用户名: 密码: 验证码:
基于GPS的汽车稳定性控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车稳定性控制系统是指通过车载控制装置实时调整汽车运行状态,使车辆能够按照驾驶员的期望行驶,防止车辆失稳的汽车主动安全系统,是当前国际上汽车安全领域的研究热点。论文结合黑龙江省基金重点项目“基于GPS的汽车稳定性控制系统研究”开展了汽车稳定性控制系统的关键状态参数估算及其控制算法研究,并进行了多工况、多路况的硬件在环实验和实车道路测试。
     本文首先建立了用于开展汽车稳定性控制系统研究的汽车动力学模型,包括分析整车侧向运动的八自由度模型、反映汽车理想行驶状态的线性二自由度车辆模型、非线性轮胎模型、汽车制动器和转向电机模型等。在LabVIEW平台下对上述模型仿真,表明所建模型能够满足不同行驶工况的稳定性控制仿真要求。
     针对汽车稳定性控制关键参数估算的需要,以实时性和准确性为目标,提出了基于双天线GPS系统的汽车行驶状态参数与路面附着系数测量与估计方法。提出基于GPS技术的汽车侧偏角、质心侧倾角、车速等的测量与估计算法;设计了基于双级卡尔曼滤波的GPS与INS信息融合方法,解决了GPS信号丢失与更新率低的难题;提出基于GPS的路面附着系数估算算法。实验研究结果表明,GPS测量与估计效果良好,可以满足汽车稳定性控制器的设计要求。
     传统的汽车稳定性控制系统主要是指横摆稳定性控制,多数采用差动制动的控制手段。本文从提高汽车主动安全角度出发,提出横摆稳定性和侧翻稳定性的集成控制,控制方式包括差动制动控制和主动前轮转向控制。
     基于分层式协调控制的设计思想,设计了汽车稳定性控制系统的总体算法结构。稳定性控制器共分为上、下两层,上层为协调层,协调各种控制功能,如横摆稳定性控制、侧翻稳定性控制和ABS控制等,并决策保持汽车处于稳定状态的附加横摆力矩;下层为执行层,包括对制动执行器和主动前轮转向执行器的控制。协调控制包括汽车横摆稳定性和侧翻稳定性的协调控制,差动制动和主动前轮转向的协调控制,协调控制优化了汽车稳定性整体控制功能。
     构建以汽车质心侧偏角和横摆角速度为主要控制目标的横摆稳定性控制算法,通过差动制动和主动前轮转向集成控制,纠正汽车失稳状态。针对汽车控制系统的非线性和时变性,设计了基于模糊控制理论的差动制动控制器和基于滑模控制理论的主动前轮转向控制器,提出基于β~β&相平面的差动制动与前轮主动转向的协调方法。以横向载荷转移率为控制变量,设计了滑模变结构侧翻稳定性控制器,通过调节车轮轮缸制动压力,防止汽车侧翻。设计了横摆与侧翻稳定性协调控制算法。先由横摆稳定性控制模块和侧翻稳定性控制模块分别确定横摆力矩和降速制动力,然后根据汽车动力学关系进行单轮制动力分配,实现横摆与侧翻的协调控制。
     根据汽车动力学模型和稳定性控制算法,基于MATLAB/Simulink和CarSim联合仿真技术,建立了汽车稳定性集成控制仿真平台。在此平台上进行不同路面附着情况下双移线、鱼钩(Fishhook)转向输入等工况的仿真,对开发的稳定性控制算法进行验证,结果表明所开发的虚拟仿真平台能够很好的完成稳定性控制算法的仿真实验,所开发的稳定性控制器能能够对汽车的行驶状态进行识别,并根据差动制动子系统和主动转向子系统的特点进行协调控制,解决了各子系统在集成控制时的矛盾与冲突,充分发挥了各系统的能力,能够很好的防止汽车侧翻和横摆失稳,提高行驶稳定性。
     在虚拟仿真的基础上,设计并研制了基于LabVIEW平台的汽车稳定性控制硬件在环实验平台。实验平台主要包括实验台架、传感器、执行器、实时控制平台、信号采集系统以及软件等。硬件在环实验系统以软件方式模拟汽车行驶状态,以硬件方式控制汽车差动制动与主动前轮转向。实验结果表明,控制器能实时地判别汽车横摆与侧翻状况并输出控制电压;制动系统能准确快速地输出制动力,主动前轮转向系统能调节前轮转角,能快速将汽车动态横摆与侧翻指标稳定在安全范围内,控制算法对汽车结构参数和操纵参数变化具有良好的鲁棒性。
     最后,利用自主开发的车载平台进行了汽车稳定性控制系统的实车道路实验。表明所开发的稳定性控制算法能有效地增强汽车稳定行驶的能力,提高汽车主动安全性。
Vehicle stability control (VSC) system could adjust the vehicle driving state in real-timeby the on-board control device, to make the vehicle drive in terms of the wish of drivers. It isa kind of active safe device which kept the vehicle from unstability and was a hot topic of theresearch in vehicle active safety field in the world. The paper studied the key stateparameter estimation and the control algorithm of VSC, combining with the HeilongjiangScience and Technology Fund Project “Vehicle stability control system based on GPS”. It alsohad done the bench test and road test under the various working and road condition.
     First, it established the8DOF vehicle model,2DOF vehicle model and Dugoffnon-linear tire model used for VSC research. The models were programmed with LabVIEWsoftware. The simulation verified that the vehicle modesl were satisfied the VSC requirementunder various operating condition.
     For the requirement of VSC key parameter estimation, it presented the vehicle state androad parameter measurement and estimation method based on the two antenna GPS system, interms of the aim of real-time and accuracy. It provided the measurement and estimationalgorithm for COG sideslip angle, COG roll angle, vehicle speed, and so on. It designed thecombination method of GPS and INS based on the two level Kalman filters, and had solvedthe problem of GPS signal lost and low update rate. It presented the road friction coefficientestimation algorithm based on GPS. The test research shown the GPS measurement andestimation had good results and satisfied with the design requirenment of VSC controller.
     Traditional VSC was referred to yaw stability control, and used differential brake as thecontrol tool. From the point of improving the vehicle active safety, the paper provided theintegral control between the yaw stability and rollover stability, and the control methodincluded the differential brake control (DBC) and active front wheel steer (AFS).
     It had designed VSC total algorithm structure based on the design idea of the hierarchicalcoordination control. The stability controller consisted of upper and lower level. The upperlevel was the coordination level. It coordinated the various control function, such as yawstability control (YSC), rollover stability control (RSC), ABS and so on. It also determinedthe additional yaw moment for keeping vehicle stability. The lower level was actuation level,and included the control of the brake actuator and the AFS actuator. The coordination controlcontained coordination between the YSC and RSC, and the coordination between the DBCand AFS. It optimized the whole YSC control function.
     It established the YSC algorithm for the control target of yaw rate and GOC sideslip angle, which controlled the yaw moment by coordination of the DBC and AFS, in order tocorrect the vehicle unstability. For the non-linear and time varying vehicle system, it designedthe DBC controller based on Fuzzy control theory and te AFS controller based on slidingmode control theory. It presented the coordination method of DBC and AFS based on β~β&phase plane. It designed the sliding mode varying structure rollover stability controller, andtook the lateral load transfer ratio (LTR) as the control variable. The controller performedRSC by adjusting brake pressure hydraulically. It designed the YSC and RSC coordinationcontrol algorithm. The yaw moment and reducing speed brake force was determined by YSCmodule and RSC module firstly, and then distributed them to each brake wheel, to realize thecoordination of YSC and RSC.
     The virtual simulation platform of VSC was established based on the vehicle dynamicsmodel and the control algorithm, by means of CarSim and MATLAB/Simulink co-simulationtechnology. The simulation are performed on the platform under various road frictioncondition and different test condition such as double lane change, fishhook steering test, andso on. The VSC algorithms were verified. The results proved that the virtual simulationplatform could finish the simulation and test for VSC algorithms very well. The VSCcontroller could recognize the vehicle driving state, and coordinated DBC subsystem and AFSsubsystem. The controller could solve the confliction of the subsystem integral control andmake full use of the subsystem ability. The controller could prevent from vehicle rollover andyaw unstability and improve vehicle driving stability.
     The VSC hardware-in-loop (HIL) test platform based on LabVIEW was designed andestablished on the foundation of virtual simulation. The platform included the benches,sensors, actuators, real-time control platform, signal collecting system and software, etc... TheHIL test system simulated the vehicle driving environment by software, and the vehicle yawand roll state were were calculated under the input signals. The DBC and AFS were finishedby the hardware method. The test results shown that the controller could judge the yaw androllover state of the vehicle, and output the control voltage in real time. The brake systemcould output the force accurately and quickly. The AFS could adjust front wheel angle. Thecontroller could limit the dynamic yaw and LTR in safe range. The control algorithm havegood robust for the vehicle structure parameter and handle parameter change.
     Finally, the road tests were performed on self-developed on-board platform. The resultsproved that the VSC algorithm could improve the vehicle safety, and enhance vehicle drivingability on the curve. The control algorithm have good real time and is satisfied therequirement of actual application.
引文
[1] Sugiyama M.,Inoue H.,Uchida K.,Monzaki S.,Inagaki S,and Kido S. Development of VSC(Vehicle Stability Control)System.TOYOTA Technical Review,1997,46(2):61-68P
    [2] Kyongsu Yi,Taeyoung Chung,Jeontae Kim,etc.An Investigation into DifferentialBraking Strategies for Vehicle Stability Vontrol.Journal of Automobile Engineering,2003,217(12):1081-1093P
    [3] Nakazawa M,Isobe O,Takahashi S,et al.Braking force distributi on control for improvedvehicle dynamics and brake performance.Vehicle system dynamics,1995,24(4):413-426.
    [4] Ed Wallne, Jan K.Schiffmann. Development of An Automotive Rollover Sensor. SAEPaper,2000.2000-01-1651
    [5] Jangyeol Yoon, Kyongsu Yi. A Rollover Mitigation Control Scheme Based on RolloverIndex. Proceedings of the2006American Control Conference,USA,2006:163-179P
    [6] Jangyeol Yoon,Wanki Cho,Bongyeong Koo,Kyongsu Yi.Unified Chassis Control forRollover Prevention and Lateral Stability.Vehicular Technology,IEEE Transactions,2009
    [7] Young-Joo Cho,Byung-Hak Kwak.A Control and Analysis of Vehicle Rollover Based onElectronic Stability Control.SAE Paper,2007.2007-01-3566
    [8] S.Solmaz, M.Corless, R.Shorten. A methodology for the design of robust0rolloverprevention controllers for automotive vehicles with Active steering, International Journalof Control,2007,80(11):1763-1779P
    [9]罗俊.汽车稳定性控制策略研究与仿真.武汉科技大学硕士论文.2006
    [10]裴锦华,李以农.汽车电子稳定程序控制系统的研究现状及发展趋势.天津汽车.2005,(4):14-17页
    [11]肖闯.汽车稳定性控制方法仿真研究.湖南大学硕士论文.2007
    [12] Masao Nagai,Motoki Shino,Feng Gao.Study on integrated control of active front steerangle and direct yaw moment.JSAE Review,2002,23(3):309–315P
    [13] M.Selby, W.J.Manning, M.D.Brown and D.A.Crolla. A Coordination Approach for DYCand Active Front Steering,2001.Society of Automotive Engineers, Inc.2001-01-1275
    [14]郭建华,李静,李幼德.汽车主动前轮转向与防抱死制动系统集成控制研究.汽车技术.2007,(11):4-8页
    [15] Masao Nagai, Motoki Shino, Feng GAO. Study on Integrated Control of Active FrontSteer Angle and Direct Yaw Moment.JSAE Review,2002,23:309-315P
    [16] T.Chung,J.Kim,K.Yi.Human-in-the-loop evaluation of a vehicle stability controllerusing a vehicle simulator,International Journal of Automotive Technology,2004,5(2):109-114P
    [17] Pi, D. W., Chen N., Zhang, B.J. Experimental demonstration of a vehicle stability controlsystem in a split road manoeuvre. Proceedings of the Institution of Mechanical Engineers,Part D: Journal of Automobile Engineering,2011,225(3):305-317P
    [18]金智林.运动型多功能汽车侧翻稳定性及防侧翻控制.南京航空航天大学博士论文.2008.
    [19] W.E.Travis, R.J.Whitehead, D.M.Bevly, et al.. Using scaled vehicles to investigate theinfluence of various properties on rollover propensity, Proceeding of American ControlConference, Boston, Massachusetts,2004:3381-3386P
    [20] S.Takano,M.Naga,T.Taniguchi,et al..Study on a vehicle dynamics model for improvingroll stability,JSAE Review,2003,(24):149–156P
    [21] H.J.Kim,Y.P.Park.Investigation of robust roll motion control considering varying speedand actuator dynamics,Mechatronics,2004,14,35-54P
    [22] B.C.Chen, H.Peng. Differential braking based rollover prevention for sport utilityvehicles with human-in-the-loop evaluations, Vehicle System Dynamics,2001,36(4-5):359-389P
    [23]李飞.汽车稳定性闭环控制系统研究.哈尔滨工业大学硕士论文.2006
    [24]刘翔宇.基于直接横摆力矩控制的车辆稳定性研究.合肥工业大学博士论文.2010
    [25]马春卉.基于MATLAB的汽车ESP系统控制模型及方法研究.南京理工大学硕士论文.2008
    [26]叶锦权.汽车侧向稳定性控制系统设计与半实物仿真研究.哈尔滨理工大学硕士论文.2010
    [27]肖闯,黄江,易高.基于CARSIM的车辆稳定性控制仿真.专用汽车.2007,(6):6-8页
    [28]郝芳.基于模糊逻辑横摆力矩控制的汽车稳定性研究.北京交通大学硕士论文.2007
    [29] Kyongsu Yi,Taeyoung Chung,Jeontae Kim,etc.An Investigation into Differential BrakingStrategies for Vehicle Stability Vontrol.Journal of Automobile Engineering,2003,217(12):1081-1093P
    [30] Tseng H.E.,Ashrafi B.,Madau D.,et al.The Development of Vehicle Stability Control atFord.Transactions on Mechatronics,1999,4(3):223-234P
    [31]赵又群.汽车动力学中若干关键状态和参数估计研究的现状与发展.中国机械工程.2010,21(10):1250-1253页
    [32] L.R.Ray.Nonlinear State and Tire Force Estimation for Advanced Vehicle Control.Transactions on Control System Technology,1995,3(1):117-124P
    [33]毕春光.极限工况下汽车质心侧偏角的估计方法研究.吉林大学硕士论文.2007
    [34]付皓.汽车电子稳定性系统质心侧偏角估计与控制策略研究.吉林大学博士论文.2008
    [35] Tomiyama, Hiroki, Iida, Michihisa, Oh Toho. Estimation of the sideslip angle of anarticulated vehicle by an observer. Engineering in Agriculture, Environment and Food,2011,4(3):66-70P
    [36]李淼.基于滚动时域的车辆速度估计.吉林大学硕士论文.2009.
    [37] Chia-shang Lliu,Huei Peng.Road Friction Coefficient Estimation for Vehicle PathPrediction.Vehicle System Dynamics,1996,25(1):413-425P
    [38]武钟财.基于扩展卡尔曼滤波的路面附着系数估计算法研究.吉林大学硕士论文.2008.
    [39]杨福广,李贻斌,阮久宏,荣学文,宋锐.基于扩张状态观测器的路面附着系数实时估计.农业机械学报.2010,41(8):6-9页
    [40] C.R.Carlson, J.C.Gerdes. Optimal rollover prevention with steer by wire and differentialbraking.ASME Dynamic Systems and Control Division (Publication) DSC,2003,72(1):345-354P
    [41] E.Esmailzadeh,A.Goodarzi,G..R.Vossoughi.Optimal yaw moment control law forimproved vehicle handling.Mechatronics,2003,2003(13):659–675P
    [42]玄圣夷,宋传学,靳立强,李建华,林叶.基于多级鲁棒PID控制的汽车稳定性控制策略.吉林大学学报(工学版).2010,40(1):15-18页
    [43]章贵华.基于滑模变结构控制的车辆动力学稳定性控制研究.合肥工业大学硕士论文.2008
    [44] E.Ono,Y.Hattori,Y.Muragish,etal.Vehicle Dynamics Integrated Control for Four-wheel-distributed Steering and Four Wheel Distributed Traction/braking Systems.VehicleSystem Dynamics,2006,44(2):139-151P
    [45] S.Solmaz,M.Corless,R.Shorten.A methodology for the design of robust rolloverprevention controllers for automotive vehicles: Part1-Differential braking.45th IEEEConference on Decision and Control.San Diego,USA,2006:1739-1744P
    [46]陈平.基于线控技术的主动转向与差动制动集成控制研究.吉林大学硕士论文.2007
    [47]李占旗.基于差动制动的汽车横摆与侧翻稳定性集成控制研究.吉林大学硕士论文.2011
    [48]邓利.基于GPS的汽车稳定性控制研究.南京航空航天大学硕士论文.2009
    [49]许江宁,朱涛,卞鸿巍.GPS姿态测量技术综述.海军工程大学学报.2003,15(3):17-22页
    [50] Hitoshi Fukuba, et al.Measurement of vehicle attitude with RTK-GPS for analyzing thevehicle motion behavior. JSAE Review,2003(24):313–320P
    [51] D. Jihan Ryu, J. Christian Gerdes.Integrating Inertial Sensors With Global PositioningSystem (GPS) for Vehicle Dynamics Control.Journal of Dynamic Systems,Measurement, and Control,2004(126):243-254P
    [52] Ryan, Jonathan Lu, Jianbo; Bevly, David.State estimation for vehicle stability control: Akinematic approach using only GPS and VSC sensors.ASME2010Dynamic Systemsand Control Conference,2010,2:773-780P
    [53]孙义杰.基于GPS汽车道路试验系统软件开发.西华大学硕士学位论文.2006
    [54]付江华.基于GPS与陀螺仪的汽车运动性能测试.西华大学硕士学位论文.2008
    [55]虞明,钱立军.基于RTK五轮仪研制的汽车运动性能试验研究.汽车工程,2005,27(1):54-56页
    [56]张素民.基于GFINS和GPS的汽车状态信息测试系统算法的研究.吉林大学硕士论文.2006
    [57] Kirstin L. Validating GPS based measurements for vehicle control.2005, Proceedings of theASME Dynamic Systems and Control Division.2005:583-592P
    [58] Ryan, Jonathan Lu, Jianbo; Bevly, David.State estimation for vehicle stability control: Akinematic approach using only GPS and VSC sensors.ASME2010Dynamic Systemsand Control Conference,2010,2:773-780P
    [59] David M.Bevly;J.Christian Gerdes;Christopher Wilson.The Use of GPS Based VelocityMeasurements for Measurement of Sideslip and Wheel Slip.Vehicle SystemDynamics,2002,38(2):127-147P
    [60] J.Ryu,J.C.Gerdes.Estimation of vehicle roll and road bank angle,American ControlConference,Boston,MA,2004:2110-2115P
    [61] M.Bevly, R.Sheridan,and J.C.Gerdes.Integrating INS sensors with GPS velocitymeasurements for continuous estimation of vehicle sideslip and tire corneringstiffness.Proc.of American Control Conference,2001,(1):25-30P
    [62]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究.吉林大学博士论文.2007
    [63]苏周成.车辆转弯制动稳定性动力学控制研究.重庆大学硕士论文.2007
    [64]周继忠.转弯制动工况下,汽车制动力分配策略仿真研究.上海交通大学硕士论文.2008
    [65]王媛媛.ESP系统的制动力分配控制策略优化.吉林大学硕士论文.2011
    [66] Dugoff H,Fancher P S.An Analysis of Tire Traction Properties and Their Influence onVehicle Dynamic Performance.SAE paper,1970.700377
    [67]郭建华.双轴汽车电子稳定性协调控制系统研究.吉林大学博士论文.2008
    [68]张永生.轿车稳定性控制系统的状态参数估算及控制算法研究.吉林大学博士论文.2010
    [69]朱建胜.三轴汽车电子稳定性控制方法的仿真研究.吉林大学硕士论文.2009
    [70]张勇.基于主动制动的汽车稳定性控制系统开发研究.上海交通大学博士论文.2006
    [71]赵伟.汽车动力学稳定性横摆力矩和主动转向联合控制策略的仿真研究.长安大学博士论文.2008
    [72]宋海峰.基于GPS的汽车电动助力转向控制器的研究与设计.哈尔滨工程大学硕士论文.2010
    [73]苏海涛.汽车非线性轮胎力的估计方法研究.吉林大学硕士论文.2007
    [74]余卓平,左建令,张立军.路面附着系数估算技术发展现状综述.汽车工程.2006,28(06):546-549页
    [75] D.M. Bevly et al.Use of GPS based velocity measurements for improved vehicle stateestimate.Proceeding of the2000American Control Conference,2000:2538-2542P
    [76] Jihan Ryn. State and Parameter Estimatin For Vehicle Dynamic ControlUsing GPS:[dissertation].California:Stanford University,2004
    [77] David M. Bevly, Jihan Ryu, and J. Christian Gerdes. Integrating INS Sensors with GPSMeasurements for Continuous Estimation of Vehicle Sideslip, Roll, and Tire CorneringStiffness. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATIONSYSTEMS.2006,7(4):483-493P
    [78] Hitoshi Kondo, Akira Sugiyama and M.Elizabeth Cannon. Precise carrier phase gps andits application to real-time landslide detection. IEEE TENCON-Digital Signal ProcessingApplication,1996,1(2):906-911P
    [79] J.Ryu,E.J.Rossetter,J.C.Gerdes,Vehicle sideslip and roll parameter estimation usingGPS.6th Int.Symposium on Advanced Vehicle Control, Hiroshima, Japan,2002
    [80] Zhang Jinzhu, Zhang Hongtian. Vehicle stability control system based on directmeasurement of body sideslip angle.2nd Conference on Power Electronics andIntelligent Transportation System,2009:365-368P
    [81]陶敏,陈新,孙振平.移动机器人定位技术.火力与指挥控制.2010,35(7):169-172页
    [82] Wenzel, Thomas A., Burnham Keith J..Simplified extended kalman filter for automotivestate estimation.International Journal of Modelling, Identification and Control,2008,3(3):201-211P
    [83] Taeyoung Chung,Kyongsu Yi.Design and Evaluation of Side Slip Angle-Based VehicleStability Control Scheme on a Virtual Test Track.IEEE Transactions on Control SystemsTechnology,2006,14(2):224-234P
    [84]朱勇.GPS车辆监控指挥系统关键技术的设计与实现.电子科技大学硕士论文.2010
    [85]胡丹.基于双扩展卡尔曼滤波的汽车状态及路面附着系数估计算法研究.吉林大学硕士论文.2009
    [86]刘伟.车辆电子稳定性控制系统质心侧偏角非线性状态估计的研究.吉林大学硕士论文.2009
    [87] L.R.Ray.Nonlinear Tire Force Estimation and Road Friction Identification:Simulationand Experiments.Automatica,33(10):1819-1833P
    [88] Chia-shang Lliu,Huei Peng.Road Friction Coefficient Estimation for Vehicle PathPrediction.Vehicle System Dynamics,1996,25(1):413-425P
    [89] L.R.Ray.Nonlinear State and Tire Force Estimation for Advanced VehicleControl.Transactions on Control System Technology,1995,3(1):117-124P
    [90] Mathieu Gerard.Tire-road friction estimation using slip-based observers[R].Departmentof Automatic Control,Lund University,2006.
    [91] H.TSUNASHIMA, M.MURAKAMI J.MIYATA. Vehicle and road state estimation usinginteracting multiple model approach.Vehicle System Dynamics, Supplement,2006,44:750-758P
    [92] FEDERICO C, EDOARDO S, PESCE M, et al. A methodology for vehicle sideslip angleidentification:comparison with experimental data.Vehicle System Dynamics,200745(6):549–563P
    [93]王伟珣.GPS与GPRS在汽车行驶记录仪中的应用.吉林大学硕士论文.2009
    [94]刘瑞华,项文杰.基于多线程技术的GPS罗盘数据采集与处理.计算机工程.2010,(8)
    [95] You Seung-Han, Hahn Jin-Oh, Lee Hyeongcheol. New adaptive approaches to real-timeestimation of vehicle sideslip angle. Control Engineering Practice,2009,17(12):1367-1379P
    [96]玄圣夷.面向主动安全的汽车底盘行驶稳定性控制策略研究.吉林大学博士论文.2010
    [97] Doumiati Moustapha, Victorino Alessandro, Charara Ali, Lechner Daniel. A method toestimate the lateral tire force and the sideslip angle of a vehicle: Experimental validation.Proceedings of the2010American Control Conference,2010:6936-6942P
    [98]赵林辉.车辆状态和路面附着系数的非线性估计方法研究.哈尔滨工业大学博士论文.2009
    [99] Chia-shang Liu,huei Peng.Road Friction Coefficient Estimation For Vehicle PathPrediction.Vehicle System Dynamics,1996,25:413-425P
    [100] R.Kamnik,F.Boettiger,K.Hunt,Roll dynamics and lateral load transfer estimation inarticulated heavy freight vehicles,Proceedings of the Institution of Mechanical EngineersPart D:Journal of Automobile Engineering,2003,217(11):985-997P
    [101] C.SIERRA,E.TSENG,A.JAIN,et al.Cornering stiffness estimation based on vehiclelateral dynamics.Vehicle System Dynamics,Supplement,2006,44:24-38P
    [102] Yukio Nakao,Hiroaki Kawasaki and Douglas J. Major Estimation of Friction LevelsBetween Tire and Road.SAE paper,2002.2002-01-1198
    [103] Joanny St, Ali Charara, Dominique Meizel.Evaluation of sliding mode observer forvehicle sideslip angle.Proceedings of the16th IFAC World Congress,2005,16:150-155P
    [104] Taeyoung Chung,Kyongsu Yi.Design and Evaluation of Side Slip Angle-Based VehicleStability Control Scheme on a Virtual Test Track.IEEE Transactions on Control SystemsTechnology,2006,14(2):224-234P
    [105]柴卫红.汽车底盘主动安全集成控制技术研究.长春工业大学硕士论文.2010
    [106] Y.Lee,S.J.Yi.Rollover prevention for sport utility vehicle using fuzzy logic controller,Proceedings of SPIE,2005,6042(604218):1-6P
    [107]邓国辉.转弯制动时ABS控制算法研究及对汽车侧向稳定性的改进.吉林大学硕士论文.2009
    [108]涂志祥.基于模糊控制的汽车动力学稳定性控制(VDC)研究.长沙理工大学硕士论文.2004
    [109]张丽霞,潘福全,费贤松.提高汽车操纵稳定性的联合控制研究.拖拉机与农用运输车.2010,37(1):66-68页
    [110]李幼德,刘巍,李静,赵健,宋大凤,沙宏亮.汽车稳定性控制系统硬件在环仿真.吉林大学学报(工学版).2007,37(4):737-740页
    [111]韩龙.乘用车EHB液压特性建模及车辆稳定性控制算法研究.吉林大学硕士论文.2008
    [112]李明,王天利.车辆动力学稳定性控制系统的联合仿真研究.农业装备与车辆工程.2008,209(12):6-8页
    [113]张为,王伟达,刘晓亭,陈宓,周锐.车辆动力学控制系统横摆力矩控制方法.公路交通科技.2011,28(7):136-140页
    [114]穆桂脂.线控转向前轮转角控制策略硬件在环仿真研究.江苏大学硕士论文.2009
    [115]费贤松.联合主动转向和横摆力矩控制的汽车操纵稳定性研究.南京航空航天大学硕士论文.2007
    [116]董宁.轻型汽车防抱死制动与主动前轮转向集成控制研究.吉林大学硕士论文.2008
    [117]张金柱.汽车电子节气门的自适应滑模控制.黑龙江工程学院学报.2006,20(3):41-43页
    [118]郑宏宇.汽车线控转向路感模拟与主动转向控制策略研究.吉林大学博士论文.2009
    [119]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究.上海交通大学博士论文.2008
    [120] Mohammad Kamal,Taehyun Shim.Development of Active Suspension Control forCombined Handling and Rollover Propensity Enhancement. SAE Paper,2007.2007-01-0826
    [121] S.Takano,M.Naga,T.Taniguchi,et al.,Study on a vehicle dynamics model for improvingroll stability.JSAE Review,2003,24:149-156P
    [122]郜大伟.汽车ESP液压调节器建模与轮缸压力估计算法的研究.吉林大学硕士论文.2009
    [123] Nakazawa M,Isobe O,Takahashi S,et al. Braking force distributi on control forimproved vehicle dynamics and brake performance. Vehicle system dynamics,1995,24(4):413-426P
    [124] H.J.Kim, Y.P.Park, Investigation of robust roll motion control considering varying speedand actuator dynamics, Mechatronics,2004,14:35-54P
    [125] Masao Nagai,Yutaka Hirano,Sachiko Yamanaka.Integrated Control of Active RearWheel Steering and Direct Yaw Moment Control.Vehicle System Dynamics,1997,27(5):357-370P
    [126] J.Yoon,K.Yi,A rollover mitigation control scheme based on rollover index,Proceedingsof American Control Conference, IEEE, Minneapolis, Minnesota, USA,2006:5372-5377P
    [127] Ken Koibuchi,Mosaki Yamaoto,et al.Vehicle Stability Control System in LimitCornering by Active Brake.SAE paper,1996.960487
    [128] Ed Wallne,Jan K.Schiffmann.Development of An Automotive Rollover Sensor.SAEPaper,2000.2000-01-1651
    [129]王亚芹,陈云明,王国义,夏新运.虚拟仪器技术在汽车检测中的应用.电子技术.2010,(5):75-78页
    [130]刘关,晁海林,董玲俊.基于虚拟技术的汽车组合仪表测试系统设计.汽车电器.2010,(10):49-52页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700