用户名: 密码: 验证码:
微型客车纵向冲击振动建模、仿真及优化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着改革开放不断发展,人民物质条件改善,我国微型汽车市场正蓬勃发展。在中国特定市场条件下,微型汽车比较满足百姓需求,微型汽车发展代表着我国普通人民的生活水平。目前,微型汽车占汽车行业比重已增加到31.65%,但是,微型汽车行驶时纵向平顺性不是很好,会产生较大振动。
     对于平顺性研究,国内外已有很多,主要为垂向随机振动,很少研究纵向振动以及冲击振动。汽车行驶产生的纵向振动同垂向振动一样会使乘员乘坐舒适性降低,整车性能下降,并且人体对纵向振动敏感频率范围在0.5~2Hz,大约在3Hz以下,纵向振动比垂直振动更敏感。冲击是指由力、位移、速度等的突然变化引起的系统瞬态动变化过程,冲击振动也严重影响汽车平顺性。因此,对纵向振动和冲击振动研究非常重要。
     本文主要基于企业提供的数据,使用参数化整车动力学仿真软件Carsim,对某微型客车进行纵向冲击振动研究,以提高该车纵向平顺性。论文主要内容为:
     (1)某微型客车Carsim整车动力学模型参数描述与确定
     在深入研究Carsim建模原理基础之上,对整车动力学模型的车体、车桥与悬架系统、轮胎、传动系统、制动系统和转向系统六大模块建模参数进行详细分析,根据企业提供的数据对建模参数进行确定,并对模型进行校验,以保证模型精确性。
     (2)纵向冲击振动工况过程分析
     本文研究的纵向冲击振动工况包括汽车起步、换挡和路面冲击激励三种工况。对于起步和换挡工况产生纵向冲击振动的主要原因是离合器接合操作,因此需要详细分析离合器接合过程,以及与离合器接合相配合的节气门开度。对于路面冲击激励工况是采用在水平路面上增加三角凸块激励研究纵向冲击振动。
     (3)纵向冲击振动工况仿真分析
     通过对纵向冲击振动工况过程分析,将工况过程体现在Carsim中进行仿真。起步工况分为慢起步、正常起步、快起步三种形式,换挡工况包括升挡、降挡、降挡急加速、越级降挡四种形式,路面冲击激励工况包括10、20、30、40、50、60km/h六种不同车速。此外,通过仿真简单冲击振动工况对模型进行验证。
     (4)纵向冲击振动工况影响因素分析
     分析参数的灵敏度对改进纵向冲击振动性能非常重要。采用单因素分析法进行影响因素分析。首先确定各工况的影响参数,对于起步工况,包括使用参数、冲击度公式中的整车参数、纵向整车参数以及悬架参数;对于换挡工况,包括使用参数和整车参数;对于路面冲击激励工况,包括前后弹簧刚度和前后减振器阻尼四个参数。然后通过单因素分析法对每个参数进行仿真分析。
     (5)纵向冲击振动工况优化分析
     使用正交试验设计方法对纵向冲击振动工况进行优化分析。以确定出的影响比较大的参数作为试验因素,对正交试验方案进行设计,以极差分析法对试验指标进行分析,获得使各工况纵向冲击振动最优的因素组合,以提高汽车行驶纵向平顺性。
     本文结合与重庆长安汽车股份有限公司合作的“车辆瞬态振动冲击舒适性研究”项目,在所提供数据基础之上,通过参数化整车动力学仿真软件Carsim,对汽车起步、换挡以及路面冲击激励工况进行了仿真,对各工况进行了影响因素分析和优化分析,减小了该车的纵向冲击振动。
With the development of the reform and opening-up policy, and the improvement of people’smaterial conditions, China minicar market is booming. Minicars are very suitable forcommon people’s requirement, and its development represent common people’s livingstandard in the Chinese characteristic market conditions. Now, the minicar market is accountfor31.65%of the whole market. But its longitudinal ride comfort is not very good and bigvibration exists.
     The ride comfort has been researched frequently at home and abroad, most of them are aboutvertical random vibration, few are about longitudinal vibration and impact vibration.Passengers are made uncomfortable and vehicle performance is dropped by the longitudinalvibration as well as vertical vibration. Human’s sensitive frequency range to longitudinalvibration is0.5~2Hz, longitudinal vibration is more sensitive than vertical vibration under3Hz. Impact is the system transient dynamic change process caused by sudden change of theforce, displacement, speed etc. Ride comfort is also seriously affected by impact vibration.So, it’s very important to research the longitudinal vibration and impact vibration.The purpose of this paper is to study the longitudinal impact vibration of a minibus and toimprove its longitudinal ride comfort, using the provided date and basing on parametricvehicle dynamics software Carsim. The main contents are as follows:
     (1) Description and determination of a minibus’s dynamic model parametersThe parameters of six modules were described in detail based on the understanding ofmodeling theory, the six modules of Carsim includes body, axle and suspension, tire,powertrain, braking and steering systems. The parameters were confirmed based on the dataprovided by company, and the model was examined to test model accuracy.
     (2) Analysis of the longitudinal impact vibration operating conditionsThere are three operating conditions in this paper such as start, gear-shift and road impactexcitation. For the start and gear-shift conditions, the cause of the longitudinal impactvibration is the clutch operation, so the engaging process of clutch and throttle opening inkeeping with clutch engagement is analyzed in detial. For the road impact excitationcondition, add triangle bump to the level road as the impact excitation input, the same as theride comfort impact input running test.
     (3) Simulation of three longitudinal impact vibration conditionsThe analysis of the longitudinal impact vibration conditions was reflected in Carsim, andthen the longitudinal impact vibration conditions were simulated. Vehicle start was divided into three forms, slow start, normal start and fast start; Gear-shift condition included upshift,downshift, downshift and rapid acceleration, leapfrog downshift; Road impact excitationcondition had six simulations of different speed, includes10,20,30,40,50,60km/h.Furthermore, the correctness of the model was verified through simple impact vibrationconditions simulation.
     (4) Analysis of influencing factors to longitudinal impact vibration conditionsThe sensitivity analysis of parameters is significant to improve longitudinal impact vibrationperformance. The influence of parameters was analyzed using single factor analysis method.Firstly, the parameters were chosen to analyze for every condition. There were usageparameters, vehicle parameters in impact formula, vehicle longitudinal parameters andsuspension parameters for the start; there were usage parameters and vehicle parameters forgear-shift; there were spring rate and absorber damping for road impact excitation. Then, theinfluence of every parameter was analyzed through single factor analysis method.
     (5) Optimization of the longitudinal impact vibration conditionsThe method of optimization is Orthogonal Design. The parameters which have significantinfluence were chosen as the experimental factor. Designed orthogonal pilot program, andanalyzed experimental index using the extreme difference analysis to get the best levelcombination for the longitudinal ride comfort improvment.Combining with “Transient Vibration Comfort of Vehicle Impact Study” of ChongqingChangan Automobile Corporation, basing on the provided data, simulated the start, gear-shift,road impact excitation condition through Carsim dynamic software. Then analyzed andoptimized the parameters influence to lower the longitudinal impact vibration.
引文
[1] MSC.Carsim Help[R].Version8.02.2009
    [2]王英麟.基于CarSim与UniTire的爆胎汽车动力学响应研究[D].长春:吉林大学硕士学位论文,2007
    [3] Ying Chen,Brandon Jones.Software Testing Strategies for Model-Based ChassisControl System[C].SAE Paper,2007-01-0505
    [4] Naoto Ohkubo,Takehiro Horiuchi.Brake Torque Sensing for Enhancement of VehicleDynamics Control Systems[C].SAE Paper,2007-01-0867
    [5] Ming Une Jen,Ming-Hung Lu.Integration of Kinematics and Compliance Measurementwith Vehicle Dynamics Validation for a Shared Platform[C].SAE Paper,2007-01-0832
    [6] Mohammad Kamal,Taehyun Shim.Development of Active Suspension Control forCombined Handling and Rollover Propensity Enhancement[C]. SAE Paper,2007-01-0826
    [7]曹宇.轮胎操纵稳定性客观评价体系的初步研究[D].长春:吉林大学硕士学位论文,2008
    [8]李洪伟.汽车悬架运动学特性的仿真与试验研究[D].长春:吉林大学硕士学位论文,2007
    [9]李志魁.基于CarSim的整车动力学建模与操纵稳定性仿真分析[D].长春:吉林大学硕士学位论文,2007
    [10]余志生.汽车理论[M].北京:机械工业出版社.2006,第4版
    [11]刘德顺,李夕兵.冲击机械系统动力学[M].北京:科学出版社.1999,第1版
    [12]高品贤.振动、冲击及噪声测试技术[M].四川:西南交通大学出版社.1992,第1版
    [13]黄建明,曹长修,苏玉刚.汽车起步过程的离合器控制[J].重庆大学学报,2005,28(3):91-94
    [14] Tanaka Hirohisa,Wada Hideyuki.Fuzzy control of clutch engagement for automatedmanual transmission [J].Vehicle System Dynamics,1995(24):365-376
    [15]席军强,陈慧岩,丁华荣.自动机械传动系统起步工程中离合器的自适应控制策略研究[J].兵工学报,2004,25(6):657-661
    [16]王磊.重型商用车气动式离合器起步控制研究[D].长春:吉林大学硕士学位论文,2009
    [17] Andrzej Szadkowski,Ronald B. Morford.AutoJustTM Clutch[C].SAE Paper,2002-01-1335
    [18]刘小根.汽车AMT控制系统及离合器模糊控制方法的研究[D].重庆:重庆交通学院硕士学位论文,2004
    [19]肖勇明.机械式自动变速器坡道起步的研究[D].重庆:重庆大学硕士学位论文,2009
    [20]郭立书,葛安林,张泰等.电控机械式自动变速器换挡过程控制[J].农业机械学报,2003,34(2):1-4
    [21]张泰,葛安林,郭立书等.改善车辆起步换挡品质提高乘坐舒适性的研究[J].农业机械学报,2003,34(1):18-21
    [22]金伦,程秀生,葛安林.AMT换挡过程的离合器控制[J].汽车技术,2006(1):11-13
    [23]张泰,葛安林,宋传学等.越野汽车AMT起步与换挡过程试验研究[J].汽车技术,2006(4):27-30
    [24]李宽.AMT起步及换挡过程冲击特性的研究[D].长春:吉林大学硕士学位论文,2008
    [25] Ge Anlin et al.Automatic Clutch Control in the System of Automated MechanicalTransmission[C].SAE Paper,891371
    [26] Toshimichi Minowa,Tatsuya Ochi,Hiroshi Kuroiwa.Smooth Gear Shift ControlTechnology for Clutch-to-Clutch Shifting[C].SAE Paper,1999-01-1054
    [27]张良.电控机械式自动变速器_AMT_换挡规律的研究[D].沈阳:东北大学硕士学位论文,2008
    [28]小林明.汽车振动学[M].北京:机械工业出版社.1981,第1版
    [29]何渝生.汽车振动学[M].北京:人民交通出版社.1990,第1版
    [30]王家营,卢士富.制动时汽车的振动[J].上海汽车,1994(3):48-53
    [31]王家营,卢士富.制动时汽车的振动——与小林明先生商榷[J].西安公路学院学报,1995,15(1):40-45
    [32]吕金龙.车辆半主动悬架路面激励下的仿真研究[D].郑州:河南农业大学硕士学位论文,2009
    [33]宋一凡,陈榕峰.基于路面不平整度的车辆振动响应分析方法.交通运输工程学报,2007,7(4):39-43
    [34]陶向华,黄晓明.人—车—路相互作用三质量车辆模型分析[J].交通运输工程学报,2004,4(3):11-15
    [35]王若平,高翔,蒋军等.汽车液压动力转向器在阶梯路面激励下的试验研究[J].农业工程学报,2007,23(2):132-134
    [36]陈军.MSC.ADAMS技术与工程分析实例[J].北京:中国水利水电出版社.2008,第1版
    [1]李志魁.基于Carsim的整车动力学建模与操纵稳定性仿真分析[D].长春:吉林大学硕士学位论文,2007
    [2]肖闯,黄江,易高.基于CARSIM的车辆稳定性控制仿真[J].专用汽车,2007(6):6-8
    [3]郭孔辉,付皓,丁海涛等.基于Carsim RT的车辆稳定性系统控制其开发[J].汽车技术,2008(3):1-5
    [4] Vinod Cherian, Rohit Shenoy, Alec Stothert. Model-Based Design of a SUVAnti-rollover Control System[C].SAE Paper,2008-01-0579
    [5]姜祖啸.基于Trucksim的重型卡车整车动力学建模与仿真分析[D].长春:吉林大学硕士学位论文,2009
    [6] Carsim Help.Vehicles Manual Version8.02.2009
    [7]陈家瑞.汽车构造[M].北京:机械工业出版社,2000,第1版
    [8]王望予.汽车设计[M].北京:机械工业出版社,2004,第4版
    [9]哈尔滨工业大学理论力学教研室.理论力学[M].北京:高等教育出版社,2002,第6版
    [10] MSC.Carsim Help[R].Suspension Systems Manual Version8.02.2009
    [11]赵立微.基于K&C试验的悬架特性分析与试验优化[D].长春:吉林大学硕士学位论文,2008
    [12]刘伟忠.基于虚拟样机技术的某车悬架K&C特性仿真分析及硬点优化[D].长春:吉林大学硕士学位论文,2009
    [13] P. Dennis McNeely.Uniform Suspention Response for Commercial Vehicles[C].SAEPaper,2000-01-3448
    [14]刘兴乾.扭转梁与四连杆悬架K&C特性分析及评价[D].长春:吉林大学硕士学位论文,2008
    [15] Joonhong Park.Inematic Suspension Model Applicable to Dynamic Full VehicleSimulation[C].SAE Paper,2003-01-0859
    [16] Akio Yoneguchi,Jeffrey Schaad.Development of New High Strength Spring Steel andits Application to Automotive Coil Spring[C].SAE Paper,2000-01-0098
    [17] Akihiko Kumagai.Modeling of Coil Springs Using Parallel Mechanisms[C].SAEPaper,2001-01-0496
    [18] Shinichi Nishizawa,Jason Logsdon,Maiko Ikeda.Development of a Universal SpringMechanism for Automotive Suspension System Design[C].SAE Paper,2004-01-1553
    [19] Shinichi Nishizawa,Tadashi Sakai.Spring Force Line Based Damper Friction Controlfor Coil-Over-Shock Application[C].SAE Paper,2006-01-1538
    [20] Sunil Laroiya,Anuj Sharma.Hydrogen Embrittlement Failure in Suspension LeafSprings[C].SAE Paper,2007-01-4257
    [21]王庆五,杨晓光,徐人平等.少片钢板弹簧滞弹性特性参数的确定[J].拖拉机与农用运输车,2005(6):37-40
    [22] Govardan Daggupati,Venkata Mangaraju.A New Test Method to Characterize theBehaviour of Hydraulic Damper[C].SAE Paper,2010-32-0101
    [23] Peter Holdmann,Ralph Willems.Suspension Kinematics and Compliance measuringand simulation[C].SAE Paper,980897
    [24] MSC.Carsim Help[R].Tire Models Manual Version8.02.2009
    [25]余志生.汽车理论[M].北京:机械工业出版社.2006,第4版
    [26] MSC.Carsim Help[R].Powertrain System Manual Version8.02.2009
    [27]卫冬生,艾钢,郑长江等.基于虚拟样机技术的新型大功率离合器建模与仿真[J].柴油机,2008,30(2):18-21
    [28]许男.自动离合器接合规律及控制系统的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009
    [29] MSC.Carsim Help[R].Brake Systems Manual Version8.02.2009
    [30] P. M. Khan,V. G. Halbe,K. Rajakumar.Development and Evaluation of ExhaustBrake Systems for Light Commercial Vehicle[C].SAE Paper,2005-26-063
    [31]马镯.车辆液压制动系统建模及路面参数估计方法研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007
    [32] MSC.Carsim Help[R].Steering Systems Manual Version8.02.2009
    [1]肖勇明.机械式自动变速器坡道起步的研究[D].重庆:重庆大学硕士学位论文,2009
    [2]许男.自动离合器接合规律及控制系统的研究[D].哈尔滨:哈尔滨工业大学硕士学位沦为,2009
    [3]刘小根.汽车AMT控制系统及离合器模糊控制方法的研究[D].重庆:重庆交通学院硕士学位论文,2004
    [4]张良.电控机械式自动变速器换挡规律的研究[D].沈阳:东北大学硕士学位论文,2008
    [5]杨剑.电控机械式自动变速器离合器最佳接合规律的研究[D].西安:西北工业大学硕士学位论文,2005
    [6]汤霞清,侯朝桢.基于定量反馈理论的AMT离合器接合控制研究[J].北京理工大学学报,2002,22(1):94-97
    [7]彭建鑫,金辉,陈慧岩.基于最优理论的离合器接合曲线研究[J].北京理工大学学报,2009,29(11):964-967
    [8]贺军,金辉,陈慧岩.车辆起步电动离合器控制策略的仿真研究[J].兵工学报,2011,32(8):931-938
    [9]何忠波,李国章,张培林等.起步过程中离合器半接合点得试验研究[J].军械工程学院学报,2002,14(2):43-47
    [10]王保华,范文亭,罗永革.城市客车自动离合器接合规律仿真及应用[J].湖北汽车工业学院学报,2005,19(3):1-4
    [11]徐石安,肖德炳,刘惟信.离合器[M].北京:人民交通出版社.1981,第1版
    [12]刘辉.汽车平顺性评价研究及其在两厢轿车中的应用[D].长春:吉林大学硕士学位论文,2009
    [13]赵传林,黄世伟,屈玉峰.半挂运输车脉冲路面输入的平顺性仿真[J].专用汽车,2008(7):51-54
    [14]高树新,宫镇.汽车脉冲输入平顺性评价指标限值的研究[J].汽车技术,1999(9):1-3
    [15] MSC.Carsim Help[R].Driver Controls Manual Version8.02.2009
    [16] MSC.Carsim Help[R].3D Roads Manual Version8.02.2009
    [17]毕乾坤.AMT换挡特性仿真系统的研究[D].长春:吉林大学硕士学位论文,2004
    [18] GB/T5902-86,汽车平顺性脉输入行驶试验方法[S].北京:中国标准出版社,1986
    [1]贾建章,罗锡文,邵明亮.轮式车辆传动系自激振动强度及其影响因素分析[J].农业工程学报,1998(3):43-47
    [2]韩翔.农用三轮摩托车整车振动特性影响因素分析[J].农机化研究,2010(6):209-212
    [3]张立军,王岩松,符朝兴等.汽车角振动及影响因素分析[J].机械设计与制造,1999(2):26-28
    [4]何洋志,陈吉清.汽车悬架系统性能指标的影响因素分析[J].公路与汽运,2011(5):12-15
    [5]朱用国,喻凡,庄德军等.牵引车平顺性的影响因素分析[J].汽车科技,2006(2):40-42
    [6]陈连云,周孔亢.三轮运输车行驶平顺性的影响因素分析[J].拖拉机与农用运输车,2009(3):63-65
    [1]王英华.时间域内轿车行驶平顺性的进一步研究[D].长春:吉林大学硕士学位论文,2003
    [2]廖鸿胡,赵云飞,成艾国等.基于正交试验的汽车滑移门平顺性优化研究[J].机电工程,2010(12):49-52
    [3]何少华,文竹青,娄涛.试验设计与数据处理[M].国防科技大学出版社,2002,第1版
    [4]郑少华,姜奉华.试验设计与数据处理[M].北京:中国建材工业出版社,2004,第1版
    [5]敖凤岐,孙长明.多因素正交试验法简介[J].生物化学与生物物理进展,1977(1):31-40
    [6]刘振学,黄仁和,田爱民.实验设计与数据处理[M].北京:化学工业出版社,2005,第1版

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700