Kjorsvik, E.,et al., Histological alterations in the liver of seabream, Sparus aurata L., caused by short-or long-term feeding with vegetable oils. Recovery of normal morphology after feeding fish oil as the sole lipid source. J. Fish Dis., 2004(27),531-541.
    Caballero, M.J., Obach, A., Rosenlund, G., et al., Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbowtrout, Oncorhynchus mykiss. Aquaculture,2002(214),253-271.
    Camps, L., Reina, M., Llobera, M., Vilaro, S., Olivecrona, T., Lipoprotein lipase:cellular origin and functional distribution. Am J Physiol.,1990(258),673-681.
    Caprio, M., Fabbrini, E., Isidori, A.M., Aversa, A., Fabbri, A., Leptin in reproduction. Trends Endocrinol. Metab.,2001(12),65-72.
    Castell, J.D., Lee, D.J., Sinnhuber, R.O., Essential fatty acids in the diet of rainbow trout: lipid metabolism and fatty acid composition. J. Nutr.,1972(102),93-99.
    Chalmers, R. A., Roe, C. R., Tracey, B. M., et al., Secondary carnitine insufficiency in disorders of organic acid metabolism:modulation of acyl CoA/CoA ratios by L-carnitine in vivo. Biochem. Soc. Trans.,1983(11),724-725
    Chatterjee, B., Song, C.S., Kim, J.M. and Roy, A.K. Cloning, sequencing and regulation of rat liver carnitine octanoyltransferase:transcriptional stimulation of the enzyme during peroxisome proliferation. Biochemistry,1988(27),9000-9006
    Cheng, C. F., Oosta, G. M., Bensadoun, A. and Rosenberg, R. D. Binding of lipoprotein lipase to endothelial cells in culture. J Biol Chem.,1981(256),12893-12898
    Chmurzynska, A., The multigene family of fatty acidbinding proteins (FABPs):function, structure and polymorphism, J. Appl. Genet.,2006(47),39-48.
    Cho, C.Y., Kaushik, S.J., Nutritional energetics in fish:energy and protein utilization in rainbow trout (Salmo gairdneri). World Rev. Nutr. Diet.,1990(61),132-72
    Choi, S. Y., Goldbe, rg I., Curtiss, L. K., et al. Inte rac tion be tw een ApoB and hepatic lipase m ediates the up take of ApoB containing lipop roteins. Journal of Biological Chemistry,1998(32),20456-20462.
    Chou, B.S., Shiau S.Y., Optimal dietary lipid level for growth of juvenile hybrid tilapia, Oreochromis niloticus X Oreochromis aureus Aquaculture,1996(143),185-195
    Christiansen, E.N., Lund, J.S., R(?)rtveit, T., Rustan, A.C., Effect of dietary n-3 and n-6 fatty acids on fatty acid desaturation in rat liver. Biochim. Biophys. Acta,1991(1082),57-62.
    Christophsr, M.A., Brenda, W.A., Naggert, J. Intron exon organization of the gene for the multifunctional animal fatty acid synthase. Pro Natl Acad Sci,1992 (89),1105-1108.
    Chung, B.H., Segrest, J.P., Cytotoxicity of remnants of triglyceride rich lipoproteins:an atherogenic insult? Adv Exp Med Biol.,1991(285),341-351.
    Clarke, S.D., Jump, D.B., Regulation of gene transcription by polyunsaturated fatty acids. Prog Lipid Res.,1993(131),139
    Cohn, S.M., T.C. Simon, K.A., Roth, E.H., et al., Use of transgenic mice to map cis-acting elements in the intestinal fatty acid binding protein gene (Fabpi) that control its cell lineage-specific and regional patterns of expression along the duodenal-colonic and cryptvillus axes of the gutepithelium, J. Cell Biol.,1992(119),27-44.
    Cooper, D.A., Stein, J.C., Strieleman, P.J., Bensadoun, A., Avian adipose lipoprotein lipase: cDNA sequence and reciprocal regulation of mRNA levels in adipose and heart. Biochim. Biophys. Acta,1989(1008),92-101.
    Cordoba, O.L., Sanchez, E.I., Veerkamp, J.H., et al., Presence of intestinal, liver and heart adipocyte fatty-acidbinding protein types in the liver of a chimaera fish. Int J Biochem Cell Biol.,1998(30),1403-1413.
    Cryer, A., Tissue lipoprotein lipase activity and its action in lipoprotein metabolism. Int J Biochem.,1981(13),525-541.
    De Silva, S.S.,2001. A global perspective of aquaculture in the new millennium. In: Subasinghe, R.P., Bueno, P.,Phillips, M.J., Hough, C., McGladdery, S.E., Arthur, J.R. (Eds.), Aquaculture in the Third Millennium. Technical Proceedings of the Conference on Aquaculture in the Third Millenniu
    Denstadli, V., Vegusdal, A., Krogdahl, A., et al., Lipid absorption in different segments of the gastrointestinal tract of Atlantic salmon (Salmo salar L.). Aquaculture 2004(240), 385-398.
    Di Pietro, S.M., Veerkamp, J.H., Santom, J.A., Isolation, amino acid sequence determination and binding properties of two fatty-acid-binding proteins from axolotl (Ambistoma mexicanum) liver-evolutionary relationship. Eur J Biochem.,1999(259),127-34.
    Diraison, F., Yankah, V., Letexier, D., et al., Differences in the regulation of adipose tissue and liver lipogenesis by carbohydrates in humans. J Lipid Res.,2003(44),846-853.
    Distel, R. J., Robinson, G. S., Spiegelman, B.M., et al. Fatty acid regulation of gene expression transcriptional and post-transcriptional mechqnisms. J Bio Chem,1992(9), 5937-5941.
    Doolittle, M.H., Ben-Zeev,O., Elovson, J., Martin, D., Kirchgessner, T.G., The response of lipoprotein lipase to feeding and fasting. Evidence for posttranscriptional regulation. J Biol Chem.,1990(265),4570-77
    Doyon C., Drouin, G., Trudeau, V. L., Molecular Evolution of Leptin, General and Comparative Endocrinology,2001 (124),188-198
    Dridi, S., Williams, J., Bruggeman, V., et al., A chicken leptin-specific adioimmunoassay. Domest. Anim. Endocrinol.,2000(18),325-335.
    Ducasse-Cabanot, S., Zambonino-Infante, J., Richard, N.,et al., Reduced lipid intake leads to changes in digestive enzymes in the intestine but has minor effects on key enzymes of hepatic intermediary metabolism in rainbow trout(Oncorhynchus mykiss) Animal, 2007(1),1272-82.
    Dugi, K.A., Dichek, H.L., Talley, G.D., et al., Human lipoprotein lipase:the loop covering the catalytic site is essential for interaction with lipid substrates. J Biol Chem.,1992(267), 25086-91.
    Dunn, I.C., Girishvarma, G., Talbot, R.T., et al.,2002. Evidence for low homology between the chicken and mammalian leptin genes. In:Dawson, A. (Ed.), Avian Endocrinology. VII International Symposium on Avian Endocrinology, Varanasi, India, Jan 27-Feb 3 2000. Naroso, New Delhi.
    Ellis, S.C., Reich, R.C., Effects of dietary lipid and carbohydrate level on growth and body composition of juvenile red drum, Scienops ocellatus. Aquaculture,1991(97),383-94.
    Enerback, S., Gimble, J.M., Lipoprotein lipase gene expression:physiological regulators at the transcriptional and posttranscriptional level. Biochim Biophys Acta,1993(1169), 107-125.
    Esser, V., Britton, C. H., Weis, B. C., Foster, D. W. and McGarry, J. D. Cloning, sequencing, and expression of a cDNA encoding rat liver carnitine palmitoyltransferase I. J. Biol. Chem.,1993(268),817-5822.
    Fauconneau, B., Andre, S., Chmaitilly, J., et al., Control of skeletal muscle fibres and adipose cells size in the flesh of rainbow trout. J. Fish Biol.,1997(50),296-314.
    Ferrer, C., Pedragosa, E., Torras-Llort, M., et al., Dietary lipids modify brush border membrane composition and nutrient transport in chicken small intestine. J. Nutr., 2003(133),1147-1153.
    Fournier, N.C., Richard, M.A., Role of fatty acid-binding protein in cardiac fatty acid oxidation. Mol. Cell. Biochem.,1990(98),149-159.
    Fracalossi, D.M. and Lovell, R.T., Dietary lipid sources influence responses of channel catfish(Icralurus punctatus) to challenge with the pathogen Edwardsiellu ictahri. Aquaculture,1994(119),287-298.
    Garling, D.L. Jr. and Wilson, R.P., Effects of dietary carbohydrate-to-lipid ratios on growth and body composition of fingerling channel catfish. Prog. Fish-Cult.,1977(39),43-47.
    Gentili, C., Cemetfi, S., Tacchei, C., et al. Expression of the extracellular fatty acid binding protein (Ex-FABP) during muscle fiber formation. Exp. Cell Res.,1998(242),410-418.
    Gimble, J.M., Nuttall, M.E., Bone and fat:old questions, new insights. Endocrine,2004, 183-188.
    Glatz, J.F.C., Van der Vusse, G.J., Cellular fatty acid-binding proteins:Their function and physiological signi(?)cance, Prog. Lipid Res.,1996(25),243-282.
    Green S., PPAR-A mediator of peroxisome proliferator action, Mutat. Res.,1995(333), 101-109.
    Greene, D.H.S., Selivonchick, D.P., Effects of dietary vegetable, animal and marine lipids on muscle lipid and hematology of rainbow trout (Oncorhynchus mykiss). Aquaculture, 1990(89),165-182.
    Grisdale-Helland, B., Shearer, K. D., Gatlin III D.M., Effects of dietary protein and lipid levels on growth, protein digestibility, feed utilization and body composition of Atlantic cod(Gadus morhua) Aquaculture,2008(283),156-162.
    Guillou, A., Soucy, P., Khalil, M., Adambounou, L., Effects of dietary vegetable and marine lipid on growth, muscle fatty acid composition and organoleptic quality of flesh of brook charr(Salvelinus fontinalis). Aquaculture,1995(136),351-362.
    Hamosh, M,, Clary, T.R., Chernick, S.S,, Scow, R.O., Lipoprotein lipase activity of adipose and mammary tissue and plasma triglyceride in pregnant and lactating rats. Biochim Biophys Acta,1970(210),473-482.
    Hanhoff, T., L€ucke, C, Spener, F., Insights into binding of fatty acids by fatty acid binding proteins. Mol Cell Biochem.,2002(239),45-54.
    Hansen, J.(?)., Berge, G M., Hillestad, M., et al., Apparent digestion and apparent retention of lipid and fatty acids in Atlantic cod (Gadus morhua) fed increasing dietary lipid levels, Aquaculture,2008(282),159-166.
    Hasegawa, J., Osatomi, K., Wu R. F., A novel factor Binding to the glucose response element s of Liver pyruvate kinase and fatty acid synthas genes. J Biol Chem.,1999(274), 1000-1107.
    Haunerland, N.H., Spener, F., Fatty acid-binding proteins-insights from genetic manipulations. Progress in Lipid Research,2004(43),328-49.
    Hegele, R. A., Little, J. A., Vezina, C., et al., Hepatic lipase deficiency. Clinical, biochemical, and molecular genetic characteristics. Arterioscler Thromb.,1993(13),720-728.
    Helland, S.J., Grisdale-Helland, B., Growth, feed utilization and body composition of juvenile Atlantic halibut Hippoglossus hippoglossus fed diets differing in the ratio between the macronutrients. Aquaculture,1998(166),49-56.
    Henderson, R. J., Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids. Arch. Anim. Nutr.,1996(49),5-22.
    Hertzel, A.V., Bernlohr, D.A., Regulation of adipocyte gene expression by polyunsaturated fatty acids, Mol. Cell Biochem.,1998(188),33-39.
    Hill, J.S., Davis, R.C., Yang, D.,et al., Human hepatic lipase subunit structure determination. J Biol. Chem.,1996(271),22931-22936.
    Hillestad, M., Johnsen, F., High-energy-low-protein diets for Atlantic salmon:effects on growth, nutrient retention and slaughter quality. Aquaculture,1994(124),109-116.
    Hotamisligil, G.S., Johnson, R.S., Distel, R.J. et al. Uncoup ling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science,1996(274),1377-1379.
    Huising, M.O., Geven, E.J., Kruiswijk, C.P., et al., Increased leptin expression in common Carp (Cyprinus carpio) after food intake but not after fasting or feeding to satiation. Endocrinology,2006(314),5786-97.
    Izquierdo, M.S., Montero, D., Robaina, L., Caballero, M.J., Rosenlund, G, Gines, R., Alterations in fillet fatty acid profile and flesh quality in gilthead seabream(Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture,2005(250),431-444.
    Jansen H, HUlsmann WC. Enzymology and physiological role of hepatic lipase Biochem Soc. Trans,1985 (13),24-26.
    Jansen H, Verhoeven AJM, Weeks L, et al. A common C to T substitution at position-480 of the hepatic lipase promoter associated with a lowered lipase activity in coronary artery disease patients. Arterioscl. Thromb. Vasc.Biol.1997(17),2837-2842.
    Jansen. H., and Hulsmann, W. C. Heparin-releasable (liver) lipase(s) may play a role in the uptake of cholesterol by steroid-secreting tissues. Trends Biochem. Sci.,1980(5), 265-268
    Jansen, H., van Berkel, T. J. C. and Hu$lsmann, W. C. Binding of liver lipase to parenchymal and non-parenchymal rat liver cells.Biochem. Biophys. Res. Commun.,1979(85), 148-152
    Jantrarotai, W., Sitasit, P. and Rajchapakdee, S., The optimum carbohydrate to lipid ratio in hybrid Clcrrius catfish (Clurias macrocephalus X C. gariepinus) diets containing raw broken rice. Aquaculture,1994(127),61-68.
    Jayakumar, A., Tai, M.H., Huang, W.-Y., Al-Feel, W., Hsu, M., Abu-Elheiga, L., Chirala, S. S.&Wakil, S. J. Proc. Natl. Acad. Sci. USA 1995(92),8695-8699.
    Jogl, G, Tong, L., Crystal structure of carnitine acetyltransferase and implications for the catalytic mechanism and fatty acid transport. Cell,2003(112),113-122
    Jutfelt, F., Olsen, R.E., Bjornsson, B.T.h., Sundell, K., Parr-smolt transformation and dietary vegetable lipids affect intestinal nutrient uptake, barrier function and plasma cortisol levels in Atlantic salmon. Aquaculture,2007(273),298-311.
    Kiessling, K.H., Keissling, A., Selective utilization of fatty acids in rainbow trout (Oncorynchus mykiss Walbaum) red muscle mitochondria. Can. J. Zool.,1993(71), 248-251
    Kim,.TS., Freake, H.C., High carbohydrate diet and starvation regulate lipogenic mRNA in rat s in a tissue specific manner. J Nutr.,1996(126),611-617.
    Kispal, G., Sumegi, B., Dietmeier, K., et al.,. Cloning and sequencing of a cDNA encoding Saccharomyces cerevisiae carnitine acetyltransferase, J. Biol. Chem.,1993(268), 1824-1829
    Kobayashi, J., Applebaum-Bowden, D., Dugi, K.A., et al.,Analysis of protein structure-function in vivo. Adenovirusmediated transfer of lipase lid mutants in hepatic lipase-deficient mice. J Biol. Chem.,1996(271),26296-26301.
    Kobayshi, J., Hashimoto, H., Fukamachi,I.,bet al. Lipoprotein lipase mass and activity in severe hypertrigly ceridemia. Clin. Chim. Acta.1993(216),113-123.
    Komaromy, M.C., Schotz, M.C., Cloning of rat hepatic lipase cDNA:evidence for a lipase gene family. Proc Natl Acad Sci USA 1987(84),1526-30.
    Kopka, J., Schauer, N., Krueger, S., et al..GMD@CSB.DB:the Golm metabolome database Bioinformatics,2005,1635-1638
    Korn, E.D., Clearing factor, a heparin activated lipoprotein lipase:Isolation and characterisation of the enzyme from normal rat heart. J Biol Chem.,1995 (215),1-14
    Koven,W.M., Henderson, R.J., Sargent, J.R., Lipid digestion in turbot (Scophthalmus maximus):in-vivo and in-vitro studies of the lipolytic activity in various segments of the digestive tract. Aquaculture,1997(151),155-171.
    Kraemer, F.B., Takeda, D., Natu, V., Sztalryd, C., Insulin regulates lipoprotein lipase activity in rat adipose cells via wortmannin-and rapamycin-sensitive pathways. Metabolism, 1998(47),555-559.
    Kurokawa, T., Murashita, K., Genomic characterization of multiple leptin genes and a leptin receptor gene in the Japanese medaka, Oryzias latipes General and Comparative Endocrinology General and Comparative Endocrinology,2009(161),229-237
    Kusakabe, T., Maeda, M., Hoshi, N., et al., Fatty Acid Synthase Is Expressed Mainly in Adult Hormone-sensitive Cells or Cells with High Lipid Metabolism and in Proliferating Fetal Cells, The Journal of Histochemistry & Cytochemistry,2000(48),613-622.
    Kuusi, T., Nikkila$, E. A., Virtanen, I. and Kinnunen, P. K. J. Localization of the heparin-releasable lipase in situ in the rat liver, Biochem. J.,1979(181),245-246.
    Laharrague, P., Larrouy, D., Fontanilles, A.M., et al., High expression of leptin by human bone marrow adipocytes in primary culture, FASEB J.,1998 (12),747-752.
    Landin, B., Nilsson, A., Twu, J.S., Schotz, M.C., A role for hepatic lipase in chylomicron and high density lipoprotein phospholipid metabolism. J Lipid Res.,1984(25),559-563.
    Lee, D.J., Putnam, G.B., The response of rainbow trout to varying proteinrenergy ratios in a test diet. J. Nutr.,1973(103),916-922.
    Lemaire, P., Drai, P., Mathieu, A., et al., Changes with different diets in plasma enzymes (GOT, GPT, LDH, ALP) and plasma lipids (cholesterol, triglycerides) of sea bass (Dicentrarchus labrax). Aquaculture,1991(93),63-75.
    Liang, X.F., Oku, H., Ogata, H. Y., The effects of feeding condition and dietary lipid level on lipoprotein lipase gene expression in liver and visceral adipose tissue of red sea bream Pagrus major, Comparative Biochemistry and Physiology Part A,2002(131),335-342
    Lie,O., Lied, E., Lambertsen, G., Liver retention of fat and fatty acids in cod (Gadus morhua) fed different oils. Aquaculture,1986(59),187-196.
    Lindberg, A., Olivecrona, G, Lipoprotein lipase from rainbow trout differs in several respects from the enzyme in mammals. Gene,2002(292),213-223.
    Little, J.A., Connelly, P.W., Familial hepatic lipase deficiency. Adv Exp Med Biol., 1986(201),253-60.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods,2001(25),402-408,
    Londraville, R.L., Duvall, C.S., Murine leptin injections increase intracellular fatty acid-binding protein in green sunfish (Lepomis cyanellus), Gen. Comp. Endocrinol., 2002(129),56-62.
    Luo Z., LIU, Y.J., Mai, K.S., Tian, L.X., Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating netcages, Aquaculture International,2005(13),257-269
    Luzzana, U., Serrini, G, Moretti, V.M., et al., Effect of expanded feed with high fish oil content on growth and fatty acid composition of rainbow trout. Aquacult. Int.,1994(2), 239-248.
    Maffei, M., Halaas, J., Ravussin, E., et al., Leptin levels in human and rodent:measurement of plasma leptin and ob RNA in obese and weight-reduced subjects, Nat. Med.,1995(1), 1155-1161.
    Mahmood Hussain, M., Kancha, R.K., Zhou, Z., et al., Chylomicron assembly and catabolism:role of apolipoproteins and receptors. Biochim Biophys Acta., 1996(1300),151-170
    Mamputu, J.C., Levesque, L., Renier, G, Proliferative effect of lipoprotein lipase on human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol.,2000(20),2212-2219
    Martins, D. A., Valente, L. M.P., Lall, S. P., Effects of dietary lipid level on growth and lipid utilization by juvenile Atlantic halibut (Hippoglossus hippoglossus L.), Aquaculture, 2007(263),150-158
    Martins, D., A., Valente, L., M., P., Lall, S., P., Apparent digestibility of lipid and fatty acids in fish oil, poultry fat and vegetable oil diets by Atlantic halibut, Hippoglossus hippoglossus L., Aquaculture,2009 (294),132-137
    Matarese, V, Stone, R.L., Waggoner, D.W., Bernlohr, D.A., Intracellular fatty-acid trafficking and the role of cytosolic lipid-binding proteins. Prog Lipid Res.,1989(28),245-72.
    McCaman, R.E., Hunt, J.M. microdetermination of choline acetylase in nervous tissue. J Neurochem.,1965(12),253-259.
    McGarry, J. D., Foster, D. W., Regulation of hepatic fatty acid oxidation and ketone body production Annu. Rev. Biochem.,1980(49),395-420
    Mead, J.R., Cryer, A., Ramji, D.P, Lipoprotein lipase, a key role in atherosclerosis? FEBS Lett.,1999,1-6
    Mead, J.R., Irvine, S.A., Ramji, D.P., Lipoprotein lipase:structure, function, regulation, and role in disease. J. Mol. Med.,2002(80),753-769.
    Menoyo, D., Izquierdo, M.S., Robaina, L., et al., Adaptation of lipid metabolism, tissue composition and flesh quality in gilthead sea bream (Sparus aurata) to the replacement of dietary fish oil by linseed and soyabean oils. Br. J. Nutr.,2004(92),41-52.
    Menoyo, D., Lopez-Bote, C.J., Bautista, J.M., Obach, A., Growth, digestibility and fatty acid utilization in large Atlantic salmon (Salmo salar) fed varying levels of n-3 and saturated fatty acids. Aquaculture,2003(225),295-307.
    Mishkin, S., Stein, L., Gatmaitan, Z., Arias, I.M., The binding of fatty acids to cytoplasmic proteins:Binding to Z-protein in liver and other tissues of the rat, Biochem. Biophys. Res. Commun.,1972(47),997-1003.
    Moco, S., Bino, R. J., Vorst, O., et al. A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiology,2006(141),1205-1218.
    Morais, S., Bell, J.G, Robertson, D.A., et al., Protein/lipid ratios in extruded diets for Atlantic cod (Gadus morhua L.):effects on growth, feed utilization, muscle composition and liver histology. Aquaculture,2001(203),101-119.
    Mourente, G, Dick, J.R., Bell, J.G, Tocher, D.R., Effect of partial substitution of dietary fish oil by vegetable oils on desaturation and P-oxidation of [1-14C] 20:5n-3 (EPA) in hepatocytes and enterocytes of European sea bass(Dicentrarchus L.). Aquaculture, 2005(248),173-186.
    Mourente,G, Dick, J.R., Influence of partial substitution of dietary fish oil by vegetable oils on the metabolism of [1-14C] 18:3n-3 in isolated hepatocytes of European sea bass (Dicentrarchus labrax L.). Fish Physiol. Biochem.,2002(26),297-308.
    Moustaid, N., Sul, H.S., Regulation of expression of the fatty acid synthase gene in 3T3-L1 cells by differentiation and triiodothyronine. J Biol Chem.,1991(266),18550
    Munoz, G., Ovilo, C., et al.Assignment of the fatty acid synthase (FASN) gene to pig chromosome 12 by physical and linkage mapping.Animal Genetics,2003(34),234-235.
    Murashita, K. Uji. S., Yamamoto, T., Rnestad, I., Kurokawa, T., Production of recombinant leptin and its effects on food intake in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol., Part B 2008(150),377-384.
    Murashita, K., Uji S., Yamamoto, T., et al.,Production of recombinant leptin and its effects on food intake in rainbow trout (Oncorhynchus mykiss), Comparative Biochemistry and Physiology, Part B 2008(150),377-384
    Nanton, D.A., Lall, S.P., McNiven, M.A., Effects of dietary lipid level on liver and muscle lipid deposition in juvenile haddock, Melanogrammus aeglefinus L. Aquac. Res., 2001(32),225-234.
    Naylor, R.L., Goldburg, R.J., Primavera, J., et al., Effects of aquaculture on world food supplies. Nature,2000(405),1017-1024
    Ng, W.K., Sigholt, T., Bell, J.G, The influence of environmental temperature on the apparent nutrient and fatty acid digestibility in Atlantic salmon (Salmo salar L.) fed finfishing diets containing different blends of fish oil, rapeseed oil and palm oil. Aquac. Res., 2004(35),1228-1237.
    Ng, W.K., Tee, M.C., Boey, P.L., Evaluation of crude palm oil and refined palm olein as dietary lipids in pelleted feeds for a tropical bagrid catfish Mystus nemurus (Cuvier & Valenciennes) Aquacult. Res.,2000(287),337-347.
    Nickell, D.C., Bromage, N.R., The effect of dietary lipid level on variation of flesh pigmentation in rainbow trout Oncorhynchus mykiss Aquaculture,1998(161),237-251
    Niewiarowski, P.H., Balk, M.L., Londraville, R.L., Phenotypic effects of leptin in an ectotherm:a new tool to study the evolution of life histories and endothermy? The Journal of Experimental Biology,2000(203),295-300.
    Nilsson, A., Landin, B., Schotz, M.C., Hydrolysis of chylomicron arachidonate and linoleate ester bonds by lipoprotein lipase and hepatic lipase. J Lipid Res 1987(28),510-517.
    Niwa, T., Metabolic profiling with gas chromatography-mass spectrometry and its application to clinical medicine. Journal of Chromatography,1986(379),313-345.
    Ockner, R.K., Manning, J.A., Fatty acid-binding protein in small intestine:Identification, isolation, and evidence for its role in cellular fatty acid transport, J. Clin. Invest., 1974(54),326-38.
    Ockner, R.K., Manning, J.A., Poppenhausen, R.B., Ho, W.K.L., A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues, Science, 1972(177),56-58.
    Oku, H., Koizumi, N., Okumura, T., Kobayashi, T., Umino, T., Molecular characterization of lipoprotein lipase, hepatic lipase and pancreatic lipase genes:Effects of fasting and refeeding on their gene expression in red sea bream Pagrus major, Comparative Biochemistry and Physiology, Part B 2006(145),168-178
    Oku, H., Ogata, H.Y., Liang, X.F., Organization of the lipoprotein lipase gene of red sea bream Pagrus major. Comp. Biochem. Physiol., B 2002(131),775-785.
    Olsen, R.E., Dragnes, B.T., Myklebust, R., Ring(?), E., Effect of soybean oil and soybean lecithin on intestinal lipid composition and lipid droplet accumulation of rainbow trout, Oncorhynchus mykissWalbaum. Fish Physiol. Biochem.,2003(29),181-192
    Olsen, R.E., Henderson, R.J., Ring(?), E., The digestion and selective absorption of dietary fatty acids in Artic charr, Salvelinus alpinus. Aquacult. Nutr.,1998(4),13-21.
    Olsen, R.E., Myklebust, R., Kaino, T., Ringo, E., Lipid digestibility and ultrastructural changes in the enterocytes of Arctic char (Salvelinus alpinus L.) fed linseed oil and soybean lecithin. Fish Physiol. Biochem.,1999(21),2,5-44.
    Olsen, R.E., Myklebust, R., Ring(?), E., Mayhew, T.M., The influences of dietary linseed oil and saturated fatty acids on caecal enterocytes in Arctic charr (Salvelinus alpinus L.):a quantitative ultrastructural study. Fish Physiol. Biochem.,2000(22),207-216.
    Otero, M., Lago, R., Lago, F., et al., Leptin, from fat to in Xammation:old questions and new insights. FEBS Lett.,2005,295-301.
    Owada, Y., Kondo, H., Fatty acid binding proteins of the brain. In:Duttaroy A, Spener F, editors. Cellular proteins and their fatty acids in health and disease. Weinheim: Wiley-VCH; 2003. p.253-66.
    Owada, Y., Suzuki, I., Noda, T., Kondo, H., Analysis on the phenotype of E-FABP-gene knockout mice. Mol. Cell Biochem.,2002(239),83-86.
    Panserat, S., Ducasse-Cabanot, S., Plagnes-Juan E., et al., Dietary fat level modifies the expression of hepatic genes in juvenile rainbow trout (Oncorhynchus mykiss) as revealed by microarray analysis, Aquaculture,2008(275),235-241,
    Paulauskis, J.D., Sul, H.S., Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. J Biol Chem., 1988(263),7049
    Perin, N., Jarocka-Cyrta, E., Keelan, M., et al., Dietary lipid composition modifies intestinal morphology and nutrient transport in young rats. J. Pediatr. Gastroenterol. Nutr., 1999(28),46-53.
    Persoon, N. L., Hulsmann, W. C. and Jansen, H. Localization of the salt-resistant heparin-releasable lipase in the rat liver, adrenal and ovary. Eur. J. Cell Biol.,1986(41), 134-137
    Piedecausa, M.A., Mazon M.J.B., et al., Hernandez Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo), Aquaculture, 2007(9),211-219
    Pitel, F., Monbrun, C., Gellin, J., Vignal, A., The chicken LEP ob gene has not been mapped. Anim. Genet.,2000(31),281.
    Poirier, H., Degrace, P., Niot, I., et al., Localization and regulation of the putative membrane fatty-acid transporter (FAT) in the small intestine. Comparison with fatty acid-binding proteins (FABP). Eur. J. Biochem.,1996(238),368-373.
    Poirier, H., Niot, I., Degrace, P., et al., Fatty acid regulation of fatty acid-binding protein expression in the small intestine, Am. J. Physiol.,1997(173),289-295.
    Qian, H., Azain, M.J., Compton, M.M.,et al., Brain administration of leptin causes deletion of adipocytes by apoptosis Endocrinology,1998(139),791-794.
    Qian, Q.H., Kuo, L., Yu, Y.T., Rottman, J.N., A concise promoter region of the heart fatty acid-binding protein gene dictates tissue-appropriate expression. Circ. Res.,1999(84), 276-289.
    Rahmouni, K., Haynes, W.G., Leptin and the cardiovascular system.Recent Prog. Horm. Res., 2004(59),225-244.
    Raisonnier, A., Etienne, J., Arnault, F., et al., Comparison of the cDNA and amino-acid-sequences of lipoprotein-lipase in 8 species. Comp. Biochem. Physiol., B 1995(111),385-398.
    Ramsamy, T.A., Neville, T. A., Chauhan, B.M., et al., Apolioprotein AI regulates lipid hydrolysis by hepatic lipase. Biol chem.,2000(275),33480-33486
    Ramsay, R. R., and Arduini, A. he carnitine acyltransferases and their role in modulating acyl-CoA pools Arch. Biochem. Biophys.,1993(302),307-314
    Ramsay, R. R., Gandour, R. D., and Van der Leij, F. R. Molecular enzymology of carnitine transfer and transport. Biochim.Biophys. Acta,2001(1546),21-43
    Ranganathan, G, Li, C., Kern, P.A. The translational regulation of lipoprotein lipase in diabetic rats involves the 3'-untranslated region of the lipoprotein lipase mRNA. J Biol Chem.,2000(275),40986-40991.
    Regost, C., Arzel, J., Robin, J., Rosenlund, G, Kaushik, J., Total replacement of fish oil by soybean oil with return to fish oil in turbot (Psetta maxima):I. Growth performance, flesh fatty acid profile, and lipid metabolism. Aquaculture,2003,465-482.
    Renier, G, Skamene, E., DeSanctis, J.B., Radzioch, D., Induction of tumour necrosis factor alpha gene expression by lipoprotein lipase. J Lipid Res.,1994(35),271-278
    Richard, N., Mourente, G., Kaushik, S., Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.), Aquaculture,2006(261),1077-1087
    Rosenlund, G, Obach, A., Sandberg, M.G., et al.,. Effect of alternative lipid sources on long term growth performance and quality of Atlantic salmon (Salmo salar). Aquac.Res.,2001 (Suppl.1),323-328.
    Ross, A.C., Cellular metabolism and activation of retinoids-roles of cellular retinoid-binding proteins. FASEB J.,1993(7),317-327.
    Ruan, E., Teng, T.O., Science, medicine, and the future:nutritional genomics. B.M.J., 2002(324),1438-1442.
    Rueda-Jasso R., Conceicao L.E.C., Dias, J. et al. Effect of dietary non-protein energy levels on condition and oxidative of Senegalese sole(Solea senegalensis) juveniles. Aquaculture,2004(231),417-33
    Sargent, J.R., Henderson, R.J., Tocher, D.R.,1989. The lipids. In:Halver, J.E. (Ed.), Fish Nutrition. Academic Press, San Diego, CA, pp.153-218.
    Sargent, J.R., Henderson, R.J., Tocher, D.R.,2002. The lipids. In:Halver, J.E., Hardy, R.W. (Eds.), Fish Nutrition. Academic Press, San Diego.
    Sarmiento, U., Benson, B., Kaufman, S., Morphologic and molecular changes induced by recombinant human leptin in the white and brown adipose tissues of C57BL/6 mice. Lab. Invest,1997(286),243-255.
    Scagnelli, G. P., Cooper, P.S., Vanden Broek, J.M., Berman WF,Schwartz CC. Plasma 1-palmitoyl-2-linoleoyl phosphatidylcholine:evidence for extensive phospholipase Al hydrolysis and hepatic metabolism of the products. J. Biol. Chem.,1991(266), 18002-18011.
    Schaap, F.G., Binas, B., Danneberg, H., van der Vusse, G.J., Glatz, J.F., Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ. Res.,1999(85),329-337.
    Schaap, F.G., van der Vusse, G.J., Glatz, J.F.C., Evolution of the family of intracellular lipid binding proteins in vertebrates. Mol Cell Biochem.,2002(239),69-77.
    Schweizer, M., Takabayashi, K., Laux, T., Beck, K.F. & Schreglmann, R Nucleic Acids Res., 1989 (17),567-586.
    Seiliez, I., Panserat, S., Kaushik, S., Bergot, P., Cloning, tissue distribution and nutritional regulation of a delta-6-desaturase-like enzyme in rainbow trout. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol.,2001(130),83-93.
    Semenkovich, C.F., Chen, S.H., Wims, M., Lipoprotein lipase and hepatic lipase mRNA tissue specific expression, developmental regulation, and evolution. J Lipid Res., 1989(30),423-431,
    Shimabukuro, M., Koyama, K., Chen, G., et al. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc. Natl. Acad. Sci., USA 1997(94),4637-4641.
    Silverstein, J.T., Plisetskaya, E.M., The effects of NPY and insulin on food intake regulation in fish. Am. Zool.,2000(40),296-308.
    Smith S. The animal fatty acid synthase:one gene, one polypeptide, seven enzymes, FASEB. J.,1994(8),1248-1259.
    Spady, D.K., Regulatory effects of individual n-6 and n-3 polyunsaturated fatty acids on LDL transport in the rat. J. Lipid Res.,1993(34),1337-1346.
    Staels, B., Auwerx, J., Perturbation of developmental gene expression in rat liver by fibric acid derivatives:lipoprotein lipase and alpha-fetoprotein as models. Development, 1992(115),1035-1043
    Stewart, J.M., The cytoplasmic fatty-acid-binding proteins:thirty years and counting. Cell Mol Life Sci,2000,1345-59.
    Stins, M. F., Sivaram, P., Sasaki, A. and Goldberg, I. J. Specificity of lipoprotein lipase binding to endothelial cells J. Lipid Res.,1993(34),1853-1861
    Takekoshi, K., Motooka, M., Isobe, K., et al., Leptin directly stimulates catecholamine secretion and synthesis in cultured porcine adrenal medullary chromaffin cells. Biochem. Biophys. Res. Commun.,1999(261),426-431.
    Takeuchi, T., Toyota, M., Satoh, S., Watanabe, T., Requirements of juvenile red seabream, Pagrus major, for eicosapentaenoic and docosahexaenoic acids. Nippon Suisan Gakkaishi 1990(56),1263-1269.
    Takeuchi, T., Yokoyama, M., Ogino, C., Optimum ratio of dietary energy to protein for rainbow trout. Bull. Jpn. Soc. Sci. Fish.1978(44),729-732.
    Takeuchi, T., Watanabe, T., Ogino, C., Digestibility of hydrogenated fish oils in carp cyprinus carpio and rainbow trout Salmo gairdneri. Bull. Jpn. Soc. Sci. Fish,1979(45), 1521-1526.
    Taouis, M., Chen, J.W., Daviaud, C., et al., Cloning the chicken leptin gene. Gene, 1998(208),239-242.
    Tikkanen, M.J., and Nikkil-i, E.A. Am. Heart J.,1987 (113),562-567.
    Tocher, D.R., Agabe, M., Hastings, N., et al.,. Nutritional regulation of hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition in zebrafish (Danio rerio) and tilapia (Oreochromis nilotica). Fish Physiol. Biochem.,2001(24),309-320.
    Tocher, D.R., Bell, J.G., Henderson, J.R., McGhee, F., Mitchell, D.,Morris, P.C., The effect of dietary linseed and rapeseed oils on polyunsaturated fatty acid metabolism in Atlantic salmon(Salmo salar) undergoing parrsmolt transformation. Fish Physiol. Biochem., 2000(23),59-73.
    Tocher, D.R., Bell, J.G., MacGlaughlin, P., et al., Hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition of liver in salmonids:effects of dietary vegetable oil. Comp. Biochem. Physiol.,2001(130),257-270.
    Tontonoz, P., Hu, E., Spiegelman, B.M., Regulation of adipocyte gene expression and diierentiation by peroxisome proliferator activated receptor Q, Curr. Opin. Genet. Dev., 1995(5),571-576.
    Torstensen, B.E., Fr(?)yland, L., Lie,(?)., Replacing dietary fish oil with increasing levels of rapeseed oil and olive oil—effects on Atlantic salmon (Salmo salar L.) tissue and lipoprotein lipid composition and lipogenic enzyme activities. Aquac. Nutr.,2004, 175-192.
    Torstensen, B.E., Lie,O., Hamre, K., A factorial experimental design for investigation of effects of dietary lipid content and pro-and antioxidants on lipid composition in Atlantic salmon(Salmo salar) tissues and lipoproteins. Aquac. Nutr.,2001(10),265-276.
    Tortensen, B.E., Lie, O., Froyland, L., Lipid metabolism and tissue composition in Atlantic salmon(Salmo salar L.) effects of capelin oil, palm oil and oleic-enriched sunflower oil as dietary lipid sources. Lipids,2000(35),653-664.
    Tranchant, T., Besson, P., Hoinard, C., et al., Long-term supplementation of culture medium with essential fatty acids alters alpha-linolenic acid uptake in Caco-2 clone TC7. Can. J. Physiol. Pharmacol.,1998(76),621-629.
    Tranchant, T., Besson, P., Hoinard, C., et al., Mechanisms and kinetics of alpha-linolenic acid uptake in Caco-2 clone TC7. Biochim. Biophys. Acta,1997(1354),151-161.
    Umino, T., Nakagawa, H., Arai, K., Development of adipose tissue in the juvenile red sea bream. Fish. Sci.,1996(62),520-523.
    Unger, R.H., Zhou, Y.-T., Orci, L., Regulation of fatty acid homeostasis in cells:novel role of leptin Proc. Natl. Acad. Sci.,1999(96),2327-2332.
    Valente, L.M.P, Bandarra, N.M., Figueiredo-Silva, A., et al., Conjugated linoleic acid in diets for large size rainbow trout(Oncorhynchus mykiss):effects on growth, chemical composition and sensory attributes. Brit. J. Nutr.,2007(97),289-297.
    Varghese, S., Oommen, O.V., Long-term feeding of dietary oils alters lipid metabolism, lipid peroxidation, and antioxidant enzyme activities in a teleost(Anabas testudineus Block). Lipids,2000(35),757-762.
    Veerkamp J.H., van Moerkerk, H.T.B., Fatty acid-binding protein and its relation to fatty acid oxidation, Mol. Cell Biochem.,1993(123),101-106.
    Veerkamp, J.H., Van Kuppevelt, T.H.M.S.M., Maatman, R.G.H.J., et al., Structural and functional aspects of cytosolic fatty-acid-binding proteins, Prostaglandins Leukot. Essent. Fatty Acids,1993(49),887-906.
    Veerkamp, J.H., Zimmerman, A.W., Fatty acid-binding proteins of nervous tissue. J Mol. Neurosci.,2001(16),133-42.
    Vega, G.L., Clark, L.T., Tang, A.,et al.,. Hepatic lipase activity is lower in African American men than in white American men:effects of 5' flanking polymorphism in the hepatic lipase gene (LIPC). J Lipid Res.,1998(39),228-232.
    Vergara, J.M., Lopez-Calero, G, Robaina, L., et al., Growth, feed utilization and body lipid content of gilthead seabream (Sparus aurata) fed increasing lipid levels and fish meals of different quality. Aquaculture,1999(179),35-44.
    Waagb(?), R., Sandnes, K.O., Sandvin, A., Lie, O., Chemical and sensory evaluation of fillets from Atlantic salmon (Salmo salar) fed three levels of n-3 polyunsaturated fatty acids and two levels of vitamin E. Food Chem.,1993(46),361-366.
    Wakil, S.J., Porter, J.W., Gibson DM. Studies on t he mechanism of fatty acid synthesis. I. Preparation and purification of an enzymes system forreconst ruction of fatty acid synt hesis. Biochim Biophys Acta.,1957(24),453-461.
    Wakil, S.J., Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry,1989(28), 4523-4530
    Wang, J.T., Liu, Y.J., Tian, L.X., et al., Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum) Aquaculture,2005(249),439-447
    Wang, M.Y., Lee, Y., Unger, R.H., Novel form of lipolysis nduced by leptin. J. Biol. Chem., 1999(274),17541-17544.
    Watanabe, T., Lipid nutrition in fish. Comp. Biochem. Physiol., B 1982(73),3-15
    Weisiger, R.A., Cytoplasmic transport of lipids:role of binding proteins. Comp Biochem Phys.,B 1996(115),319-31.
    Wicker, C., Puigserver, A., Expression of rat pancreatic lipase gene is modulated by a lipid-rich diet at a transcriptional level. Biochem. Biophys. Res. Commun.,1990(166), 358-364.
    Wille K., McLean E., Goddard J.S., Byatt J.C., Dietary lipid level and growth hormone alter growth and body conformation of blue tilapia, Oreochromis aureus, Aquaculture, 2002(209),219-232
    Wishart, D. S., Querengesser, L. M. M., Lefebvre, B. A., et al., Magnetic resonance diagnostics:a new technology for high-throughput clinical diagnostics. Clinical Chemistry,2001(47),1918-1921.
    Woeltje, K. F., Esser, V., Weis, B. C., et al., Inter-tissue and inter-species characteristics of the mitochondrial carnitine palmitoyltransferase enzyme system. J. Biol. Chem., 1990(265),10720-10725
    Wolle, J., Jansen, H., Smith, L.C., Chan, L., Functional role of N-linked glycosylation in human hepatic lipase:asparagine-56 is important for both enzyme activity and secretion. J Lipid Res.,1993(34),2169-2176.
    Wong, M., Yu, R., Ng, P., et al., Characterization of a hypoxia-responsive leptin receptor (omLepRL) cDNA from the marine medaka (Oryzias melastigma). Mar. Pollut. Bull., 2007(54),797-803.
    Yang, W.S., Deeb, S.S., Sp1 and Sp3 transactivate the human lipoprotein lipase gene promoter through binding to a CT element:synergy with the sterol regulatory element binding protein and reduced transactivation of a naturally occurring promoter variant. J Lipid Res.,1998(39),2054-2064
    Yin, D., Clarke, S.D., Peters, J.L., et al. Somatot ropin-dependent decrease in fatty acid synthase mRNA abundance in 3 T32F442A adipocytes is the result of a decrease in both gene transcription and mRNA stability. J Biol. chem.,1998(331),815-20.
    Yu, L.R., Zeng, R., Shao, X.X.,et al., Identification of differentially expressed proteins between human hepatoma and normal liver cell lines by two-dimensional electrophoresis and liquid chromatography-ion trap mass spectrometry. Electrophoresis,2000(21),3058-3068.
    Zanotti, G, Muscle fatty acid-binding protein. Biochim Biophys Acta 1999(1441),94-105.
    Zhang, Y.Y., Proenca, R., et al. Positional cloning of the mouse obese gene and its human homologue. Nature,1994(372),425-432
    Zheng, K.K., Zhu, X.M., Han, D., et al., Effects of dietary lipid levels on growth, survival and lipid metabolism during early ontogeny of Pelteobagrus vachelli larvae. Aquaculture,2010(299),121-127
    Zimmerman, A.W., Veerkamp, J. H., New insights into the structure and function of fatty acid binding proteins. Cell Mol. Life Sci.,2002(59),1096-1116
    陈立祥,邹增丁,苏建明,章怀云,草鱼脂肪酸结合蛋白基因克隆及其在大肠杆菌中的表达,浙江大学学报(农业与生命科学版),2008(34),45-49
    陈文波,黎黎,李文笙,林浩然,鲤鱼肝胰脏cDNA文库的表达序列标签分析及Lb-Fabp mRNA的特征,水生生物学报,2009(33),376-384
    李爱杰,水产动物营养与饲料学,中国农业出版社:北京,1996。
    田娟,冷向军,李小勤,李家乐,文华,刘昌盛,肉碱对草鱼生长性能、体成分和脂肪代谢酶活性的影响,水产学报,2009(33),3
    姚煜,梁旭方,李光照,王琳,刘秀霞,鳜脂蛋白脂酶和肝脂酶基因结构与组织表达,2009(16),506-517
    余宁,陆全平,周刚,黄颡鱼生长特征与食性研究,水产养殖,1996(3),19-20
    邹社校,洪湖黄颡鱼的生长,食性与渔业地位。湖北农学院学报,1999(19),240-242
    仲寒冰,朱作言,樊启昶.斑马鱼脑脂肪酸结合蛋白(fabp7)在早期胚胎发育过程中的表达图案,科学通报.2004,295-296

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700