用户名: 密码: 验证码:
客车操纵稳定性分析及其控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
公路建设和公路交通运输的快速发展,对车辆的操纵稳定性和行驶安全性提出了更高的要求。客车作为便捷交通和快速客运的主体,其操纵稳定性的好坏直接关系到人的生命和财产安全。客车,特别是大客车,由于其功用、结构和载荷形式与乘用车有着显著的差异,研究其操纵稳定性有着重要的意义。因此,深入研究客车动力学特征并掌握其动态特性,分析主要结构参数变化对客车状态参数的影响。在转弯行驶工况下,对客车进行有效的操控、改变稳态转向特性、提高弯道行驶能力,已成为客车领域重要的研究课题之一。
     本文基于车辆系统动力学,运用Matlab/Simulink仿真分析了客车的动态特性和弯道行驶特性。通过构建客车操纵稳定性检测系统和设计整车道路试验试验方案研究客车的操纵稳定性特征,并在试验验证模型有效性的基础上提出了客车侧倾稳定性的根轨迹分析方法。为提高车辆的弯道行驶的稳定性,进行了控制策略研究,并提出了自适应控制方法。具体研究内容如下:
     1.通过对客车坐标系和轮胎坐标系的描述,明确各参数变量的坐标系和正负关系。建立客车简化坐标系模型和等效力学模型,并对车辆的侧向运动、车辆的横摆运动和侧倾运动进行了力学分析。针对客车的侧倾运动分析得到三自由度线性方程,通过状态方程的形式给出了车辆系统的求解方法。分析车辆的基本特性参数、悬架特性参数和轮胎特性参数等常见的试验测量方法和经验公式从而为客车仿真参数选取和动力学仿真提供基础。利用Matlab进行了客车系统的动态特性仿真分析,主要是在转向盘转角阶跃输入条件下,研究客车轮胎侧偏刚度、转动惯量和质心高度等参数的变化对系统状态变量的影响,研究结果为客车参数选取和设计提供理论基础和参考依据。最后,研究客车以不同车速在不同转向盘转角输入条件下的转弯特性,通过对客车转弯特性的仿真分析为下文引入客车操纵稳定性控制奠定了基础。
     2.利用VBOX系列设备,搭建了客车操纵稳定性检测系统。该检测系统是由VBOX3、陀螺仪、汽车操纵力角测量仪、数据采集模块和笔记本电脑等组成。通过对陀螺仪坐标系的标定,明确了陀螺仪坐标系和右手坐标系的关系,确定了其数据处理的方法;根据对汽车操纵力角测量仪的标定,确定了VBOX3采集电压信号和转向盘转角的关系;对VBOX3的动态标定消除了GPS天线安装距离和位置的误差。为了检验系统的稳定性和可靠性,设计了静态检测固定角度、动态检测匀速直线运动和稳态圆周运动客车状态变量的方法,通过理论分析和试验结果对比,验证了该检测系统测量结果的精确度和准确度,为客车操纵稳定性检测提供了试验基础。
     3.在现有国内外车辆操纵稳定试验方法的基础上,结合客车的特点和检测设备的安装检测方法,制定了客车的操纵稳定性道路试验方案。根据制定的稳态圆周试验、双移线试验和蛇形试验等试验方案,利用所构建的客车操纵稳定性检测系统进行实车道路试验的检测。通过分析检测设备安装位置和测量点位置对测量变量的影响,给出了试验数据的分析处理方法,然后通过试验结果分析了客车在稳态圆周运动、双移线运动和蛇形试验条件下的操纵稳定的特点和状态变量的变化规律。通过客车动力学模型Matlab仿真数据与稳态圆周道路试验数据对比,对所建模型的有效性进行了验证。仿真结果和试验结果所表现出来的车辆运动特性基本一致,验证了所建立客车动力学模型的有效性。
     4.通过对侧倾稳定性基本概念的介绍,从驾驶员-车辆-道路环境的角度出发对车辆的操纵稳定性进行分析。针对驾驶员因素从感知阶段、判断决策阶段和操作阶段三个阶段分析了其对客车侧倾稳定性的影响;针对道路环境因素从道路表面的附着系数和平整程度以及道路的几何线形的角度分析了其对客车侧倾稳定性的影响;针对车辆相关参数从行驶系、转向系和车辆整体参数的角度分析了其对客车侧倾稳定性的影响。在分析车辆操纵稳定性常用的评价方法基础上采用了根轨迹分析方法,通过固定车速下的转弯特性研究,分析不同转向盘转角输入条件下的横摆角速度和侧倾角的根轨迹变化,对客车的侧倾稳定性进行分析评价。仿真分析结果表明,根轨迹分析方法能够较好的分析客车系统的稳定性,从而为客车的侧倾稳定性分析提供了新方法。
     5.依据车辆直接横摆力偶矩的控制原理,提出了客车直接横摆力偶矩控制的目标和控制策略。针对PID和模糊逻辑控制的基本理论,设计了横摆角速度的PID控制方法、质心侧偏角的模糊逻辑控制方法以及PID和模糊逻辑联合控制的方法,并通过转向盘转角阶跃输入条件下的仿真分析对控制效果进行了对比。仿真结果表明PID控制、模糊逻辑控制和联合控制均能有效地控制车辆状态变量的稳态值,PID和模糊逻辑联合控制能够解决常规PID控制中控制参数整定方法烦杂的困扰,控制效果要优于单独PID和模糊逻辑控制。为提高控制器的自适应功,能提出了自适应模糊逻辑控制的方法。对模糊逻辑控制中量化因子和分析,研究结果表明所建立的自适应控制方法能够有效地提高客车系统的响应品质和行驶安全性,为提高客车弯道行驶能力提供了有效地控制方法。
Vehicle security and handling stability demand need to improve with the rapiddevelopment of road construction and transportation. The stability of bus which isused as the main tools of convenient and fast transportation is directly related tohuman life and property safety. Because of bus especially coach is different from busin function, structure, loading forms and so on; the research on bus handling stabilityhas an important significance. Therefore, researching dynamics of bus system deeply,mastering motion characteristics, analyzing effect to the performance with majorparameters changing of vehicle system, effective controlling of bus to improve activesafety driving in turn driving and complex conditions, etc., have become a importanttopic in the handling and stability research fields of bus.
     Based on vehicle system dynamics, kinematic characteristics and turn drivingcharacteristics of bus has been analyzed by using computer simulation technology. Bybuilding bus handling stability detection system and designing vehicle road testprocedure of bus, handling stability characteristics are analyzed and effectiveness ofbus dynamics model is verified. Bus roll stability is analyzed by using method of rootlocus. In order to improve bus stability in turn driving control, research on vehiclecontrol strategies are analyzed, and adaptive control methods are proposed. Thedetailed contents are as follows:
     1. Coordinate system of bus and tire are used to identify the relationship of eachvariables and positive and negative. By establishing bus simplify coordinate systemmodel and equivalent mechanical model, inertial forces and external forces areanalyzed through vehicle lateral movement and vehicle's yaw motion and roll motion.Three degrees of freedom linear motion equation of bus is established and it can besolved by using method of state space equation. Measurement method of vehicle basicparameters, suspension parameters and tire characteristics and some empiricalformula are proposed, which is very useful for bus simulation and its parameter canbe obtained through this method. By using bus simulation parameter, bus kinematiccharacteristics are analyzed. Bus in steering wheel angle step response is analyzedunder the conditions of different tire wheel cornering stiffness, moment of inertia,centroid height. Simulation results provide a theoretical basis and reference for theselection and design of bus. Finally, turn driving characteristics of bus with differentspeeds in different steering wheel angle input are analyzed. The result laid foundationfor introduction of bus handling stability control for the following.
     2. Bus handling stability detection system was built by VBOX series equipment,and then it was integrated. Bus handling stability detection system was constituted by VBOX3, gyroscope, vehicle handling and power angle measurement, data acquisitionmodule and notebook computers. Through calibration gyro coordinate system, a clearrelationship between gyro coordinate system and right-hand coordinate system and itsdata processing were obtained. By calibration vehicle handling and power anglemeasurement, the relationship between VBOX3collection voltage signal and steeringwheel angle is identified. The error of GPS antenna installation distance and locationis eliminated through VBOX3dynamic calibration. In order to test the stability andreliability of detection system, a fixed angle of the static detection and dynamicdetection of bus uniform linear motion and steady-state circular motion is designed.Detection system measurement precision and accuracy is verified through theoreticalanalysis and experimental results compared, which provides an experimental basis forbus handling stability detection.
     3. Based on existing domestic and foreign vehicle handling stability testprocedure, road test program was formulated through the combination of buscharacteristics and the use of testing equipment. Bus handling stability detectionsystem was used to detect bus road test characteristics through steady static circulartest procedure, double lane change test procedure and pylon course slalom testprocedure. Influence between testing equipment installation location andmeasurement point position about measured variables are analyzed and analysismethod of experimental data is given. Test results are used to analyze handlingstability characteristics and state parameter variation through steady static circular testprocedure, double lane change test procedure and pylon course slalom test procedure.Bus dynamic model is verified by comparing between MATLAB simulation andsteady static circular test. Vehicle motion characteristics compared betweensimulation and experimental are basically the same, which verify the effectiveness ofbus dynamics model.
     4. Basic concepts of roll stability was introduced, vehicle roll stability impactfactor of driver was analyzed from three stages of perception, judgment and operationphase, which is from the view of driver-vehicle-road environment. Vehicle rollstability impact factor of driver was analyzed from road surface adhesion coefficientand the formation degree of the angle of the road geometry. Vehicle roll stabilityimpact factor of vehicle-related parameters was analyzed from driving system,steering system and vehicle overall parameters. Based on analysis of vehicle handlingstability evaluation method, root locus analysis is used to analysis bus handlingstability. Turn driving characteristics of bus is analyzed under fixed speed withdifferent steering wheel angle input. Bus yaw rate and roll angle of the root locus areanalyzed, which are used to analysis and evaluation bus handling stability. The resultsshow that root locus analysis method can analyze bus handling stability effectivelyand given a new method for bus analysis.
     5. Thought analysis of Vehicle Stability Control and Vehicle Stability Failure, bus direct yaw moment control objectives and control methods are proposed based onvehicle direct yaw moment control principle. Based on PID and fuzzy logic controltheory, PID control method was used in yaw rate control, fuzzy logic control methodwas used in slip angle and PID and fuzzy logic joint control was also used in bussystem. Simulation results show that PID control, fuzzy logic control and joint controlcan effectively reduce steady-state value of bus state parameters. PID and fuzzy logicjoint control can solve the troublesome problem of control parameters in theconventional PID control tuning methods, its control effect is better than separatecontrol. In order to enhance adaptive of controller, adaptive fuzzy logic controlmethod was proposed. Quantization factor and scale factor were optimized by usinggenetic algorithm, and then was simulated. The simulation results can effectivelyimprove the quality of vehicle systems response and security and given an effectivecontrol method for bus turn driving.
引文
[1]人民日报.中国公路网总里程预计2010年年底达到395万公里[EB/OL].[2010-10-27]. http://www.gov.cn/jrzg/2010-10/29/content_1732946.htm.
    [2]龙江交警网.2011年全国机动车和驾驶人统计分析[EB/OL].[2012-01-05].http://www.hljjj.gov.cn/hljjjzd/jsp/web/index/detaill3Index.do?infoId=4028884d33433d8b0134abd1ca7102f8.
    [3] National Center for Statistics and Analysis of the National Highway TrafficSafety Administration. Traffic Safety Facts2009-A Compilation of MotorVehicle Crash Data from the Fatality Analysis Reporting System and the GeneralEstimates System [R]. Report No. DOT HS811402; Washington; DC,2010.
    [4] Glaser, H. Electronic Stability Program ESP [M], Audi Press PresentationLycksele, Sweden, December,1996,9-13.
    [5]中国交通技术网.2010年全国道路交通事故3906164起,[EB/OL].
    [2011-05-31],http://www.chinahighway.com/news/2011/527253.php.
    [6]褚端峰.客车行驶稳定性控制的关键技术研究[D].武汉:武汉理工大学机电工程学院,2010.
    [7]寇发荣.高速危险工况下大客车操纵稳定性仿真与试验研究[D].西安:长安大学汽车学院,2003.
    [8]宗长富,郭孔辉.汽车操纵稳定性的客观定量评价指标[J].吉林工业大学自然科学学报,2000,30(1):1-6.
    [9]宗长富,郭孔辉.汽车操纵稳定性的理论预测与综合评价[J].汽车工程,2001,23(1):5-8.
    [10]宗长富,刘蕴博.汽车操纵稳定性的模拟器闭环评价与试验方法[J].汽车工程,2001,23(3):205-208.
    [11]赵秋芳.基于ADAMS的汽车操纵稳定性仿真试验初步研究[D].大连:大连理工大学汽车工程学院,2006.
    [12]刘进伟,吴志新等.汽车操纵稳定性研究方法探讨[J].轻型汽车技术,2006,(9):5.
    [13]宗长富,郭孔辉.汽车操纵稳定性的主观评价[J].汽车工程,2000,第22(5):290.
    [14]HARADA Hiroshi. Stability Criteria and Evaluation of Steering Manueuver in“Driver-Vehicle” System [J], JSME International Journal, Series C.1994;37(1):115.
    [15]赵振东,雷雨成.汽车操纵稳定性主客观评价数据的一种处理方法[J].汽车科技,2007,(5):21-22.
    [16]丁喜波,张忠典等.光电式传感器原理及其应用[J].传感器技术,1996,(5).
    [17]王玉春,申兆亮等.光电式转角传感器在汽车上的应用[J].农机化研究,2001,(8).
    [18]叶芳,谭海伟等.基于GPS的车速传感器在汽车操稳性试验中的应用[J].贵州大学学报(自然科学版),2010,27(2).
    [19]陆晶晶,张为公,周耀群.基于GPS和加速度计的车速测量系统的开发与研制[J].测控技术,2007,26(8).
    [20]王乐.基于GPS的汽车操纵稳定性研究[D].南京:南京航空航天大学能源与动力学院,2007.
    [21]李永生.基于GPS及IMU的汽车道路试验系统的研究[D].成都:西华大学交通与汽车工程学院,2009.
    [22]张小龙.车辆主动安全性能道路试验系统及评价方法研究[D].南京:东南大学机械工程学院,2006.
    [23]北京海淀青云自动化技术开发公司. QCW-3B汽车操纵稳定性测试器使用说明书[S].2002.
    [24]广州泽尔机电科技有限公司. RLVB IMU02三轴惯性传感器使用说明书
    [S].2009.
    [25]周百令.动力调谐陀螺仪设计与制造[M].南京:东南大学出版社,2002.
    [26]Sanders G A. Fiber Opic Gyros for Space, Marine and Aviation Application [J].Proc. SPIE1996,2837.
    [27]周世勤.光纤陀螺技术的发展[J].飞航导弹,2001,(2).
    [28]沈学标,吴向阳. GPS定位技术[M].北京:中国建筑工业出版社,2003.
    [29]王广运,郭秉义,李洪涛.差分GPS定位技术与应用[M].北京:电子工业出版社,1996.
    [30]余卓平,高晓杰.车辆行驶过程中的状态估计问题综述[J].机械工程学报,2009,45(2).
    [31]罗俊.汽车稳定性控制策略与仿真[D].武汉:武汉科技大学汽车与交通工程学院,2006.
    [32]司利增编.汽车防滑控制系统--ABS与ASR[M].北京:人民交通出版社,1997.
    [33]孟嗣宗,崔艳萍.现代汽车防抱死制动系统合驱动力控制系统[M].北京:北京理工大学出版社,1995.
    [34]ABS株式会社编,李朝录译.汽车制动防抱装置(ABS)构造与原理[M].北京:机械工业出版社,1995.
    [35]日本专利:No.4733155.
    [36]德国专利:No.2832739.
    [37]美国专利:No.943054.
    [38]日本专利:No.56134961.
    [39]L-E. Berskiold. Volvo's New System to Avoid Skidding [J], ISATA84010.
    [40]H-J. Schopf, J. Pau1. ASR Acceleration Skid Control-A Further ContributionTowards Increasing the Active Safety of Daimler-Benz Vehicles [J], SAE paperNo.885050.
    [41]Herbert Demel, Herbert Hemming. ABS and ASR for Passenger Cars-Goals andLimits [J], SAE paper No.890834.
    [42]Edmuna Donges. Supporting Drivers by Chassis Control Systems [J], SmartVehicles,1995.
    [43]H. Leffer. Consideration of Lateral and Longitudinal Vehicle Stability byFunction Enhanced Brake and Stability Control System [J], SAE paper No.940832.
    [44]Anton van Zanten, Rainer Erhardt, Georg Pfaff. VDC, The Vehicle DynamicsControl System of Bosch [J], SAE paper No.950759.
    [45]原田宏主编.汽车控制技术[M].中国第一汽车集团公司技术中心科技信息部资料,朝仑书店,2002.
    [46]Alfred STRAUB. DSC (Dynamic Stability Control) in BMW7Series Cars [C].International Symposium on Advanced Vehicle Control, AVEC'96.
    [47]潘定海.汽车稳定性控制(VSC-Vehicle Stability Control)[M].汽车动态模拟国家重点实验室学术交流资料,1999,(7).
    [48]Van Zanten, A. T., Bosch ESP system:5years of experience [J], SAE TechnicalPaper No.2000-01-1633,2000.
    [49]Tseng, H. E., Ashrafi, B., Madau, D., Brown, T. A., Recker, D. The developmentof vehicle stability control at Ford [J]. IEEE/ASME Transactions onMechatronics,4(3),223-234,1999.
    [50]E. K. Liebemann, K. Meder, J. Schuh, G. Nenninger; Safety and PerformanceEnhancement: The Bosch Electronic Stability Control (ESP)[J]. SAE TechnicalPaper No.05.0471,2005.
    [51]Jianbo Lu, et al. An Enhancement to an Electronic Stability Control System toInclude a Rollover Control Function [J]. SAE Technical Paper No.2007-01-0809,2007.
    [52]E. Dincmen, T. Acarman, Active Coordination of The Individually ActuatedWheel Braking and Steering To Enhance Vehicle Lateral Stability and Handling
    [C], Proceedings of the17th World Congress The International Federation ofAutomatic Control Seoul, Korea,2008.
    [53]B. A. Guvenc, L. Guvenc, S. Karaman, Robust Yaw Stability Controller Designand Hardware-in-the-Loop Testing for a Road Vehicle [J], IEEE Transaction onVehicular Technology,2009,58(2).
    [54]王德平,郭孔辉.车辆动力学稳定性控制的控制原理与控制策略研究[J].机械工程学报,2000,36(3):97-99.
    [55]王德平,郭孔辉,宗长富.车辆动力学稳定性控制的理论研究[J].汽车工程,2000:22(1):7-9.
    [56]J. Li, F. Yu, J. Z. Feng and H. P. Zhao, The rapid development of vehicleelectronic control system by hardware-in-the-loop simulation [J]. Proceedings ofIMechE (Part D), Journal of Automotive Engineering,216(D2):95-105,2002.
    [57]F. Yu, Li Jun, J. Z. Feng. Study of Vehicle. Yaw Stability Control Based onHardware-in-The-Loop Simulation [J]. SAE Paper, No.2005-01-1845,2005.
    [58]徐娟,谭继锦,陈无畏.基于横向和垂向动力学的整车模型与仿真[J].农业机械学报,2005,(9).
    [59]李亮,宋健,祁雪乐.汽车动力学稳定性控制系统研究现状及发展趋势[J].农业机械学报,2006,(2).
    [60]于良耀,宋健,李亮,王学辉.汽车动力学稳定性控制系统冬季试验[J].农业机械学报,2007,(11).
    [61]李以农,杨柳,郑玲,卢少波.基于滑模控制的车辆纵横向耦合控制[J].中国机械工程,2007,18(7):866-869.
    [62]王金湘,陈南,皮大伟.基于横摆角速度变门限值的车辆稳定性控制策略及实车场地试验[J].汽车工程,2008,30(3):222-226.
    [63]余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率控制[J].汽车工程,2006(9):844-848.
    [64]赵伟.汽车动力学稳定性横摆力矩和主动转向联合控制策略的仿真研究[D].西安:长安大学汽车学院,2008.
    [65]赵治国.车辆动力学及其非线性控制理论技术的研究[D].西安:西北工业大学机电学院,2002.
    [66]裴锦华,李以农.汽车电子稳定程序控制系统的研究现状及发展趋势[J].汽车技术,2005,(2):14-17.
    [67]Farzad Tahami, Reza Kazemi, Shahrokh Farhanghi. Direct Yaw Control of anAll-Wheel-Drive EV Based on Fuzzy Logic and Neural Networks [J], SAE paperNo.2003-01-0956,2003.
    [68]E. Esmailzadeh, A. Goodarzi, G.R. Vossoughi. Optimal yaw moment control lawfor improved vehicle handling [J], Mechatronics,2003,13:659-675.
    [69]Motoki Shino, Masao Nagai. Yaw-moment control of electric vehicle forimproving handling and stability [J], JSAE Review,2001,22:473-480.
    [70]Motoki Shino, Masao Nagai. Independent wheel torque control of small-scaleelectric vehicle for handling and stability improvement [J], JSAE Review,2003,24:449-456.
    [71]刘丽.车辆三自由度平面运动稳定性的非线性分析及控制策略评价[D].长春:吉林大学交通学院,2010.
    [72]V. Alberti, E. Babbel. Improved Driving Stability by Active Braking of theIndividual Wheels [C]. International Symposium on Advanced Vehicle Control,1996.
    [73]Masato Abe, Yoshio Kano, Kazuasa Suzuki, etc. Side-slip control to stabilizevehicle lateral motion by direct yaw moment [J], JSAE Review,2001,22:413-419.
    [74]Van Zanten, A. T. Erhardt, R. Landesfeind, K. Pfaff, G., VDC SystemsDevelopment and Perspective [J], SAE paper No.980235.
    [75]G Shoji Inagaki, Lkuo Kushiro, Masaki Yamamoto. Analysis on Vehicle Stabilityin Critical Cornering Using Phase-Plane Method [J], SAE paper No.9438411.
    [76]Yoshiyuki, Kenji Tozu, Noriaki Hattori, and Masakazu Sugisawa. Improvementof Vehicle Directional Stability for Transient Steering Maneuvers Using ActiveBrake Control [J], SAE paper No.960485.
    [77]Koibuchi K., Yamamoto M. Fukada Y., Inagaki S. Vehicle Stability Control inLimit Cornering by Active Brake [J], SAE paper No.960487.
    [78]Ono E. Analysis and Control for Vehicle Stability [C].3rd InternationalSymposium on Motion and Vibration Control.1996.
    [79]Kiyoshi Wakamatsu, Yoshimitsu Akuta, Manabu Ikegaya et al. Adaptive YawRate Feedback4WS with Friction Coefficient Estimator between Tire and RoadSurface [C]. Vehicle System Dynamics: International Journal of VehicleMechanics and Mobility,1997,(27).
    [80]Tohru Yoshioka, et a1. Application Control of Sliding-Mode Theory to DirectYaw-Moment [J], JSAE Review,1999,20:523-529.
    [81]M. Mirzaei. A new strategy for minimum usage of external yaw moment invehicle dynamic control system [J], Transportation Research Part C,2009,1-12.
    [82]宗长富,郭孔辉,丁海涛.轮胎附着极限下差动制动对汽车横摆力矩的影响[J].汽车工程,2002,24(2):101-104.
    [83]范晶晶,邹广才.基于DYC的四轮驱动电传动车辆动力学控制系统研究[J].车辆与动力技术,2009,(1):1-6.
    [84]安步正人著,陈辛波译.汽车的运动和操纵[M].北京:机械工业出版社,1998.
    [85]余志生主编.汽车理论(第3版)[M].北京:机械工业出版社,2000.
    [86]刘叔军等编著. MATLAB7.0控制系统应用与实例[M].北京:机械工业出版社,2005.
    [87]林逸、喻凡编著.汽车系统动力学[M].北京:机械工业出版社,2005.
    [88]日本自动车技术会编,中国汽车工程学会组译.汽车工程手册7整车试验评价篇[M].北京:北京理工大学出版社,2010.
    [89]汽车工程手册编辑委员会.汽车工程手册·试验篇[M].北京:人民交通出版社,2000.
    [90]尹浩.数字仿真在NJ2046越野汽车开发中的应用[D].南京:南京理工大学机械工程学院,2002.
    [91]Ronald A. Bixel et al. Development in Vehicle Center of Gravity and InertialParameter Estimation and Measurement [J]. SAE paper No.950356.
    [92]Ronald A. Bixel et al. Sprung\Unsprung Mass Properties Determination withoutVehicle Disassembly, SAE paper No.960183.
    [93]Mchenry Software Inc. Examples-Tire Cornering Stiffness Calculation.
    [EB/OL].http://www.mchenrysoftware.com/medit32/readme/msmac/default.htm?turl=examplestirecorneringstiffnesscalculation.htm.
    [94]陈林.商用车操纵稳定性状态估计方法研究[D].长春:吉林大学交通学院,2011.
    [95]刘合法,花家寿.汽车侧倾稳定性的动态仿真(一)--数学模型的建立[J]传动技术,2003,17(2):25-34.
    [96]丁良旭,徐宗俊,郭钢.汽车横向静侧翻稳定性的仿真评估[J].客车技术与研究,2005,27(6):10-12.
    [97]吴社强.汽车行驶的侧向稳定性[J].公路交通科技,1997,14(4):38-41.
    [98]祝军,李一兵.汽车侧翻和滚翻事故建模研究[J].汽车工程,2006,28(3):254-258.
    [99]郭正康编著.现代汽车列车设计与使用[M].北京:北京理工大学出版社,2006.
    [100]王武宏,孙逢春,曹琦等编著.道路交通系统中驾驶行为理论与方法[M].北京:科学出版社,2011.
    [101]郝海生.某型营运客车的操纵稳定性仿真分析研究[D].重庆:重庆交通大学机械工程学院,2009.
    [102]黄建兴,赵又群.汽车操纵稳定性的研究与评价[J].机械工程学报,2010,(10).
    [103]任有.交通环境下驾驶行为模拟与应急驾驶可靠性建模[D].长春:吉林大学交通学院,2007.
    [104]李红梅.驾驶员心理特征与交通事故的关系[J].中华创伤杂志,2004,(5).
    [105]崔国峰.路面状况与行车安全分析[J].公路与汽运,2009,(1).
    [106]刘功祥,张淑娟.浅析路面状况与行车安全[J].山西建筑,2003,(2).
    [107]裴玉龙,马骥.道路交通事故道路条件成因分析及预防对策研究[J].中国公路学报,2003,(4).
    [108]张飞军,王云鹏,施树明等.公路线形设计安全性评价仿真[J].吉林大学学报(工学版),2007,(3).
    [109] Thomas D. Gillespie,赵六奇译.车辆动力学基础[M].北京:清华大学出版社,2006.
    [110]郭孔辉.汽车操纵力学[M].长春:吉林科学技术出版社,1991.
    [111] Pacejka Hance B. Tyre and Vehicle Dynamics [M]. Society of AutomotiveEngineers Inc,2002.
    [112] Bakker E, Nyborg L, Pacejka H. B., Tire modeling for use in vehicledynamics [J]. SAE Paper No.870421.
    [113]靳灿章,杨春风等.车速作为线形评价参数的敏感性分析[J].河北工业大学学报,2004,33(1):5-6.
    [114]郭凤香.道路线形安全分析与评价[D].昆明:昆明理工大学交通工程学院,2005.
    [115]马涛锋,薛念文,李仲兴等.对汽车操纵稳定性的影响因素分析及对操稳性的研究评价[J].机械设计与制造,2005.
    [116]黄文卿.基于可能速度的路线线形设计质量评价研究[D].武汉:武汉理工大学交通学院,2008.
    [117]陈家瑞.汽车构造[M].北京:机械工业出版社,2006.
    [118]陈加国.前轮定位参数及其动态变化对汽车操稳性能的影响[J].机械设计与制造,2004,(1).
    [119]饭田信,李伟民译.轮胎动态特性对车辆运动性能的影响[J].国外汽车,1984,(4).
    [120]侯永平.轮胎非线性非稳态侧偏特性与半经验模型的研究[D].长春:吉林大学汽车工程学院,1999.
    [121]李洪伟.汽车悬架运动学特性的仿真与试验研究[D].长春:吉林大学汽车工程学院,2007.
    [122]耶尔森,赖姆帕尔著,张洪欣,余卓平译.汽车底盘基础[M].北京:科学普及出版社,1992.
    [123]杨啟梁.汽车转向回正性能仿真分析[J].装备制造技术,2006,(5).
    [124]潘益威,徐进.某型号微型车转向回正性能的虚拟试验研究[J].信息技术,2006,35(5).
    [125]盛鹏程,简晓春等.基于ADAMS的转向轻便性与转向回正性的合理匹配[J].机械与电子,2006,(4).
    [126]刘叔军等编著. MATLAB7.0控制系统应用与实例M].北京:机械工业出版社,2005.
    [127]高国燊.自动控制原理[M].广州:华南理工大学出版社,2003,62-68
    [128]韦超毅,谢美芝,盘朝奉等.根轨迹法在汽车操纵稳定性研究中的应用农业机械学报[J],2007,38(9).
    [129]韦超毅.拖挂式房车列车操纵稳定性研究[D].镇江:江苏大学汽车与交通工程学院,2008.
    [130]杨化方.基于滑模变结构控制的电动汽车稳定性控制系统研究[D].淄博:山东理工大学交通与车辆工程学院,2009.
    [131]肖闯.汽车稳定性控制方法仿真研究[D].长沙:湖南大学机械与运载工程学院,机械与汽车工程学院,2007.
    [132]李晔.汽车ESP控制策略及其硬件实现研究[D].南京:东南大学机械工程学院,2006.
    [133]陶永华主编.新型PID控制及其应用(第2版)[M].北京:机械工业出版社,2005.
    [134]周红妮.车辆稳定性控制方法于策略的比较研究[D].武汉:武汉科技大学机械学院,2006.
    [135]李士勇编著.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [136]诸静.模糊控制理论与系统原理网[M].北京:机械工业出版社,2005.
    [137]刘曙光,魏俊民,竺志超.模糊控制技术阅[M].北京:中国纺织出版社,2002.
    [138]黄燕.规则自调整的自适应模糊控制研究[D].广东:汕头大学工学院,2003.
    [139] J. S. R. Jang. ANFIS: Adaptive-Network-Based Fuzzy Inference System [J].IEEE Transaction on Systems, Man, and Cybernetics,1993,23(3):665-685.
    [140] J. C. Duan. Casecaded fuzzy neural network model based on syllogistic fuzzyreasoning [J]. IEEE Transaction on Fuzzy Systems,2001,(4):293-306.
    [141]胡炜,沈理.遗传优化模糊逻辑控制器[J].计算机科学,1997,4(6):8-14.
    [142]金耀初,蒋静坪.基于遗传算法的模糊控制器分析[J].模式识别与人工智能,1997,10(l):21-27.
    [143] JQ. Hu, TS. Li, C. Guo. Design of GA-based Fuzzy Control for Ship Steering[J]. The6th World Congress on Intelligent Control and Automation,2006:3594-3598.
    [144] C. L. Rad, A. B. Wai-Lok Chan. A Genetic Fuzzy Controller for VehicleAutomatic Steering Control [J]. IEEE Transactions on Vehicular Technology.Mar.2007,56(2):529-543.
    [145]吴忻生,任华瑛.非完整移动机器人轨迹跟踪的最优模糊控制[J].华南理工大学学报(自然科学版),2004,32(3):44-49.
    [146]袁艳,张泰山.混沌优化模糊控制器在铝电解控制中的应用[J].计算机测量与控制,2005,13(5):449-451.
    [147]满春涛,黄金杰,张筱磊.基于模拟退火算法的模糊控制器优化设计[J].电机与控制学报,2004,8(3):281-284.
    [148]成伟明,唐振民,赵春霞等.基于粒子群的控制器参数模糊规则自动提取[J].系统仿真学报,2005,19(9):1971-1975.
    [149]陈建良,朱伟兴.蚁群算法优化模糊规则[J].计算机工程与应用,2007,43(5):113-115.
    [150] J. Yen, L. Wang C. W. Gillespie. Improving the interpret ability of TSKfuzzy models by combining global learning and local learning [J]. IEEE Trans.On Fuzzy Systems,1998,6(4):530-537.
    [151] M. M. M. Chowdhury, M. Chowdhury, Y. Li. Messy genetic algorithm basednew leaning method for Strueturally optimised neuro fuzzy controllers [J]. Proc.of the IEEE Inter.Conf.an Industrial Technology,1996:274-278.
    [152] S. Rezaei, J. Guivant, E. M. Nebot. Car-Like Robot Path Following in LargeUnstructured Environments [C]. Proc of the2003IEEE Int. Conf. on IntelligentRobots and Systems,2003:2468-2473.
    [153] P. Lamon.3D Position Tracking for All-Terrain Robots. Doctor thesis ofLausanne federal institute of technology,2005.
    [154]王小平,曹立明.遗传算法一理论、应用与软件开发[M].西安:西安交通大学出版社,2002.
    [155]张彦如.汽车半主动悬架模糊控制研究.合肥工业大学机械与汽车工程学院[D].2005.
    [156]卢红光,李萍,孙世国等.基于遗传算法的模糊逻辑隶属函数的优化[J].抚顺石油学院学报,2000,20(2):59-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700