用户名: 密码: 验证码:
轿车侧向稳定性控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车稳定性控制系统又称电子稳定性程序(Electronic Stability Program,简记为ESP)通过抑制汽车过度转向和不足转向趋势,实时调整车辆的运行状态,从而显著改善汽车在极限转向工况下的稳定性和操纵性能,减少交通事故。电子稳定性控制系统中侧向稳定性控制是非常重要的一个部分,及时准确对车辆进行侧向稳定性控制是主动安全研究中的关键问题。在我国,对汽车稳定性控制系统的研究工作处于起步阶段,因此本文针对ESP领域中关于侧向控制的若干关键技术进行研究,对于掌握自主知识产权、打破国外技术垄断具有重要的意义。
     以往的侧向稳定性控制研究中关于横摆角速度目标值的估算方法单一,不够准确,从而影响了最终控制的准确性。因此本文根据于车辆二自由度模型和Ackermann方程,提出了一种基于特征车速实时计算横摆角速度目标值的方法,并利用车速对计算的横摆角速度目标值进行修正,从而保证控制的准确。最后以Matlab/Simulink软件为仿真平台针对不同的行驶工况分别进行了驾驶员开环和闭环的仿真分析,验证了本文提出的侧向稳定性控制算法的有效性和实时性。
When cars are turning on the road with low adhesion coefficient or in high speed, the lateral force of the tire usually attains to the physical limit and the vehicle dynamics stability will be lost because of the exoteric disturbance or turning, so the traffic accidents frequently happen. Electronic Stability Program (shortened as ESP) can stabilize the vehicle behavior under the limit situation by controlling longitudinal forces on four wheels independently. At present, ESP has become the international research focus in the vehicle active safety field and it is gradually equipped to the moderate and top cars; while in china, the research in this field has just started. So, to study ESP has great significance for our country and also has broad application prospect.
     First of all, the function and the construction of the vehicle stability control system are introduced; the history of the vehicle stability and its present status are discussed; the contents of the dissertation are also put forward in this part. And then the researches about the vehicle out of control are carried on.
     According to this the control method and control variables are discussed. Based on the analysis, the thesis takes the yaw raw as the main control variable and the vehicle slip angle as the assistant control variable. And the target control variables are mainly discussed. Including;(1)The single wheel model is analyzed in detail, and state how the key parameter of the Acckermann Equation——characteristic vehicle speed is going with vehicle mass, the cornering stiffness and the center mass. According to this a new way of calculation of the target yaw rate and corrected based on the vehicle speed is introduced. (2) The control effect is evaluated by the simulation. (3) How to calculate the vehicle slip angle is also introduced in this chapter based on the analysis of the vehicle dynamic.
     Based on Chapter Three the whole Electronic Stability Program is introduced in detail. Including the identification of the vehicle state, the release precondition of the control, the active brake control and the algorithm based on slip PID control. A whole Electronic Stability Program is given according to all above. And it is also establish a steady foundation for the simulation analysis.
     Finally,the article applied the widespread software-Matlab/Simulink to establish the entire vehicle model and control algorithm model. The ESP control strategy within the closed loop and open loop and testified the operating mode simulations of the single lane, double lane, S lane and the step wheel angle. By the simulation analysis under both the open loop and closed loop of ESP system, it can get the conclusion that the car with ESP control can achieve the anticipant driving situation and the control strategy of this dissertation is correct.
     The thesis analyzed the vehicle dynamic state, improved the calculation of the target yaw rate based on the single wheel model, and introduced the whole ESP control strategy. By the simulation analysis under both the open loop and closed loop of ESP system, it can say that The ESP control system can effectively improve the stability of the vehicle under high-speed steering or low friction coefficient circumstance so as to assist the drivers’steering operation.
引文
[1] Glaser, H., “Electronic Stability Program ESP, Audi Press Presentation”, Lycksele, Sweden, 9.-13. December, 1996
    [2] Michael A. Kremer, Ford-Werke AG, K?ln, “The Electronic Stability Program (ESP) On The Ford Focus”. Vehicle Electronic Systems 2000 European Conference and Exhibition, StratFord Manor, StratFord-upon-Avon, UK, 2000
    [3] H.-J. Sch?pf and J. Paul, “ASR Acceleration Skid Control – A Further Contribution Towards Increasing The Active Safety of Daimler-Benz Vehicles”, SAE paper No.885050
    [4] Herbert Demel and Herbert Hemming, “ABS and ASR for Passenger Cars – Goals and Limits”, SAE paper No.890834
    [5] Edmuna Donges, “Supporting Drivers by Chassis Control Systems”, Smart Vehicles, 1995
    [6] AntonT .van zanten,R ainer Erhardt, GeorgP faff. VDC,The Vehicle Dynamics Control System Of Bosch.SAE Paper950759
    [7] Anton T. Zanten, Rainer Erhardt, Klaus Landesfeind and Georg Pfaff, “VDC System Development and Perspective”, SAE paper No.980235
    [8] Anton Th. Van Zanten, Rainer Erhardt, Albert Lutz, Wilfried Neuwald, and Hartmut Bartels, “Simulation for the Development of the Bosch-VDC”, SAE paper No.960486
    [9] A.T.van Zanten.Bosch ESP systems:5 Years of experience. SAE2000-01-1633
    [10] Anton T. Van Zanten, Rainer Erhardt, Georg Pfaff, Friedrich Kost, Uwe Hartmann, Thomas Ehret, “Control Aspects of the Bosch-VDC”, International Symposium on Advanced Vehicle Control – AVEC’96
    [11] Anton T. van Zanten, “Evolution of Electronic Control Systems for Improvingthe Vehicle Dynamic Behavior”, International Symposium on Advanced Vehicle Control – AVEC 2002
    [12] Matthew C Best and Timothy J Gordon, “Real-Time State Estimation of Vehicle Handling Dynamics Using an Adaptive Kalman Filter”, International Symposium on Advanced Vehicle Control - AVEC’98, No.9836590
    [13] Masayoshi Ito, Kenneth Yoshioka and Takeshi Saji, “Estimation of Road Surface Conditions Using Wheel Speed Behavior”, International Symposium on Advanced Vehicle Control - AVEC’94, No.9438826
    [14] Taehyun Shim and Donald Margolis, “Using mu Feedforward for Vehicle Stability Enhancement”, Vehicle System Dynamics, 2001, Vol.35, No.2, pp.103-119
    [15] Yoshiki Fukada, “Slip-Angle Estimation for Vehicle Stability Control”, Vehicle System Dynamics, 1999, Vol.32, pp.375-388
    [16] Masugi Kaminaga, Genpei Naito, “Vehicle Body Slip Angle Estimation Using an Adaptive Observer”, International Symposium on Advanced Vehicle Control - AVEC’98, No.9836635
    [17] Masato Abe, Akihisa Kato, Kazuasa Suzuki & Yoshio Kano, “Estimation of Vehicle Side-Slip Angle for DYC by Using On-Board-Tire-Model”, International Symposium on Advanced Vehicle Control - AVEC’98, No.9837049
    [18] W. R. Pasterkamp and H. B. Pacejka, “The Tyre as a Sensor to Estimate Friction”, Vehicle System Dynamics, 27 (1997), pp.409-422
    [19] Kiyoshi Wakamatsu, Yoshimitsu Akuta, Manabu Ikegaya, Nobuyoshi Asanuma, “Adaptive Yaw Rate Feedback 4WS with Friction Coefficient Estimator between Tire and Road Surface”, International Symposium on Advanced Vehicle Control - AVEC’96
    [20] Aleksander Hac and Melinda D. Simpson, “Estimation of Vehicle Side Slip Angle and Yaw Rate”, SAE paper 2000-01-0696
    [21] Pei-shih Huang, Henk Smakman, Jürgen Guldner, “Design of A Vehicle State Observer for Vehicle Dynamics Control System”, Proceedings of AVEC 2000, 5th International Symposium on Advanced Vehicle Control, August 22-24, 2000, Ann Arbor, Michigan
    [22] Paul J.Th. Venhovens & Karl Naab, “Vehicle Dynamics Estimation Using Kalman Filters”, International Symposium on Advanced Vehicle Control - AVEC’98, No.9836617
    [23] Ali Y. Ungoren, Huei Peng, H.E. Tseng, “Experimental Verification of Lateral Speed Estimation Methods”, International Symposium on Advanced Vehicle Control – AVEC 2002
    [24] Keiyu Kin, Hironobu Kiryu, Tohru Ikeda, Osamu Yano, “Enhanced Vehicle Stability and Steerability with VSA”, International Symposium on Advanced Vehicle Control – AVEC 2002
    [25] Takaji Umeno, Eiichi Ono, Katsuhiro Asano, Shoji Ito, etc. “Estimation of Tire-Road Friction Using Wheel Speed Vibration”, International Symposium on Advanced Vehicle Control – AVEC 2002
    [26] Eiichi Ono, Katsuhiro Asano, Masaru Sugai, etc. “Estimation of Friction Force Characteristics Between Tire and Road Using Wheel Velocity and Application to Braking Control”, International Symposium on Advanced Vehicle Control – AVEC 2002
    [27] Joost Zuurbier, Paul Bremmer, “State Estimation for Integrated Vehicle Dynamics Control”, International Symposium on Advanced Vehicle Control – AVEC 2002
    [28] 贺岩松,高戈,杨诚.车辆动态控制系统原理与工作过程分析.汽车研究与开发 .1997.2
    [29] 程军,“车辆动力学控制的模拟”,汽车工程,1999(Vol.21)No.4
    [30] 王德平,郭孔辉,宗长富,“车辆动力学稳定性控制的理论研究”,汽车工程,2000(Vol.22),No.1,
    [31] 张成宝,徐信明.汽车动力学控制系统的初步研究.汽车研究与开发,2001.2
    [32] 郭孔辉,丁海涛. 轮胎附着极限下差动制动对汽车横摆力矩的影响.汽车 工程 2002(Vol.24)No.2
    [33] 赵治国,方宗德,黄英亮等.车辆动力学稳定性系统变结构滑模控制研究 .中国机械工程,2003.02,Vol.142
    [34] 田佳卿,汤东胜,吴光强.汽车动力学稳定性自适应控制研究.汽车研究与 开发 2002.05,Vol.45
    [35] 刘彩志,陈思忠 提高汽车主动安全性和操作稳定性的控制策略研究 专用汽车 2002.2
    [36] 余志生,汽车理论,机械工业出版社 1992
    [37] 郭孔辉,汽车操纵动力学,吉林科学技术出版社 1992
    [38] 丁海涛,“轮胎附着极限下汽车稳定性控制的仿真研究”,吉林大学博士学位论文,2003
    [39] 姚国成 汽车稳定性控制策略的仿真研究 吉林大学硕士学位论文 2007
    [40] 肖闯 汽车稳定性控制方法仿真研究 湖南大学硕士学位论文 2007
    [41] 罗明贵 基于滑移率控制的汽车横向稳定性控制算法研究 吉林大学硕士学位论文 2007
    [42] 侯召鹏 汽车电子稳定性控制系统控制算法研究与仿真分析 吉林大学硕士学位论文 2006
    [43] Ken Koibuchi, Masaki Yamamoto,Yoshiki Fukada, and Shoji Inagaki, “Vehicle Stability Control in Limit Cornering by Active Brake”, SAE paper No.960487
    [44] 余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究.汽车工程 2006(Vol.28)No.9
    [45] 肖闯,黄江,易高. 基于 CARSIM 的车辆稳定性控制仿真. 专用汽车 2007
    [46] Katsuhiko Ogata 著,卢伯英等译,《现代控制工程》(第四版),电子工业出版社,2003
    [47] Shoji Inagaki, Ikuo Kshiro, Masaki Yamamoto, “Analysis on Vehicle Stability in Critical Cornering Using Phase-Plane Method”, International Symposium on Advanced Vehicle Control – AVEC’94 No.9438411
    [48] Bo-Chiuan Chen, Huei Peng. Design of vehicle dynamics control with roll- over prevention via UMTRI Preview Driver Model. AVEC’02 20024489.
    [49] Ken’ichi KITAHAMA. Analysis of vehicles’ handling behavior using a phase plane. AVEC’02 20024581. [50 ]中华人民共和国国家标准,“汽车操纵稳定性试验方法”,GB/T 6323.1
    [51] 郭孔辉,潘峰,马凤军.预瞄优化神经网络驾驶员模型[J].机械工程学报,2003,39(1).
    [52] 潘峰. 人-车闭环系统驾驶员神经网络综合优化建模[D]. 长春: 吉林大学, 2001.
    [53] 程颖. 基于误差分析法的驾驶员模型及其在 ADAMS 中的应用[D].长春: 吉林大学,2003.
    [54] 刘巍 轻型汽车转向稳定性控制算法及硬件在环试验台研究 吉林大学博士学位论文 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700