用户名: 密码: 验证码:
脉冲激光气相轰击法制备原位修饰纳米钇钡铜氧的组装及其磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用脉冲激光轰击修饰剂气氛中固体靶的新方法,轰击YBCO固体靶连续制得原位修饰nmYBCO乙醇溶胶,探索了修饰剂的选用对nmYBCO组装形貌的影响。结果表明选用不同种类的修饰剂对nmYBCO的组装形貌有显著影响,其中以邻苯二酚和2-硝基酚修饰后的自组装形貌较为特异规整,且重现性较好。
     采用脉冲激光轰击2-硝基酚气氛中的YBCO靶,连续制备2-硝基酚原位修饰nmYBCO乙醇溶胶,对其结构和性质进行了表征。结果发现2-硝基酚修饰后nmYBCO出现纳米棒和纳米球形颗粒的规整形貌,晶化程度变小;样品沉积在酸处理的锌片、碱处理的铝片和锌片上时都表现出纳米微粒的自组装生长,且组装形貌规整;2-硝基酚修饰后nmYBCO的紫外-可见吸收峰发生红移,在一定程度上影响了nmYBCO的电子结构。
     采用脉冲激光轰击邻苯二酚气氛中的YBCO靶,连续制备邻苯二酚原位修饰nmYBCO乙醇溶胶,对其结构和性质进行了表征。结果发现邻苯二酚修饰后YBCO纳米颗粒的形貌更为规整,出现蝶状或枝状的形貌;修饰后样品沉积在未处理的铝片、酸处理和碱处理的锌片上时表现出纳米微粒的自组装生长,形貌较为规整均一;修饰后样品紫外-可见吸收峰和荧光光谱吸收峰的强度有显著降低。
     采用脉冲激光轰击修饰剂气氛中固体靶的方法制得原位修饰的nmYBCO固体粉末,对其进行磁性测试。结果发现未修饰nmYBCO失去了超导性,并在30.00K以下发生铁磁相变;经2-硝基酚修饰的nmYBCO在低于54.35K时恢复了超导性;经邻苯二酚修饰的nmYBCO在低于56.84K也恢复了超导性,但体系中的非超导相在26.00K时发生了铁磁相变,并且随着温度的降低,非超导相的铁磁性急剧增强,最终甚至超过了临界磁场,破坏了体系的超导性,使得nmYBCO/邻苯二酚体系失去超导性。
The in-situ modified nano-YBCO ethanol sols were successively prepared by pulsed laser ablation at the interface of YBCO target in the modified atmosphere. Explored the influence on nano-YBCO assembly morphology of modifiers selection. Results showed that nano-YBCO assembly morphology had significant influence of choosing different kinds of modifiers, amomg them with pyrocatechol and 2-nitrophenol modification, the self-assembly morphology were more specific neat, and had good reproductivity.
     The 2-nitrophenol in-situ modified nano-YBCO ethanol sols were successively prepared by pulsed laser ablation at the interface of YBCO target in the 2-nitrophenol modified atmosphere. Their structure and properties were characterized. The results showed that after 2-nitrophenolic modification, nano-YBCO appeared neat morphology such as nano rods and nanometer spherical particles, and its crystallization degree was decrescent. While the modified samples depositing on the acid treatment zine plate, alkali treatment aluminium sheet or zine plate, they showed nanoparticles self-assembly growth, and the assembly morphology were neat. After 2-nitrophenolic modification, the nano-YBCO ultraviolet-visible absorption peaks happened redshift, the 2-nitrophenolic affected nano-YBCO electronic structure to a certain extent.
     The pyrocatechol in-situ modified nano-YBCO ethanol sols were successively prepared by pulsed laser ablation at the interface of YBCO target in the pyrocatechol modified atmosphere. Their structure and properties were characterized. The results showed that after pyrocatechol modification, the morphology of YBCO nanoparticles were more neat and appeared butterfly shape or branch shape. While the modified samples depositing on the untreated aluminium sheet, acid treatment or alkali treatment zine plate, they showed nanoparticles self-assembly growth, and the assembly morphology were neat and uniform. After pyrocatechol modification, the strength of nano-YBCO ultraviolet-visible absorption peaks and fluorescence spectrum absorption peaks had significantly reduced.
     The in-situ modified nano-YBCO powders were successively prepared by pulsed laser ablation at the interface of YBCO target in the modified atmosphere. The results of magnetic test showed that the unmodified nano-YBCO powder lost superconductivity, and hanppened ferromagnetic phase transition below 30.00K. The 2-nitrophenol modified nano-YBCO powder restored superconductivity below 54.35K. The pyrocatechol modified nano-YBCO powder also restored superconductivity below 56.84K, but non-superconducting phases of the system hanppened ferromagnetic phase transition at 26.00K. With the decrease of temperature, the non-superconducting phases ferromagnetism of the system increased sharply, eventually even more than the critical magnetic field, which destroyed superconductivity of the system, thus making nano-YBCO/pyrocatechol system lose superconductivity.
引文
[1]Onnes H K. The Superconductivity of Mercury[J]. Commun Phys Lab Univ Leiden, 1911,122b:1240
    [2]Bednorz J G, Miiller K A. Possible high Tc superconductivity in the Ba-La-Cu-O system[J]. Z.Phys.B-Condens.Matter,1986,64:189-193
    [3]Wu M K, Ashburn J R, Torng C J, etal. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure[J]. Phys.Rev. Lett., 1987,58:908-910
    [4]赵忠贤,陈立泉,杨乾声,等.Ba-Y-Cu氧化物液氮温区的超导电性[J].科学通报,1987,6:412-414
    [5]Sheng Z Z, Hermann A M. Buld superconductivity at 120K in the T1-Ca-Ba-Cu-O [J]. Nature,1988,332:138-139
    [6]Tomoko Goto, Akira Niimi. Magnetic properties of Superconducting Pb-Bi System Alloy Filaments produced by Glass-Coated Melt Spinning[J]. Jpn J Appl Phys., 1988,27(2):209-213
    [7]Putilin S N, Antipov E V, Chmaissem O. et al. Superconductivity at 94K in HgBa2CuO4+δ[J]. Nature,1993,362:226-228
    [8]Gao L, Xue Y Y, Chen F, et al. Superconductivity up to 164K in HgBa2Cam-1CumO2m+2+δ (m=1,2 and 3) under quasihydrostatic pressures[J]. Phys.Rev.B,1994,50(6):4260-4263
    [9]Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride [J]. Nature,2001,410:63-64
    [10]Takada K, Sakurai H, et al. Superconductivity in two-dimensional CoO2 layers[J]. Nature,2003,422(6927):53-55
    [11]Y. Kamihara, T. Watanabe, M. Hirano et al. Iron-based layered superconductor La[O1-x Fx]FeAs (x=0.05-0.12) with Tc=26K[J]. J Am Chem Soc,2008,130(11): 3296-3297
    [12]X. H. Chen, T. Wu, G. Wu et al. Superconductivity at 43 K in SmFeAsO1-xFx[J]. Nature,2008,453(7196):761-762
    [13]G.. F. Chen, Z. Li, D. Wu et al. Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1-xFeAs[J]. Phys Rev Lett,2008, 100(24):247002
    [14]A. S. Sefat, A. Huq, MA. McGuire et al. Superconductivity in LaFe1-xCoxAsO[J]. Phys Rev B,2008,78(10):104505
    [15]H. Q. Yuan, J. Singleton, F. F. Balakirev et al. Nearly isotropic superconductivity in (Ba, K)Fe2As2[J]. Nature,2009,457(7229):565-568
    [16]Mei Bo Tang, H Y Bai, M X Pan.Bulk metallic superconductive La60Cu20Ni10Al10 glass[J]. Journal of Non-Crystalline Solids,2005,351:2572-2575
    [17]杨公安,蒲永平,王瑾菲,等.超导材料研究进展及其应用[J].陶瓷,2009,7:56-59
    [18]张其瑞著.《高温超导电性》.浙江:浙江大学出版社,1997
    [19]赵忠贤,陈立泉,杨乾声,等.液氮温区的新氧化物超导体[J].科学通报,1987,11:817-820
    [20]王顺青,孙爱民,朱海滨,等.柠檬酸盐热分解法制备纳米YBCO超导粉末[J].2007,35(4):326-328
    [21]M. Ochsenkuhn-Petropoulou, R. Argyropoulou, P. Tarantilis, et al. Comparison of the oxalate co-precipitation and the solid reaction methods for the production of high temperature superconducting powders and coatings [J]. Materials Processing Technology.2002,127(1):122-128
    [22]王世敏.氧化物超导材料的制备方法[J].化学通报,1991,10:16-20
    [23]林珊,肖旺钏,林丞.溶胶-凝胶自蔓法抽取YBa2Cu3O7-y的研究[J].化学工程与装备,2006,1:29-31
    [24]王力衡.薄膜技术[M].北京:清华大学出版社,1991
    [25]金原粲.薄膜的基本技术[M].杨希光译.北京:北京科学出版社,1982
    [26]刘衍余,裴桂芬,王苏平,等.化工百科全书(第二卷)[M].北京:化学工业出版社,1991
    [27]杨邦朝,王文生.薄膜物理与技术[M].成都:电子科技大学出版社,1994,118-135
    [28]Orenstein J, Millis A J. Advances in the physics of high-temperature superconductivity[J]. Science,2000,288(5521):468-474
    [29]Murakami M, Mortia M, Doi K et al. A new process with the Promise of High Jc in Oxide Superconductors[J]. Jap. J. Appl. Phy.,1989,28(7):1189-1194
    [30]Zhou L, Zhang P X, Ji P, et al. The properties of YBCO superconductors prepared by a new approach: the "powder melting process"[J]. Supecond. Sci. Technol.,1990, 3:490-492
    [31]陈绍楷.包含亚微米Y2BaCu05颗粒的PMP法对YBCO的制备及其微观结构研究,(东北大学,博士).2002
    [32]孙晶,郭月霞,李兵,等.Sol-Gel法制YBCO高温超导粉及表征[J].长春理工大学学报,2003,26(4):22-24
    [33]Gotor F, Odier P, Gervais M, et al. Intermediate steps in YBa2Cu3O7-δ synthesis by sol-gel method:YBaCuO oxycarbonate. Physica C,1993,218:429-436
    [34]Xu J, Liu X H, Li Y D. Single crystalline YBa2Cu3O7-δ nanowires from a template-direct sol-gel route [J]. Materials Chemistry and Physics,2004,86:409-413
    [35]Han S, Li C, Liu Z Q, et al. Transition metal oxide core-shell nanowires Generic synthesis and transport studies [J]. Nano Letters,2004,4(7):1241-1246
    [36]J A Bonetti, D J Van Harlingen, M B Weissman. Electronic transport in underdoped YBCO nanowires:possible observation of stripe domains[J]. Physica C,2003, 388-389:343-344.
    [37]Zhang Y F, Tang Y H, Duan X F, et al. Yttrium-barium-copper-oxygen nanorods synthesized by laser ablation[J]. Chemical Physics Letters.2000,323:180-184
    [38]Savvides N, Katasaros A. In situ growth of epitaxial YBaCuO thin films by on-axis unbalanced direct current magnetron sputtering[J]. Appl. Phys. Lett.,1993,62(5): 528-530
    [39]Lancaster M J. Microwave Device Applications of High-Temperature Superconductivity[M]. Cambridge, Cambridge University Press.1977
    [40]Rupich M W, Schoop U, Verebelyi D T, et al. YBCO coated conductors by an MOD/RABiTS process[J]. IEEE Trans.Appl.Supercond.,2003,3(13):2458-2463
    [41]Lorenz M, Hochmuth H Natusch D, et al. Large-area double-side pulsed laser deposition of YBa2Cu3O7-δ thin films on 3-in. sapphire wafers[J]. Appl. Phys. Lett., 1996,86:6258-6537
    [42]Svobony T P, Briggers R R. The pulsed-laser ablation plume dynamics: characterization and modeling[J]. Proceedings of SPIE,2002,4760:82-92
    [43]Sawa A, Yamasaki H, Mawatari Y, et al. Thickness dependence of the vortex-glass transition and critical scaling of current characteristics in YBa2Cu3O7-δthin film[J]. Phisical Review B,1998,58(5):2868-2877
    [44]Li Q, Xi X X, Wu X D, et al. Interlayer coupling effect in high-Tc superconductors probed by YBa2Cu3O7-δ/PrBa2Cu307-x superlattices[J]. Phys. Rev. Lett.,1990,64: 3086-3089
    [45]Terashima T, Shimura K, Bando Y, et al. Superconductivity of one-unit-cell thick YBa2Cu307 thin film[J]. Phys. Rev. Lett.,1991,67:1362-1365
    [46]Li Y P, Kilner J A, Tate T J, et al. A study of 2H trapping in YBa2Cu3O7-δ/LaAlO3 <100> samples under 2H+irradiation[J]. J. Appl. Phys.,1994,75(8):4081-4084
    [47]Chatterjee R, Fukutomi M, Aoki S, et al. Study Y1Ba2Cu307-δfilm growth on(200) oriented yttaria stabilized zirconia buffer layer on metallic substrates[J]. Appl. Phys. Lett.,1994,65(1):109-111
    [48]Andrea J Bubendorfer, Kemmitt T, Campbell L J, et al. Formation of Epitaxial YBCO Thin Films by Ex-situ Processing of a Polymerized Complex[J]. IEEE Transactions on applied superconductivity.2003,13J(2):2739-2742
    [49]Kennedy V J, Markwitz A, Bubendorfer A, et al. Carbon depth profiling of superconducting YBCO thin films on nanometer scale[J]. Current Applied Physics, 2004,4:292-295
    [50]Chen L, Piazza T W, Schmidt B E, et al. J. Appl. Phys.,1993,73(11):7563-7570
    [51]Ichinose A, Kikuchi A, Tachikawa K, et al. Advances in Crygenic Engineering: Proceedings of the International Materials Conference-ICMC,2002,48:539-546
    [52]Yu X Zhou, W Lo,Tong B Tang,et al. Enhancement in transport properties of seeded melt-textured YBCO by Cu-site doping [J].Supercond Sci.Technol.,2002,15(5): 722-726
    [53]G Hammerl, A Schmehl,R R Schulz,et al. Enhanced supercurrent density in polycrystalline YBa2Cu3O7-d at 77 K from calcium doping of grain boundaries [J]. Nature,2000,407:162-164
    [54]唐福龙,袁润章,袁启华.Sol-Gel法制备YBa2Cu3O7-δ-Agx复合超导材料的显微结构与性能[J].无机材料学报,1994,9(2):191-196
    [55]Lengl G, Ziemann P, Banhart F, et al. Anomalous behavior of gold nanoislands on top of SrTiO3 (001) during their overgrown by thin YBaCuO film[J]. Physica C, 2003,390:175-184
    [56]Su X D, Yang Z Q, Wang Y Z, et al. The influence of nano-Cu addition on the superconductivity of YBCO[J]. Physica C,1997,282-287:1615-1616
    [57]付华明,刘石香,徐克西.Ca掺杂对YBa2Cu3O7-δ超导块材性能影响的研究[J].低温与超导,2004,32(2):56-59
    [58]Hwang G L, Hwang K C, Shieh Y T, et al. Preparation of carbon nanotube encapsulated copper nanowires and their use as a reinforcement for Y-Ba-Cu-O superconductor[J]. Chem. Mater.,2003,15:1353-1357
    [59]Mellekh A, Zouaoui M, Azzouz F B, et al. Nano-Al2O3 particle addition effects on YBa2Cu3Oy superconducting properties [J]. Solid State Communications,2006,140: 318-323
    [60]Mellekh A, Zouaoui M, Azzouz F B, et al. Effect of nanometer Al2O3 addition of structural and transport properties of YBa2Cu3O7-δ[J]. Physic C:Superconductivity, 2007,460-462:426-427
    [61]张立德,牟季美.纳米材料科学[M].沈阳:辽宁科学技术出版社,1994
    [62]王春,绿色化学途径合成硒化物半导体量子点.(合肥工业大学,博士),2009
    [63]R.Kubo, Electronic properties of metallic fine particles[J]. Phys.Soc.Jpn. 1962,17: 975-986
    [64]R.E.Cavicchi, R.H.Silsbee. Coulomb Suppression of Tunneling Rate from Small Metal Particles[J]. Phys.Rev.Lett.,1984,52:1453-1456
    [65]P.Ball, Li Garwin. Science at the atomic scale[J]. Nature,1992,355:761-765
    [66]苏品书.超微粒子材料技术[M].台湾:复汉出版社,1989
    [67]印洁红,基于近红外光谱的药物质量控制以及纳米荧光探针的核酸检测.(苏州大学,博士),2009
    [68]张立德,牟季美.开拓原子和物质的中间领域—纳米微粒与纳米固体[J].物理,1992,21(3):167-173
    [69]WHITESIDES G M, GRAYBOWSKI B. Self-assembly at all scales[J]. Science, 2002,295:2418-2421
    [70](A)刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社,2002(B)林鸿溢.纳米材料最新进展[M].北京:中国青年出版,2003
    [71]WHITESIDES G M, BONCHEVA M. Beyond molecules:Self-assembly of mesoscopic and maroscopic components[J]. PNAS,2002,99:4769-4774
    [72]徐筱杰.超分子建筑——从分子到材料.北京:科学技术文献出版社,2000
    [73]余海湖,周灵德,姜德生.纳米材料与自组装技术[J].自然杂志,2002,24(4):216-218
    [74]Whitesides G M. Self-assembling materials[J]. Scientific American,1995,273(3): 114-117
    [75]宋心琦.分子计算机离我们有多远[J].国外科技动态,2000,(8):7-10
    [76]王结良,朱光明,梁国正,等.自组装制备纳米材料的研究现状[J].材料导报,2003,17(7):67-69
    [77]Orr G W, Barbour L J, Atwood J L. Controlling Molecular Self-Organization: Formation of Nanometer-scale Spheres and Tubules[J]. Science,1999,285 (5430): 1049-1052
    [78]Osterbacka R, An C P, Jiang X M, et al. Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals[J]. Science,2000,287(5454): 839-842
    [79]Nooney R I, Dhanasekaran T, Chen Y, et al. Self-Assembled Highly Ordered Spherical Mesoporous Silica/Cold Nanocomposites[J]. Advanced Materials,2002, 14(7):529-532
    [80]Breen T L, Tien J, Oliver S R J, et al. Design and Self-Assembly of Open, Regular, 3D Mesostructures[J]. Science,1999,284(5416):948-951
    [81]Schaffer E, Thum A T, Russell T P, et al. Electrically induced structure formation and pattern transfer[J]. Nature,2000,403:874-877
    [82]林贤福,陈志春,吕德水,等.大分子自组装及其应用的研究与进展[J].高分子材料科学与工程,2000,16(4):5
    [83]张登松,施利毅,方建慧,等.纳米材料自组装合成技术研究进展[J].江苏化工,2003,31(5):4-7
    [84]C Petit, A Taleb, M. P. Pileni. Self-organization of magnetic nanosized cobalt particles[J].Adv Mater,1998,10:259-261
    [85]Netzer L, Sagiv J.A new approach to construction of artificial monolayer assemblies[J]. Journal of the American Chemical Society,1983,105(3):674-676
    [86]Martin C. R. Nanomaterials-A Membrane-Based Synthetic Approach[J]. Science, 1994,266:1961-1966
    [87]Van Blaaderen, R. Ruel, P. Wiltzius.Template-Directed Colloidal Crystallization[J]. Nature,1997,385:321
    [88]Terech P, Geyer A, Struth B, et al. Self-Assembled Monodisperse Steroid Nanotubes in Water[J]. Adv. Mater,2002,14:495-498
    [89]刘威,任尚坤,钟伟,等.纳米材料的自组装技术研究[J].周口师范学院学报,2006,23(5):48-51
    [90]Zhang L, Zhang F, Wang Y, et al. Linear electro-optic tensor ratio determination and quadratic electro-optic modulation of electrostatically self-assembled CdSe quantum dot films[J]. Journal of Chemical Physics,2002,116:6297-6304
    [91]Zhang Y, Yang S, Liu X, et al. Photo-induced DNA cleavage in self-assembly multilayer films[J]. New Journal of Chemistry,2002,26:617-620
    [92]李媛.碳钢表面纳米Si02薄膜的制备及性能研究.(北京化工大学,硕士),2004
    [93]Arregui F J, Claus R O, Matias I R,et al.Optical fiber devices based onnoscale self-assembly[J]. Science and Engineering of Composite Materials,2002,10:19-27
    [94]Dai J H, Balachandra A M, Lee J I, et al.Controlling ion transport through multilayer polyelectrolyte membrances by derivatization with photolabile functional groups[J]. Macromolecules,2002,35:3164-3170
    [95]Kim T H, Sohn B H. Photocatalytic thin films containingTiO2 nanoparticles by the layer-by-layer self-assembling method[J]. Applied Surface Science,2002,201: 109-114
    [96]M N R Ashfold, F Claeyssens, G M Fuge et al. Pulsed laser ablation and deposition of thin films[J]. Chem. Soc. Rev.,2004,33:23-31
    [97]陈前火,章文贡,黄灿胡.脉冲激光轰击固体靶制备纳米材料[J].化学通报,2007,3:167-173
    [98]章仪,陈文哲,章文贡.脉冲激光法连续制备纳米钴乙醇溶胶的研究[J].高等学校化学学报,2003,24(2):337-339
    [99]章仪,陈文哲,章文贡.脉冲激光法连续制备纳米铁溶胶及其分散稳定性的研究[J].化学学报,2003,61(1):141-145
    [100]陈莲英,章文贡.脉冲激光轰击法连续制备纳米铜研究[J].化工科技,2004,12(2):1-5
    [101]章文贡,金兆国.激光法连续制备纳米FeNi合金及其乙醇溶胶研究[J].中国科学(B辑),2003,33(6):527-533
    [102]林爱梅,陈长鑫,陈文哲.脉冲激光轰击制备碳纳米管及其纳米溶胶的研究[J].机电技术,2003,S1:297-301
    [103]C X Chen, W Z Chen, Y F Zhang. Synthesis of carbon nanotubes by pulsed laser ablation at normal pressure in metal nano-sol[J]. Physica E,2005,28:121-127
    [104]金兆国,章文贡.脉冲激光轰击法原位制备纳米碳/聚苯乙烯杂化材料的研究[J].中国塑料,2004,18(6):48-53
    [105]赵炎,章文贡,林炳丽,等.脉冲激光法原位制备纳米二氧化硅杂化聚苯胺研究[J].功能材料,2010,41(4):662-665
    [106]欧阳锐,章文贡,林炳丽,等.脉冲激光法制备修饰纳米(ZnO-Eu2O3)/聚苯胺杂化薄膜材料[J].化学工程与装备,2010,2:15-18
    [107]林珊,章文贡.脉冲激光轰击法连续制备金掺杂的YBCO杂化的研究[J].无机材料学报,2006,21(6):1496-1497
    [108]陈淑卿.超声波法制备有机修饰纳米钇钡铜氧杂化材料研究.(福建师范大学,硕士),2009
    [109]林珊.脉冲激光法连续制备金掺杂/原位修饰纳米钇钡铜氧体系杂化材料.(福建师范大学,硕士),2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700