用户名: 密码: 验证码:
湖北省农村生物质能源产业布局与发展研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化、城镇化进程加快,消费结构的持续升级,我国能源需求呈刚性增长;受国内资源保障能力和环境容量制约以及全球性能源安全和应对气候变化影响,资源环境对经济社会发展的约束日趋强化。我国农村生物质资源丰富,但长久以来未得到有效利用,原料的稳定供应问题成为生物质能产业在我国能否持续发展的重要问题。因此,本文以湖北省农村生物质能源产业为研究对象,以能源安全与生态保护为研究背景,运用循环经济理论、可持续发展理论、产业布局理论等相关理论,通过构建和应用ARIMA预测模型、基于多目标规划的产业规模控制模型、基于GIS的生物质能源加工企业可视化选址模型,以及农村生物质能源产业发展综合效益评价体系,对生物质资源约束下和可用于生物质能源产业的新增土地面积约束下的湖北省农村生物质能源产业布局与发展问题进行分析研究。通过对欧盟生物质能源产业的实施经验与做法的梳理,提出湖北省生物质能源产业发展的政策建议。本文的研究内容和主要结论如下:
     第一:分析湖北省农村可再生能源开发利用现状。研究发现:(1)户用沼气和大型沼气工程在湖北省得到了很大的发展,但在不断开发利用的过程中,也暴露出了一些问题。沼气技工缺乏,技术支持不足;沼气供应季节性不平衡;“三改”工作不彻底;旧池、病池缺乏改造更新。(2)湖北省农作物秸秆资源总量很大,但能源化利用比例很小,不到可利用资源量的1%。秸秆收集储运体系不完善、成本价格高、政策不配套、技术不成熟等是制约秸秆能源化开发利用的主要原因。(3)采用“非粮”性生物质原料进行生物质液态燃料生产是产业发展的焦点。湖北省政府正着力部署以红薯和植物纤维素为原料的生物燃料乙醇生产,建立了部分原料基地,但未进入实际生产阶段。
     第二:运用近30年时间序列数据,对湖北省农村生物质能源潜力进行分门别类评估。结果表明,湖北省生物质能源禀赋潜力巨大,预计2015年,湖北省农村生物质总蕴藏量达87229.96万吨,其中农业生物质达4554.85万吨,林业达65219.62万吨,畜禽粪便达17637.94万吨,生物质资源在理想状态下转换成生物质能源的数量将达到47776.63万吨折标准煤。随着技术的不断进步,养殖业等相关产业的稳步发展,这些数字有可能进一步增大。湖北省具备产业化开发利用农村生物质能源的基础。
     第三:对农村生物质能源产业发展进行综合效益评价。构建一个综合效益评价体系,利用层次分析法对湖北省农村生物质能源产业的综合效益进行评估,结论如下:经济效益对总目标的权重为0.3213,生态效益对总目标的权重为0.4484,社会效益对总目标的权重为0.2302。定量评价结果表明,固化成型技术的综合效益明显高于生物质热解气化和大型沼气工程,固化成型燃料有理由成为湖北省未来生物制能源产业发展的主打方向。不同地区的生物质热解气化企业综合效益得分相近,但在细化指标上有所差别,同样的情况也出现在实施大型沼气工程的两家企业中。可以认为,生物质热解气化与生物制发酵制气技术已经成熟,适宜于规模化推广利用。细微差别产生的最可能的原因是原料的差别。今后需进一步加强不同原料生物质综合利用共性、关键技术的组织攻关和技术集成。
     第四:农村生物质能源产业布局设计。通过用湖北省生物质资源的人均占有量和单位面积集聚量两个指标对湖北省各地市资源分布密度进行了统计和分析,结合湖北省地形分布的自然特点,对湖北省农村生物质能源产业进行了区域性布局设计,共将其分成了粮食主产区、棉花主产区、养殖业发达区和山区四大区域,并进行了具体设计。
     第五:结合湖北省产业发展目标,对湖北省农村生物质能源开发利用规模控制进行了建模运算与分析。分别假定未来湖北省总工矿建设可用土地的2%和10%可用于生物质能源产业,考虑湖北省生物质资源蕴藏量约束,对湖北省未来各区域的生物质产业发展规模进行了规划。研究表明,两种不同产业规模下的生物质能源获得量和温室气体减排量都很大。2%土地约束下,可以获得的生物质能源总量为258.4888万吨标准煤,与此同时,可以有效减少以CO2为主的温室气体减排量1063.6545万吨。10%土地约束下,可以获得的生物质能源总量为1448.2615万吨标准煤,温室气体减排量可达5306.9379万吨。在此基础上,探讨了基于GIS的可视化选址决策模型与方法,为湖北省生物质能源的决策制订提供理论参考。
     第六:对欧盟生物质能源产业的实施经验进行了梳理,进而形成了对湖北省农村生物质能源产业布局与产业发展的对策建议。在优势区域发展多种生态循环农业、促进生物质固化成型燃料技术的推广使用、推进秸秆沼气、秸秆气化和生物质发电对于实现多目标下的产业布局设计方案都是有利的。与此同时,政府部门制定相关的补贴、激励政策,对生物质能源产业进行引导和扶持,也必将对该产业能否顺利走过发展初期有着非常重要的作用与影响。体系内的管理、产业链的衔接、原料的可持续稳定供应都是需要重视的问题。
With the accelerated process of industrialization and urbanization, the continuing upgrade of consumption structure, China's energy demand was in rigid growth. With the constraints of both domestic resources supporting capacity and environmental capacity, and the impacts of global energy security and climate change, the constraints of resource and environmental have been increasingly strengthening. Biomass resources are rich in Chinese rural areas, but have not exploited for the past long time. Stable supply of raw materials has become the important issue of the sustainable development of bio-energy industry in China. Therefore, taking the bio-energy industry as research object, and the energy security and environmental protection as research background, this paper analyses the layout and development of bio-energy industry in Hubei rural areas under the constraints of available biomass resources and available land, by using ARIMA predict model, industrial scale controlling model based on multi-objective planning, a GIS-based visualized location-chosen model for bio-energy processing enterprises, and an integrated effectiveness evaluation system for the development of bio-energy industry. Combing the implementation experience and practice of EU's bio-energy industry, the policy recommendations have been put forward for the development of bio-energy industry in Hubei province. The main contents and conclusions are as the follows:
     Firstly, the status quo of the renewable energy development and utilization in Hubei rural areas has been analyzed. The study shows that:(1) household biogas and large-scale biogas project in Hubei province has been greatly developed. However, some problems were also exposed in the process of the development and utilization, including the lack of biogas craftsmen, lack of technical support, seasonable imbalance of the biogas supply, the incomplete work of "three reforms", the lack of refresh of disease and old pools;(2) while crop straw resources are rich in Hubei, only a very limited proportion of them have been used to convert bio-energy, which is lass then1%. The main constraints of using crop straw to convert bio-energy are the imperfect collect and transport system, high costs, inadequate policies, immature technologies, and so on;(3) using the non grain materials to produce liquid biofuels is the main point during the development of bio-energy industry. Now the Hubei government is arranging the production of bioethanol from sweet potato and lignocellulosic biomass. Some raw material bases have been constructed, but the large-scale production has not been started.
     Secondly, the potential of different kinds of biomass resources in Hubei rural areas has been evaluated, according to the data of the past30years. The results show that Hubei province has a huge potential in terms of biomass resources. That is to say the amount of biomass resources in Hubei rural areas will be872,299,600tons in2015. Specifically, this includes45,548,500tons of agricultural residues,652,196,200tons of woody biomass and176,379,400tons of livestock manure. Theoretically, all the biomass resources in Hubei can be converted into bio-energy which is equal to477,766,300tons of standard coal. With the development of technology and relevant industry, such as breeding industry, these figures may be increased. After all, Hubei acquired the condition to develop the agri-bioenergy industry.
     Thirdly, the integrated benefit of developing bio-energy industry in rural area has been evaluated. During the study an integrated evaluation system has been created and the analysis hierarchy process has been used to evaluate the integrated benefit of agri-bioenergy industry in Hubei. Based on the study mentioned above, we can come to the following conclusion:when considering the general objective, the economic benefit weights0.3213, the ecological benefit weights0.4484and the social benefits weights0.2302. The quantitative assessment result indicates that because the integrated benefits of solidification technology obviously outweigh the benefits of biomass gasification technology and large-scale biogas engineering, it is reasonable to set the densification briquetting fuel as the main developing direction in the future of Hubei bioenergy industry. The biomass gasification enterprises in different regions achieved the similar score during integrated benefit evaluation, but in the detailed index there were some slight differences. The same thing also happened between two large-scale biogas engineering enterprises. Therefore the biomass gasification technology and biogas production by biomass fermentation technology are well developed and can be put into large-scale popularization and application. The material diversity may account for the slight differences in detailed index. In the future, the research work needs to force on the comprehensive utilization of different kinds of biomass material, and the breakthrough and integration of key technologies.
     Fourthly, rural bio-energy industry layout has been designed. According to per capital and per unit area possession of biomass resources, this study counted and analysed the biomass resources density in different cities of Hubei. And considering the topographical distribution characters of Hubei province, we designed the corresponding bio-energy industry layout. In according to the layout, Hubei province has been divided into four parts:grain production area, cotton production area, animal breeding area and mountain area, and then made the detailed design.
     Fifthly, combined with the industry development goals, Hubei rural bio-energy developing scale has been analyzed and calculated through mathematic modeling. Then taking2percent or10percent of the total available land for industrial construction as constraints, the future scale of the development of biomass industry in different regions of Hubei Province has been planned. The result shows that no matter in which condition, the amount of produced bio-energy is huge and the effect of reducing the greenhouse gas emission is obvious. Under the land restriction of2%, the prospective bio-energy amount is equal to2,584,888tons of standard coal, and at the same time the reduction of greenhouse gas emission will be10,636,545tons. However, when the land restriction is10%, the prospective bio-energy amount will be14,482,615tons of standard coal, and the greenhouse emission decrease will be53,049,379tons. Based on the calculation mentioned above, the paper discussed the GIS-based visualized location-chosen model and method, and provided the theory reference to Hubei bio-energy decision-making.
     Sixthly, the implementation experiences and practice of EU's bio-energy industry have been analysed, and then the recommendations about Hubei bio-energy industry distribution and development have been proposed. Developing circular agriculture in appropriate regions, promoting the application of densification briquetting fuel, and popularizing straw biogas, straw gasification and electricity produced by biomass can help the industry layout scheme come true. By the way, whether the government could find suitable subsidies and stimulus, and guide and support the bio-energy development or not play a determine role on the initial stage of bio-energy industry development. The connection between the industry chains, the management within the industry system and the stable supply of raw materials are also need to be considered seriously.
引文
1. 白卫国,张玲,翟明普.论我国林业生物质能源林培育与发展[J].林业资源管理,2007(2):7-10
    2. 白延飞.加快构建秸秆收贮运体系,促进我省秸秆产业化展http://www.amic.agri.gov.cn/ nxtwebfreamwork/ztzl/jnjp/detail.jsp?articleId=106997,2012-3-26
    3. 本刊评论员.中国林木生物质能源建设的春天来了[J].中国林业产业,2006(1):1
    4. 编辑.《可再生能源中长期发展规划》概要.太阳能,2007(9):13-17
    5. 蔡浩.发展能源农业须解决好三大问题[J]. 经济前沿,2006(7):15-17
    6. 蔡为民.黄河三角洲土地利用变化及其可持续性评价[D],中国农业大学博士论文,2004,6
    7. 曹建峰.秸秆的综合利用技术分析[J].能源研究与信息,2006,22(1):22-25
    8. 陈霞,魏世杰.国外生物质能产业发展理论与实证研究综述[J].全国商情.经济理论研究,2006(03):88-90
    9. 陈新华.能源改变命运[M].北京:新华出版社,2008年第一版
    10.陈英明,陆继东,肖波等.生物柴油原料资源利用与开发[J].能源工程,2007(1):33-37
    11.陈玉霄,肖生苓,王强.林区木质剩余物合理利用的研究[J].森林工程,2007(6):1-5
    12.崔海兴,郑风田,张彩虹.中国生物质利用政策演变与展望[J].林业经济,2008(10):22-26
    13.丁文斌,王雅鹏,徐勇.生物质能源材料—主要农作物秸秆产量潜力分析[J].中国人口。资源与环境,2007,17(5):84-89
    14.董宇,马晶,张涛等.秸秆利用途径的分析比较[J].中国农学通报,2010,26(19):327-332
    15.杜谋涛,袁晓东,郭和军.我国生物质秸秆资源利用现状及展望[J].能源与环境,2008,(2):76-79
    16.费世民,徐嘉,陈小涛.林业生物质能源产业化发展模式调查分析与构建[J].四川林业科技,2009,30(3):22-36
    17.封莉,刘俊峰,冯晓静等.秸秆生物质资源利用途径及相应技术[J].农机化研究,2004(6):193-195
    18.高文永.中国农业生物质能资源评价与产业发展模式研究(D).中国农业科学院博士论文,2010
    19.郭凤华,黄国华,宋涛.压燃机燃用醇-柴混溶燃料的性能研究.农业工程学报,1988(1):48-54
    20.国家发展和改革委员会.可再生能源中长期发展规划[J].可再生能源,2007(6):1-5
    21.国家林业局.国家林业部门“十一五”期间重点发展林业生物质能源[J].林业实用技术,2007,(3):7
    22.国家统计局工交司.能源统计知识手册[S]. 国家统计局,2006
    23.韩久同,费世民,徐嘉等.国外生物柴油产业化发展经验概述[J].四川林业科技,2007,6:27-38
    24.何东平.中国植物油料油脂加工科技发展探讨[J].粮食科技与经济,2004(3):35-37
    25.何芳,矫常命,易维明等.农作物秸秆粉阴燃热效率的研究.可再生能源,2006(1):26-29
    26.何芳,易维明,孙容峰等.小麦和玉米秸秆热解反应与热解动力学分析[J].农业工程学报,2002(4):10-13
    27.何蒲明.基于粮食安全的林业生物质能发展[J].林业经济问题,2008(4):314-318
    28.何艳婷,李继林.浅谈麦秆的综合开发与利用[J].科技信息(科学教研),2008(19):364
    29.胡慧蓉,郭安.小桐子种植与贫困地区生态经济建设[J].林业建设,2008(6):8-11
    30.黄雷.中国开发林木生物质能源与其产业发展研究[D].北京林业大学博士论文,2008,10
    31.黄丽梅,刘廷祥.基本农田空间配置的自动化研究[J].水土保持研究,2008,10:112-115
    32.贾静,于华,张树兴.试论农村建设中发展生物质能源的制度完善[J].现代农业科技,2006(8):195-196
    33.贾燕芳,汤少红,石伟勇等.农产品加工废弃物中膳食纤维的研究及产业链设计[J].食品工业科技,2010(6):365-371
    34.姜楠,张正.生物柴油的现状与发展前景[J].世界农业,2005(3):50-52
    35.李欢,杨仁斌,陈亮.秸秆能源利用模式分析及进展[J].农业环境科学学报,2007,S2:628-631
    36.李京京.中国农村地区中长期能源需求预测研究[J].农业工程学报,1998(6):26-31
    37.李景明,孙玉芳,刘耕.我国生物质能政策的基本框架分析[C].见:2008中国农村生物质能源国际研讨会盛东盟与中日韩生物质能源论坛论文集,2008,206-211
    38.李俊峰,时璟丽,王仲颖.欧盟可再生能源发展的新政策及对我国的启示.可再生能源,2007,25(3):1-3
    39.李昆,杨文云,孙永玉等.云南小桐子资源及其生物柴油原料林发展策略[J].生物质化学工程,2006,S1:153-157
    40.李鹏,李玉浸,杨殿林等.天津市畜禽粪便年排放量的估算[J].畜牧与兽医,2009,41(2):32-34
    41.李蓉.生物质和煤混合燃烧试验研究[D].保定:华北电力大学(河北)硕士论文,2008
    42.李树一.能源林可持续发展的希望之林[J].国土绿化,2007(11):11-12
    43.李永红.草木灰等农家肥的高效利用方法[J].辽宁师专学报(自然科学版),2002(1):87-88
    44.李育材.加速小桐子产业化步伐推进我国林业生物质能源发展[J].绿色中国,2006(24):6-9
    45.李振远.农业剩余物综合利用技术[J].造纸化学品,2009,1:76
    46.林艳兴,葛如江,王建威.玉米市场正发生深刻变化[J].中国牧业通讯,2007(2)):39-40
    47.刘红斌,易湘涛.推广“猪沼果”模式石首投近千万元资金建沼气池[N]. http://www. cnchu. com/viewnews-62635.html,2012-3-26
    48.刘丽华,蒋静艳,宗良纲.农业残留物燃烧温室气体排放清单研究:以江苏省为例环境科学,2011,32(5):1242-1248
    49.刘培芳,陈振楼,许世远等.长江三角洲城郊畜禽粪便的污染负荷及其防治对策[J].长江流域资源与环境,2002,11(5):456-460
    50.刘荣章,黄毅斌,周江梅等.农业循环经济与生物质能源开发策略[J].福建农业学报,2006,(21)3:279-284
    51.刘忠新,许启明.关于农业废弃物处理与利用的思考[J].陕西环境,2001(1):32-33
    52.吕文,李定河.发展油料能源树种与开发生物柴油前景分析[J].中国能源,2007(1):30-32,26
    53.吕文,王春峰,王国胜等.中国林木生物质能源发展潜力研究(1)[J].中国能源,2005(11):5-11
    54.吕文,王春峰,王国胜等.中国林木生物质能源发展潜力研究(2)[J].中国能源,2005(12):28-33
    55.吕文,张彩虹,张大红等.林木生物质原料发电供热技术路线初步研究[J].中国林业产业,2006(4):39-44
    56.吕文.第六章关于大力发展林木生物质能源的建议[J].中国林业产业,2006(1):54-58
    57.罗贞礼.生物质能的开发利用[C].见:飞天山丹霞地貌与生态旅游学术研讨会论文集.2002,118-124
    58.马晶.亚/超临界—发酵组合技术制备秸秆乙醇[J].上海交通大学硕士论文,2011
    59.满相忠,王珊珊.国外开发生物质能优惠政策及其经验启示[J].地方财政研究,2007,(8):58-63
    60.孟海波等.生物液体燃料可持续发展评价系统[J].农业工程学报,2009,25(12):218-223
    61.农业剩余物将变身造纸纤维和生物化学品[J].生物加工过程,2008(2):20-21
    62.彭里,王定勇.重庆市畜禽粪便年排放量的估算研究.农业工程学报,2004(1):287-292
    63.祁向前.GIS空间分析功能在超市选址中的应用[J].测绘科学,2008(33),6:223-225
    64.钱能志.加快林业生物质能源的开发利用[J].中国石化,2007(8):16-19
    65.任博文,邱增处,雷亚芳等.无胶稻草碎料板试验研究[J].西北林学院学报,2010(2):162-166
    66.任峰,刘应宗,牛东晓.农村生物质能资源利用效能综合评价研究[J].软科学,2011,25(9):20-23,30
    67.任峰,刘应宗,牛东晓.农村生物质能资源利用效能综合评价研究[J].软科学,2011,25(9):20-23,30
    68.盛奎川,蒋成球,钟建立.农林废弃物热解的试验研究[J].农业工程学报,1997(1):149-152
    69.施雪华,余敏,曲有鹏等,利用木质纤维素类生物质生产燃料酒精[J].酿酒,2008(6):64-68
    70.十二五节能减排综合性工作方案http://www.dcement.com/Article/201109/101567.html,2012-2-6
    71.石元春,发展生物质产业[J].中国农业科技导报,2006,8(1):1-5
    72.石元春,李十中.迎接生物质经济时代的到来.中国财政,2007(5):69-73
    73.宋春财,胡浩权.生物质秸秆在水中热化学液化研究[J].四川大学学报(工程科学版),2002(5):59-62
    74.宋佳鸣.生物质能源技术与经济政策研究[D].合肥:合肥工业大学硕士论文,2009
    75.苏学泳,王智微,程从明等.生物质在流化床中的热解和气化研究[J].燃料化学学报,2000(4):298-305
    76.孙凤莲,王雅鹏,王薇薇.我国林木生物质能源产业发展的区域定位和替代潜力及开发利用对策[J].农业现代化研究,2010(3):325-329
    77.孙凤莲,王雅鹏.生物质能源发展的市场环境培育分析——以湖北省为例[J].长江流域资源与环境,2009(7):641-645
    78.孙俊楠,张建安,杨明德等,利用微藻热解生产生物燃料的研究进展[J].科技导报,2006(6):26-28
    79.孙永明,李国学,张夫道等.中国农业废弃物资源化现状与发展战略[J].农业工程学报,2005(8):169-173
    80.孙振钧,孙永明.我国农业废弃物资源化与农村生物质能源利用的现状与发展[J].中国农业科技导报,2006(1):6-13
    81.唐红英,胡延杰.国外生物质能源产业发展的经验及启示[J].世界林业研究,2008(3):72-74
    82.唐红英.我国林业生物质能源发展相关政策概述[J].林业经济,2008(7):43-45
    83.唐军荣,郭瑞超,胥辉等.小桐子及其研究进展[J].林业调查规划,2007(2):36-39
    84.唐远.应对能源危机生物质能技术发展恰逢其时[J].中国高校科技与产业化,2005(9):28-32
    85.田沈等,生物质气化洗焦废水COD和毒性化合物的高效降解[J].太阳能学报,2006(10):1027-1031
    86.田宜水,赵立欣,孟海波,等.中国农村生物质能利用技术和经济评价[J].农业工程学报,2011,S1:1-5
    87.万芳,于随然,王成焘.农业工程学报[J],2004,20(4):239-242
    88.万晓红.秸秆资源化利用技术分析及新途径探讨[J].农业环境与发展,2006(3):39-42
    89.万志芳,王飞,李明.林区森林采伐剩余物利用状况分析[J].中国林业经济,2007(4):17-19
    90.汪防,汪炜.我国秸秆资源开发利用综述[J].资源开发与市场,2008(11):1009-1012
    91.汪翔,王树进.应用本因分析法研究农业废弃物综合利用问题[J].生态经济(学术版),2008(2):215-217,260
    92.王琛,胡玉福,魏晋等.区域农业废弃物资源存量估算及利用现状[J].四川农业大学学报,2011(1):119-123,135
    93.王春峰,贾晓霞,章升东等.第五章中国林木生物质能源清洁发展机制和相关政策研究[J].中国林业产业,2006(1):46-54
    94.王德元,陈汉平,杨海平.生物质能利用技术综合评价研究[J].能源工程,2009(1):25-29
    95.王方浩,马文奇,窦争霞等.中国畜禽粪便产生量估算及环境效应[J].中国环境科学,2006,(5):614-617
    96.王革华.农村能源建设对减排SO2和CO2贡献分析方法[J].农业工程学报,1999(15),1:169-172
    97.王乐.生物质快速热裂解试验研究[D],杭州:浙江大学硕士论文,2006
    98.王连茂.江西省林木生物质能源产业化研究[D].北京:北京林业大学博士论文,2009
    99.王明旭,陈波,吕彬,等.可持续技术的综合评价方法探讨[J].科技进步与对策,2009(10):121-125
    100.王书肖,张楚莹.中国秸秆露天焚烧大气污染物排放时空分布[J].中国科技论文在线,2008,5:329-333
    101.王巍.贵州生物柴油企业经营环境及现状分析[D].北京:北京林业大学,2009.
    102.王曦,张赛仕.农业废弃生物质资源的再利用[J].当代农机,2009(1):54-55
    103.王星敏,李虹,范昆仑.现代农作物废弃物的生态效应及资源化利用[J].资源开发与市场,2009(11):1028-1030
    104.王雅鹏,邓玲.生物质液态燃料开发利用对粮食安全的影响分析[J].农业技术经济,2008(4):4-10
    105.王雅鹏,王宇波,丁文斌.生物质能源的开发利用及其支撑体系建设的思考[J].农业现代化研究,2007(6):753-756
    106.王亚静,徐晔,祁春节等.关于发展生物质产业的几点思考[J].中国人口·资源与环境,2007(4):125-127
    107.王岩,龙春林,程治英.能源植物小桐子的利用与研究进展[J].安徽农业科学,2007,2
    108.王莹.林木质固体燃料在我国农村地区发展的研究[D].北京:北京林业大学硕士论文,2007
    109.王永肖.会计师事务所审计风险评价与控制研究[D].保定:华北电力大学(河北),2009
    110.王铮,朱永彬.我国各省区碳排放量状况及减排对策研究[J].战略与决策研究,2008,23(2):109-115
    111.吴一亮.国民经济动员发展系统评价[D].北京:北京理工大学博士论文,2006
    112.肖明松.原料仍是生物质能发展的大难题,中国新能源网,http://www.newenergy.org.cn/Html/ 0122/271244525.Html.2012-2-7
    113.忻耀年.生物柴油的发展现状和应用前景[J].中国油脂,2005,3
    114.徐庆福.林业生物质能源开发利用技术评价与产品结构优化研究[D].东北林业大学,2007
    115.徐薇,我国生物柴油产业发展研究[D].北京:北京林业大学博士论文,2008
    116.薛志勇.木材剩余物的开发与利用[J].再生资源研究,2002(5):42
    117.姚海宁.中国能源林建设中的经营及融资问题研究[D].北京:北京林业大学博士论文,2008
    118.阴春梅,刘忠,齐宏升.生物质发酵生产乙醇的研究进展.酿酒科技,2007(1):87-90
    119.于娟.碳税循环政策在农村能源结构调整中的作用[D].上海:复旦大学博士论文,2007
    120.于树峰,仲崇立.农作物废弃物液化的实验研究[J].燃料化学学报,2005(2):205-210俞国胜,肖江,袁湘月等.发展中国林木生物质成型燃料[J].生物质化学工程,2006,S1
    121.袁增伟,毕军.产业生态学[M].北京:科学出版社,2010
    122.袁增伟,毕军.产业生态学[M].北京:科学出版社,2010
    123.曾繁盛.物质资源可持续利用研究[D].北京:中共中央党校硕士论文,2009
    124.曾麟.世界主要发展生物质能国家的目的与举措[J].可再生能源和你,2005(2)24-25
    125.曾贤刚,庞含霜.我国各省区C02排放状况、趋势及减排对策[J].中国软科学,2009(S1):64-70
    126.翟辅东.我国农村能源发展方针调整问题探讨[J].自然资源学报,2003,18(1):81-86
    127.张彩虹,张大红,徐剑琦,等.第四章中国林木生物质能源发展经济分析与可行性研究[J].中国林业产业,2006(1):35-45
    128.张彩虹,张兰.透视我国油料能源林产业[J].中国林业产业,2008(10):48-51
    129.张恒伟,于艳春.森林采运剩余物利用与可持续发展[J].内蒙古科技与经济,2005,3
    130.张金桃,周传云.农作物秸秆能源利用现状与前景[J].酿酒,2007,34(4):12-15
    131.张兰,张彩虹.商品林项目融资风险及对策[J].北京林业大学学报(社会科学版),2006,5(3):69-72
    132.张兰.中国林木生物质发电原料供应与产业化研究[D].北京林业大学博士论文,2010
    133.张丽.敏捷供应链中的谈判决策系统研究[D].天津:天津大学博士论文,2006
    134.张强,ZbigniewKlimont, DavidG. Streets等.中国人为源颗粒物排放模型及2001年排放清单估算[J].自然科学进展,2006(2):223-231
    135.张无敌,秸秆综合利用技术评价[J].农业与技术,1999(2):14-18
    136.张无敌,夏朝凤,宋洪川.生物质热解气化技术的评价[J],节能,1998(3):37-40
    137.张晓文,赵改宾,杨仁全等.农作物秸秆在循环经济中的综合利用[J].农业工程学报,2006,S1:107-109
    138.张艳丽,王飞,赵丽欣等.我国秸秆收储运系统的运营模式、存在问题及发展对策[J].可再生能源,2009,27(1):1-5
    139.张耀民,周毅,沈跃等.中国农业排放源甲烷排放量的估算[J].生态与农村环境学报,1993,S1:3-8,12
    140.张跃,周寿平,宿芬.模糊数学方法及其应用[M].北京:煤炭工业出版社,1992
    141.张跃,周寿平,宿芬.模糊数学方法及其应用[M].北京:煤炭工业出版社,1992
    142.赵丹,龙勤.云南省林木生物质能源产业发展潜力研究[J].全国商情(经济理论研究),2009(11):9-10
    143.赵华.交通电子政务评价指标体系研究[D].广州:广东工业大学硕士论文,2006
    144.赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势[J].应用生态学报,2004(8):1468-1472
    145.赵宗保,华艳艳,刘波.中国如何突破生物柴油产业的原料瓶颈[J].中国生物工程杂志,2005,25(11):1-6
    146.郑成才.中国生物能源产业发展对策研究[D].武汉:华中科技大学硕士论文,2008.
    147.支玲.云南林木生物质能源发展的方向及对策研究[J].科学时代,2008,5
    148.中国林木生物质能源发展潜力研究课题组.中国林木生物质能源发展潜力研究报告[J].中国林业产业,2006(1):5-10
    149.中国新能源网.生物质能发展年度报告.http://www.newenergy.org.cn/html/0121/1171244393.html
    150.中国新能源网.生物质能发展年度报告.http://www.newenergy.org.cn/html/0121/1171244393.html
    151.周成武.农业废弃物资源化利用的有效途径[J].上海农村经济,2008(8):25-27
    152.朱军.促进我国可再生能源发展的财税政策研究[D],中央财经大学硕士论文,2006
    153.朱俊生.大力发展农业剩余物的综合利用[J].农村能源,1991(2):9-11
    154.朱灵峰,张百良,梁庾白等.秸秆类生物质催化合成甲醇的实验研究[J].可再生能源,2004(4):12-15
    155.朱萍,左志炎,舒心.一种未来可持续能源——生物质能[J].江苏科技信息,2000(8):27-28
    156.祝列克.我国林业生物质能源发展现状、目标与对策[J].绿色中国,2006(24):10-15
    157.《中国应对气候变化的政策与行动(2011)》白皮书http://www.gov.cn/jrzg/2011-11/22/content_2000047.htm
    158. Andrea Monti, Simone Fazio, Gianpietro Venturi. "Cradle-to-farm gate life cycle assessment in perennial energy crops". Europ. J. Agronomy 31 (2009):77-84.
    159. Athanasios A. Rentizelas, Athanasios J. Tolis, Ilias P. Tatsiopoulos. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain". Renewable and Sustainable Energy Reviews 13 (2009):887-894.
    160. C.D.Blasi, V. Tanzi and M.Lanzetta. A study on the production of agricultural residues in Italy. Biomass and Bioenergy 12(1997):321-331
    161. C.I.Marrison, E.D.Larson. "Apreliminary Analysis of the Biomass Energy Production Potential in Africa In 2025 Considering Projected Land Needs for Food". Biomass and &energy 10(1996): 337-351
    162. Carlo N. Hamelinck, Roald A.A. Suurs, Andre'P.C. Faaij. "International bioenergy transport costs and energy balance". Biomass and Bioenergy 29 (2005):114-134.
    163. Charlse E. Noon and Michael J. Daly. Gis-based biomass resource assessment with bravo. Biomass and Bioenergy 10(1996):101-109.
    164. D. I. Bransby, S. B. Mclaughlin, D. J. Parrish. "A Review of Carbon and Nitrogen Balances in Switchgrass Grown for Energy". Biomass and Bioenergy 14(1998):379-384.
    165.Dunja Hoffmanna, Martin Weih. "Limitations and improvement of the potential utilisation of woody biomass for energy derived from short rotation woody crops in Sweden and Germany" Biomass and Bioenergy 28 (2005):267-279.
    166. Edward M.W. Smeets, Andre PC. Faaij. "The impact of sustainability criteria on the costs and potentials of bioenergy production-Applied for case studies in Brazil and Ukraine". Biomass and Bioenergy (2009):1-15.
    167. EU.RED.http://www.r-e-a.net/policy/european-policy/Euro-legislation/renewable-energy-directive
    168. Evan Hughes. "Biomass co-firing:economics, policy and opportunities". Biomass and Bioenergy 19 (2000):457-465.
    169. G.E. Varvel, K.P. Vogel, R.B. Mitchell, et al. "Comparison of corn and switchgrass on marginal soils for bioenergy". Biomass and Bioenergy 32 (2008):18-21.
    170. Helen McKay. Environmental, "economic, social and political drivers for increasing use of woodfuel as a renewable resource in Britain". Biomass and Bioenergy 30 (2006):308-315.
    171.Hiromi Yamamoto, Junichi Fujino, Kenji Yamaji. "Evaluation of bioenergy potential with a multi-regional global-land-use-and-energy model". Biomass and Bioenergy 21(2001):185-203
    172. Hoesung Lee,周大地,Yonghun Jung等.亚太国家温室气体排放清单及其缓解策略:会议报告和工作组讨论记要.AMBIO-人类环境杂志,1996年,4.
    173. Hongbo Shao, Liye Chu. "Resource evaluation of typical energy plants and possible functional zone planning in China". Biomass and bioenergy 32 (2008):283-288.
    174. Hope Stewart, C.N. Hewitt, R.G.H. Bunce. "Assessing, mapping and quantifying the distribution of foliar biomass in Great Britain". Biomass and Bioenergy 32 (2008):838-856.
    175. HWANG C L. "Multiple attribute decision making". Springer Verlag 3(1981):36-45.
    176. I. Lewandowski, J. Weger, A. van Hooijdonk, et al. "The potential biomass for energy production in the Czech Republic". Biomass and Bioenergy 30 (2006):405-421.
    177. I. Stupak, A. Asikainen, M. Jonsell. "Sustainable utilisation of forest biomass for energy—Possibilities and problems:Policy, legislation, certification, and recommendations and guidelines in the Nordic, Baltic, and other European countries". Biomass and Bioenergy 31 (2007): 666-684.
    178. IEA.Medium Term Oil Market Report.OECD/IEA, Paris.2009b
    179. J.G. Rogers, J.G. Brammer. "Analysis of transport costs for energy crops for use in biomass pyrolysis plant networks". Biomass and Bioenergy 33 (2009):1367-1375.
    180. Jagtar Singh, B.S. Panesar, S.K. Sharma. "Energy potential through agricultural biomass using geographical information system—A case study of Punjab". Biomass and Bioenergy 32 (2008):301-307.
    181. Jerry D. Murphy, Niamh M. Power. "An argument for using biomethane generated from grass as a biofuel in Ireland". biomass and bioenergy 33 (2009):504-512.
    182. Jim Cook, Jan Beyea. "Bioenergy in the United States:progress and possibilities". Biomass and Bioenergy 18 (2000):441-455.
    183. John P. Weyant and Thomas Olavson. "Issues in Modeling Induced Technological Change in Energy", Environment, and Climate Policy. Energy Modeling Forum Working Paper 14.5.
    184. K. K. C. K. Perera, P. G. Rathnasiri, S. A. S. Senarath, et al. "Abdul Salam. Assessment of sustainable energy potential of non-plantation biomass resources in Sri Lanka". Biomass and Bioenergy 29 (2005):199-213.
    185. Karen Updegraff, Melvin J. Baughman, Steven J. Taff. "Environmental benefits of cropland conversion to hybrid poplar:economic and policy considerations". Biomass and Bioenergy 27(2004):411-428.
    186. Katrin Rehdanz and Richard S.J. Tol. "A no cap but trade proposal for greenhouse gas emission reduction targets for Brazil, China and India". Working Paper FNU-68,2005:1-17
    187. Kteil. E. Country energy profile:China. United States Energy Information Administration,1997
    188. L. P. Abrahamson, D. J. Robison, T. A. Volk, et al. "Sustainability and Environmental Issues Associated with Willow Bioenergy Development in New York(USA)". Biomass and Bioenergy 15(1998):17-22.
    189. Lars Christersson. "Biomass production of intensively grown poplars in the southernmost part of Sweden:Observations of characters, traits and growth potential". Biomass and Bioenergy 30(2006):497-508.
    190. Laura K. Paine, Toddl. Peterson, D. J. Undersander, et al. "Some Ecological and Socio-economic Considerations for Biomass Energy Crop Production". Biomass and Bioenergy 10(1996):231-242
    191. Liu W, Merriam RA, Phillips VD, et al. "Estimating short-rotation Eucalyptus saligna production in Hawaii:An integrated yields and economic model". Bioresource Technology 45(1993): 167-176.
    192. Liu W, Phillips VD, Singh D. "A spatial model for the economic evaluation of biomass production systems". Biomass and Bioenergy 1992,3:345-356.
    193. M.E. Walsh. "Method to estimate bioenergy crop feedstock supply curves". Biomass and Bioenergy 18 (2000) 283-289.
    194. Madhu Khanna, Basanta Dhungana, John Clifton-Brown. "Costs of Producing Miscanthus and Switchgrass for Bioenergy in Illinois". Biomass and Bioenergy 32 (2008):482-493.
    195. Marc de Wit, Andre'Faaij. "European Biomass Resource Potential and Costs". Biomass and Bioenergy 7(2009):1-15.
    196. Marco Beccali, Pietro Columba, VincenzoD'Alberti, et al. "Assessment of bioenergy potential in Sicily:A GIS-based support methodology". Biomass and Bioenergy 33 (2009):79-87.
    197. Marle E. Walsh. U.S. "Bioenergy Crop Economic Analysis:Status and Needs". Biomass and Bioenergy 4(1998):341-350
    198. Miles Perry, Frank Rosillo-Calle. Recent Trends and Future Opportunities in UK Bioenergy: Maximising Biomass Penetration in a Centralized Energy System. Biomass and Bioenergy 32 (2008):688-701.
    199. Monique Hoogwijk, Andr'e Faaij, Richard van den Broek. "Exploration of the ranges of the global potential of biomass for energy". Biomass and Bioenergy 25(2003):119-133.
    200. Mustafa Balat. "Use of Biomass Sources for Energy in Turkey and a View to Biomass Potential". Biomass and Bioenergy 29(2005):32-41.
    201. Nophea Sasaki, Wolfgang Knorr, David R. Foster, et al. "Woody biomass and bioenergy potentials in Southeast Asia between 1990 and 2020". Applied Energy 86 (2009):140-150.
    202. Omar Masera, Adrian Ghilardi, Rudi Drigo, et al. "Wisdom:A GIS-based supply demand mapping tool for wood fuel management". Biomass and Bioenergy 30 (2006):618-637.
    203. P. Sudha, H. I. Somashekhar, Sandhya Rao, N. H. Ravindranath. Sustainable biomass production for energy in India. Biomass and Bioenergy 25 (2003) 501-515
    204. P. I. I. Borjesson. Energy Analysis of Biomass Production and Transportation. Biomass and Bioenergy 4 (1996):305-318.
    205. Phillips VD, Liu W, Merriam RA, et al. "Biomass systems model estimates of short-rotation hardwood production in Hawaii". Biomass and Bioenergy 5(1993):421-429.
    206. R. Janssen, P. Helm, P. Grimm, et al. "A global network on bioenergy-objectives, strategies and first results".12th European Conference on Biomass for Energy, Industry and Climate Protection, 17-21 June 2002, Amsterdam, The Netherlands.
    207. R. L. Graham. W. Liu, M. Downing, C. E. Noon, et al. "The effect of location and faciliy demand on the marginal cost of delivered wood chips from energy crops:a case study of the state of Tennessee". Biomass and Bioenergy 3(1997):117-123
    208. Randall D. Schnepf, Erik Dohlman, and Christine Boiling. Economic indicators of the farm sector: costs of production ---- major field crops. Washington (DC):US Department of Agriculture, Economic Research Service,1996.
    209. Ranney JW, Cushman JH. "Regional evaluation of woody biomass production for fuels in the Southeast". In:Biotechnology and Bioengineering Symposium No.10. New York:Wiley,1980.
    210. Robin L. Grahama, Burton C. English, Charles E. Noon. "A Geographic Information System-based modeling system for evaluating the cost of delivered energy crop feedstock". Biomass and Bioenergy 18 (2000):309-329.
    211. S.C. Bhattacharya, P. Abdul Salam, H.L. Pham, et al. "Sustainable biomass production for energy in selected Asian countries". Biomass and Bioenergy 25 (2003):471-482.
    212. Samuel B. McLaughlin, Lynn Adams Kszos. "Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States". Biomass and Bioenergy 28 (2005):515-535.
    213.Samuli Neuvonen. "The Potential for Bioenergy Crop Production in Baden-Wurttemberg:An Application of EPIC and GIS to Bioenergy Modeling". Interim Reports on work of the International Institute for Applied Systems Analysis,2005.
    214. Thomas Nord-Larsen, Bruce Talbot. "Assessment of forest-fuel resources in Denmark:technical and economic availability". Biomass and Bioenergy 27 (2004):97-109.
    215. Tobias Wiesenthal, Burkhard Schade. "Analysis of Biofuel Support Policies".http://www.globalbioenergy.org/uploads/media/0705_JRC-VITO_-_Analysis_of_biofuel_support_policies.pdf.2010,2011-2-5
    216. Tobias Wiesenthal, Guillaume Leduc. "Biofuel support policies in Europe:Lessons learnt for the long way ahead". Renewable and Sustainable Energy Reviews 13 (2009):789-800.
    217. Xun Shi, Andrew Elmore, Xia Li, et al. "Using spatial information technologies to select sites for biomass power plants:A case study in Guangdong Province, China". Biomass and Bioenergy 32 (2008):35-43.
    218. Yukihiko Matsumura, Takashi Inoue, Keiichi Komoto, et al. "The scale of biomass production in Japan". Biomass and Bioenergy 29 (2005):321-330.
    219. Yukihiko Matsumura, Tomoaki Minowa, Hiromi Yamamoto. "Amount, availability, and potential use of rice straw(agricultural residue) biomass as an energy resource in Japan". Biomass and Bioenergy 29 (2005):347-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700