用户名: 密码: 验证码:
复杂液氮洗装置的模拟分析与改造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂液氮洗装置除设有传统氮洗塔和相应的换热器外,还设有尾气回收系统和来自另一氨厂弛放气回收系统,回收溶解在氮洗塔塔底液中的大量的H_2和CO,最终还可以回收到98%的Ar产品。所以该装置比传统的液氮洗装置多设了预分离塔和分离塔,相应的换热设备、回流罐以及泵等,且这两个塔耦合在一起,整个液氮洗装置工艺复杂,能量集成度高,是一套比较先进的工艺流程,该流程有利于原料回收利用,节约能源,降低环境污染等特点。
     本课题的任务是一套复杂液氮洗装置的恢复设计,即国内某公司从国外引进一套二手设备,针对于该公司的具体情况在国内重建恢复运行,文中主要讨论了该套复杂液氮洗装置的工艺模拟和设备核算。首先,对该套复杂液氮洗装置工艺原理的深刻理解,包括分离序列和换热网络的匹配、具体的传质、传热等过程。然后,应用ASPEN PLUS软件进行该套装置的设计工况和改造工况的工艺模拟。
     首先,对复杂液氮洗装置设计工况进行了模拟,根据设计值对各塔和其它设备作了详细的分析,得到了各塔的工艺参数:分析了液氮洗装置中物系物性和低温高压操作条件,得到了能够准确反映该装置热力学行为改进的RK-ASPEN热力学模型。在设计工况各操作单元模拟准确的基础上,各操作单元逐步联立,通过流程断裂,撕裂流股建立了全流程模型,模拟值与设计值符合良好,认为模型建立准确,可以用来对改造工况的研究。
     其次,在设计工况模拟的基础上,针对于气化原料由原设计的粉煤改为焦炉气的条件,组成发生较大变化,而且无弛放气来源,根据公司公用工程高压氮气和低压液氮的限制条件,提出了先进合理的改造方案。对改造方案严格地模拟,分析由原料气组成变化而引起的各塔的变化,分别调整了各塔的操作参数,完成了改造工况的模拟,并对尾气回收系统停运的工况进行了模拟。
     最后,在工艺模拟的基础上,对设计工况和改造工况进行了设备核算,包括各塔的流体水力学的校核和各板翅式换热器的设备核算,使各换热器满足工艺模拟的传热要求,工艺模拟与设备核算相互配合,最终完成了改造工况的模拟,为装置的改造和运行提供了理论依据。
Besides the typical liquid-nitrogen wash column and related heat exchangers, a complex liquid-nitrogen wash also include tail gas and purge gas recovery system, which can recover a mass of H_2, CO dissolved in liquid-nitrogen and finally get 98% Ar product. Comparing to the typical liquid-nitrogen wash, the complex liquid-nitrogen wash have coupled preseparation, separation column and related exchangers, reflux tank and pump and so on. With the complex technology and integrated energy, these two coupled units make up of an advanced system, which is in favor of feedstock recovery and reuse, energy conversation and decreasing environment pollution
    In this task, the old complex liquid-nitrogen wash unit is introduced from a foreign corporation and rebuilt to rerun in a domestic corporation. The process simulation and equipment simulation of this unit have been discussed. Based on the profound comprehension of the process principle of unit, including separating sequence, matching heat exchanger network, concrete mass and heat transfer principle, the design and revamp case of this unit is simulated by ASPEN Plus software.
    First of all, the design case of complex liquid-nitrogen wash unit has been simulated and the column operation parameters have been got based on detailed analysis of design values of column and other unit. Improved RK-ASPEN thermodynamic model can exactly describe the process of thermodynamic behavior after sufficient analysis of physical properties and operation condition in low temperature and high pressure. The model of all flow has been set up by flow fracture and stream tearing based on every unit exact simulation in design case. The simulation results coincided with designed values quite well, suggesting the model is accurate and could be used in the research of revamp case.
    Secondly, a feasible and reasonable revamp scheme is proposed based on this kind of model which focus on feed gas changes from pulverized coal gas to coke oven gas, larger changes of the composition, no purge gas and high and low pressure nitrogen rate limit. This scheme is strictly simulated and profoundly analyzed on account of the composition changes. The column operation parameters have been respectively adjusted and the tail gas recovery system shutdown case has been simulated.
    At last, the equipment simulations have been done for design and revamp case including the tower hydraulics simulation and multi-stream plate-fin heat exchangers checking based on
引文
[1] 廖巧丽,米镇涛.化学工艺学.北京:化学工业出版社,2001:267-269.
    [2] 董忠民,冯永发,常伟.液氮洗工艺探讨[J].大氮肥,1998,21(4):264-266.
    [3] 薛天祥.脱除变换气中微量CO的方法探讨[J].煤化工,2001,2:27-30.
    [4] 肖珍平,唐宏青,布朗CF.深冷净化系统模拟分析[J].化学工程,1996,34(4):13-18.
    [5] 陈新志,吴兆立.MH-81′状态方程模的改进及应用于低温液氮洗过程的气-液平衡.高校化学工程学报,1992,6(1):25-33.
    [6] 陈新志,吴兆立.用MH-81′状态方程模拟液氮洗涤塔.高校化学工程学报,1992,6(2):160-168.
    [7] 孙松良,计虎掌,张诚中.大型高压轻油纯氧转化等压合成氨节能工艺探讨.现代化工,1997,5:19-23.
    [8] 李燕,张述伟,俞裕国.液氮洗模拟分析与优化.大连理工大学学报,2004,44(2):212-217.
    [9] 王松汉等.《板翅式换热器》.化学工业出版社 1984.4
    [10] 凌祥,涂善东,陆卫权.板翅式换热器的研究与应用进展.石油机械 2000 Vol.28 No.5:54-59.
    [11] Thomas Perrotin, Denis Clodic Thermal-hydraulic CFD study in louvered fin-and-flat-tube heat exchangers International Journal of Refrigeration 27 (2004) 422-432.
    [12] 张哲,厉彦忠,田津津.CFD技术在板翅式换热器设计中的应用 低温与超导 2002.8 Vol.30 No.3:42-46.
    [13] Jeom-Yul Yun, Kwan-Soo Lee Influence of design parameters on the heat transfer and flow friction characteristics of the heat exchanger with slit fins International Journal of Heat and Mass Transfer 43 (2000): 2529-2539.
    [14] A.C. Lyman, R.A. Stephan, K.A. Thole, L. W. Zhang, S.B. Memory Scaling of heat transfer coefficients along louvered fins Experimental Thermal and Fluid Science 26 (2002): 547-563.
    [15] 周珊虹.多流股氩换热器通道排列设计探讨 深冷技术 1994 No.5:25-28
    [16] 关欣,罗行,李美玲等.板翅式换热器翅片及隔板动态特性分析.热科学与技术 2003.3 Vol.2 No.1:51-54.
    [17] 凌祥,周帼彦,邹群彩等.板翅式换热器新技术及应用 石油化工设备 2002.3 Vol.31 No.2 1-4
    [18] K. N. Atkinsona, R. Drakulica, M. R. Heikal, T. A. Cowell Two- and three-dimensional numerical models of flow and heat transfer over louvred fin arrays in compact heat exchangers International Journal of Heat and Mass Transfer 41 (1998): 4063-4080.
    [19] M. Picon-Nunez, G.T. Polley, M. Medina-Flores Thermal design of multi-stream heat exchangers Applied Thermal Engineering 22 (2002): 1643-1660.
    [20] Xing Luo, Meiling Li, Wilfried Roetzel A general solution for one-dimensional multistream heat exchangers and their networks International Journal of Heat and Mass Transfer 45 (2002): 2695-2705.
    [21] Xing Luo, Xin Guan, Meiling Li, Wilfried Roetzel Dynamic behaviour of one-dimensional flow multistream heat exchangers and their networks International Journal of Heat and Mass Transfer 46 (2003): 705-715.
    [22] 彭波涛,罗来勤.多股流板翅式换热器的微分与优化数值研究 化工学报 2004.6 Vol.55 No.6:876-881.
    [23] 米廷灿,厉彦忠,王江等.一种计算板翅式换热器二次表面换热的新模型 西安交通大学学报 2004.5 Vol.38 No.5:496-499.
    [24] 于颖,王志祥,李永生.板翅式换热器的计算机辅助设计 化工机械 2000 Vol.27 No.2:78-81.
    [25] 张哲,厉彦忠,田津津.多股流板翅式换热器的优化设计 石油化工 2002 Vol.31 No.11:928-931.
    [26] 于颖,史益强,王志祥等.板翅式换热器的计算机模拟 工艺·试验 2003 Vol.17 No.10
    [27] R. Boehme, J.A.R. Parise, R. Pitanga Marques Simulation of multistream plate-fin heat exchangers of an air separation unit Cryogenics 43 2003: 325-334.
    [28] 陈敏恒.化工原理[M] (第2版).北京:化学工业出版社,2001.
    [29] 董宏光,王涛,秦立民等.精馏分离序列综合邻域结构的研究.华东理工大学学报,2004,30(1):29-33.
    [30] Luyben, W.L. etc. Process Modeling Simulation and Control for Chemical Engineers. 2nd Ed. New York: Mcgraw-Hill, 1990.
    [31] 姚平经.化工过程系统工程.大连:大连理工大学出版社,1992.
    [32] 曲平,俞裕国.化工过程模拟与优化.大连:大连理工大学化工学院内部教材,1998.
    [33] 姚平经.过程系统分析与综合(第二版).大连:大连理工大学出版社,2004.
    [34] Westerberg A W, Hutchison H P, Motard R L, and Winter P. Process Flowsheeting. England: Cambridge University Press, 1979.
    [35] 朱自强,徐讯.化工热力学(第二版).北京:化学工业出版社,1997.
    [36] 郭天民.多元汽—液平衡和精馏.北京:化学工业出版社,1983.
    [37] 雷培德,李端阳,汪静等.化工过程模拟技术及HYSIM模拟系统在化工生产中的应用.湖北化工,2002,(6):4-6.
    [38] 胡克林,罗金生.化工过程模拟技术进展与趋势.新疆工学院学报,1997,18(4):254-257.
    [39] 冯权莉.通用化工流程模拟技术进展与应用.云南工业大学学报,1996,12(1):52-57.
    [40] 唐宏青.合成氨流程模拟与分析系统SAPROSS(Ⅱ)(上).化工设计,1995,(1):29-32.
    [41] 陆恩锡,张慧娟,尹清华.化工过程模拟及相关高新技术(Ⅰ) 化工过程稳态模拟.化工进展,1999,(4):63-64.
    [42] 麻德贤,李成岳,张卫东.化工过程分析与合成.北京:化学工业出版社,2002.
    [43] 杨友麒.化工过程系统模拟新进展.化学工程.1992,20(2):72-79.
    [44] 荣本光,利海,韩方煜等.用序贯模块法模拟多组分完全复杂的精馏流程(Ⅰ)模型与算法策略.计算机与应用化学,1996,13(3):161-166.
    [45] 陆恩锡,张慧娟.化工过程模拟及相关高新技术(Ⅱ) 化工过程动态模拟.化工进展,2000,(1):76-78.
    [46] ASPEN Technology Inc. ASPEN PLUS 10.0 USER GUIDE. US: Aspen Technology Inc, 1994.
    [47] 吴冠京等.ASPEN PLUS物性方法和模型.大庆:大庆石化总厂计算机开发公司,1999.
    [48] Aspen Technology Inc. ASPEN PLUS 11.1 User Guide. US: Aspen Technology Inc, 2002.
    [49] 原璐,吕海霞,项曙光.Aspen Plus功能扩展方法探讨.青岛科技大学学报,2005,26(2):128-132.
    [50] 谢扬,沈庆扬.ASPEN PLUS化工模拟系统在精馏过程中的应用.化工生产与技术,1996,6(3):17-22.
    [51] F. G. Smith Ⅲ, R. A. Dimenna. Simulation of a batch chemical process using parallel computing with PVM and Speedup. Computers and Chemical Engineering, 28 (2004): 1649-1659.
    [52] Q. Smejkal, M. Soos. Comparison of computer simulation of reactive distillation using ASPEN PLUS and HYSYS software. Chemical Engineering and Processing, 41 (2002): 413-418.
    [53] R. Sotuden-Gharebaagh, R. Legros. Simulation of circulating fluidized bed reactors using ASPEN PLUS. Fuel, 1998 Vol. 77 No. 4: 327-337.
    [54] A. O. Ong'iro, V. I. Ugursal. Simulation of combined cycle power plants using the ASPEN PLUS shell. Heat Recovery System & CHP, 1995 Vol.15 No. 2: 105-113.
    [55] Alfred Ong'iro, V. Ismer Ugusal. Thermodynamic simulation and evaluation of a steam CHP plant using aspen plus. Applied Thermal Engineering, 1996 Vol.16 No. 3: 263-271.
    [56] Physical Property Methods and Models. Aspen Technology, Inc. 1999: 287-288.
    [57] Mathias, PM. A Versatile Phase Equilibrium Equation of state. Ind Eng them Process Des Dev. 1983, 22: 385-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700