用户名: 密码: 验证码:
工程材料的损伤演化表征和破坏规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在第二次世界大战以后,由于常规武器和战略武器的迫切需要,材料和结构的动态响应研究在以美国和俄罗斯为代表的国家得到了迅猛发展。伴随着对材料动态力学性能的研究,材料在冲击载荷下的损伤演化和破坏规律的研究也随之兴起。材料的损伤破坏规律研究不仅在武器效应、防护工程和安全高效施工等国防和应用经济领域有着直接的应用价值,而且由于工程材料存在多种不同细观特征的损伤破坏模式,与材料含损伤本构关系、波动力学、动态数值计算方法及冲击动力学的发展紧密相关,故对该问题的研究有着重要的学术价值。本文采用细观统计和宏观唯象结合的方法,结合某些工程实际问题,提出了各种工程材料不同类型的损伤模型,揭示了材料的损伤模型与破坏形态之间的内在联系,取得了若干创新性成果。
     论文对延性金属的拉伸损伤进行了全面而系统的研究,以细观物理统计和宏观唯象分析相结合的方法给出了两种新的以平均拉应力为基础的拉伸型损伤演化方程,即修正的Tuler-Butcher模型和微孔洞有核增长模型,前者克服了Tuler-Butcher模型不计前期损伤对后期损伤发展影响的缺陷,后者以“有核长大”的新思想取代了所谓的“成核长大”的旧观念,两种新模型不但物理上更加合理,更加符合实际情况,而且减少了损伤演化方程中的参数。通过模拟D6AC钢和45钢层裂实验,一维接触爆炸试验等一系列的数值模拟,全面而细致地证实了该损伤演化模型的实用性。并且结合试验,给出了一组新的损伤演化方程参数,讨论了材料参数和损伤演化方程参数对自由面速度时程曲线的影响。然后,本文将碎甲弹近似为一维接触爆炸模型,利用模拟平板撞击实验时获得的损伤演化方程参数,计算了一维近似下碎甲弹引起的层裂,分别考虑了炸药类别、材料参数及壳体几何构形对碎甲弹碎甲性能的影响。最后,将本章提出的新的损伤演化方程嵌入]HVP (high velocity penetration)有限元代码中,进行了二维数值计算,成功模拟了爆炸载荷下靶板的层裂现象。
     论文着重指出了“绝热剪切”中的“绝热”只是一种近似而并非剪切带型破坏问题的本质,不可逆变形生热和热对不可逆变形的加速互动导致材料的损伤发展才是剪切带型破坏问题的本质,以此为指导、以能量守恒为基础,首次将热传导因素引入其中,提出了一种可反映金属剪切带发展过程中微损伤演化特性的热塑互动损伤演化方程,并将之嵌入含损伤热粘塑性本构关系和高速冲击软件HVP之中,成功模拟了高强度弹侵彻钢靶时的热塑互动冲塞过程。计算结果和实验结果的良好符合说明本文所提出的损伤演化方程、含损伤热粘塑性本构关系和计算方法是合理的,为进一步更细致和更精确地刻画热塑互动损伤的发生发展和破坏过程打下了良好的基础。在壳体结构在爆炸载荷作用下的变形和破坏规律的研究中,根据延性金属材料两种不同的损伤模式,分别引入本文提出的两类损伤演化方程,即以拉伸应力引起的损伤模型和以局域热塑互动变形引起的损伤模型,并结合从内变量理论出发的含损伤本构理论,给出了材料的含损伤本构关系,利用数值计算的方法,模拟了内部爆炸载荷下热粘塑性球壳的热塑互动破坏与层裂破坏,揭示了不同厚度下壳体损伤破坏模式的转换,以及厚度、热传导系数对壳体变形、温度和损伤等的分布及演化规律的影响趋势。
     在脆性材料动静态损伤和破坏模式的研究方面,以微裂纹体系之“等效微孔洞体系”的概念为基础,提出了一种新的脆性材料拉伸损伤模型;并以脆性材料压力相关屈服的力学特性为基础,提出了一种新型压剪耦合损伤模型。通过数值模拟和实验结合的方法,模拟了钨合金侵彻AD95陶瓷靶板,给出了AD95陶瓷的JH-2参数,数值模拟的结果与实验基本一致,故所得到的参数是可信的。接着,采用新提出的脆性材料拉伸损伤模型,成功模拟了陶瓷材料层裂实验,表明本文提出的新的脆性材料拉伸损伤模型是可取的。最后,采用本章提出的脆性材料拉伸损伤和压剪耦合损伤,对混凝土材料的层裂问题和一维球爆问题进行了数值模拟研究,给出了同时存在拉伸损伤和压剪耦合损伤时混凝土材料的破坏模式。
After the World WarⅡ,as a result of the urgent needs for conventional weapons and strategic weapons, studies on the dynamic response of materials and structures, have been rapidly developed in those countries represented by the United States and Russia. With the research of dynamic mechanical properties of materials, the damage evolution and fracture criterion of materials under impact loading rise also. Material damage and failure not only in the fields of national defense and applied economics, such as weapons effects, protective engineering and safe and efficient construction, has a direct value, but also has important value in academic circles, because there are a variety of microscopic features of material damage and failure modes, which reflected to material damage constitutive, wave mechanics, transient computational mechanics and impact dynamics. In this paper, based on the idea of combining microscopic and macroscopic phenomenological theory, a variety of engineering materials of different types of damage models are presented to reveal the material damage model and the intrinsic link between the failure mode.
     This thesis comprehensively and systematically discussed the tensile damage for ductile metals. Presented two new damage models, which named Modified Tuler-Butcher model and micro-voids nucleated growth model. The former overcame Tuler-Butcher model's excluding early post-damage injury on the development impact of the defects, and the latter with "a nuclear grown up" new ideas to replace the so-called "nucleation and growth". The two models are more detailed characterize the tensile damage in ductile metals, and more in line with reality, more physical meaning, through simulations of D6AC steel and 45 steel spall experiments, one-dimensional contact explosion and a series of numerical simulation tests. The trial of damage evolution models are confirmed comprehensive and detailed. Given new damage evolution equation parameters, and discussed the influences of the material parameters and damage evolution equation parameters on the free surface velocity time history curves. Then, this paper modeled HESH(High Explosive Squash Head) as a one-dimensional model of engagement, using damage evolution parameters provided above, calculated a one-dimensional explosion caused spall. Types of explosives, material parameters and geometrical configuration of HESH were taken into account for its performance. Finally, this chapter proposed a new damage evolution equation embedded in HVP (high velocity penetration) finite element code, the two-dimensional numerical simulation code, calculating the blast load target spallation successful.
     This article pointed out that "adiabatic" in the "adiabatic shear" is only an approximation and not a shear band destruction of the nature of irreversible deformation heat and heat of the irreversible deformation of the material damage caused to accelerate the development of interaction is the shear band destruction of nature. This as a guide and energy conservation as the basis for the first time, the introduction of heat transfer elements which present a metal shear zone may reflect the development process of micro-damage evolution characteristics of a thermoplastic interaction damage evolution. The new fracture criterion was embedded in HVP finite element code to simulate the Arne tool-steel blunt nose projectile plugging Weldox 460 thin target. The thermoplastic interaction damage evolution and the thermoviscoplastic constitutive model predict completely the perforation process. The model is proved to be correct since the calculations are in good agreement with the experimental data, and is reasonable for further more detailed and more accurate to describe thermoplastic interaction damage criterion. In the shell structure under blast loading deformation, considered two damage models of ductile metals fracture, with the general explicit description of incremental strain thermal-plastic constitutive relations and the specific incremental thermal-plastic constitutive relations, combining the problem of sphere shell's fracture caused by the outside-explosive loading, we developed the self-contained equation group about the thermal-viscous constitutive sphere fracture problem. Numerical simulations were carried out with the presented constitutive relations for sphere shell fracture problem and the results were analyzed. In the last part of this article, damage and fracture in brittle materials under quasi-static and dynamic loadings were discussed. To micro-crack system, the "equivalent micro-void system" based on the concept, a new tensile damage model of brittle materials was presented. And a new pressure-shear coupled damage model was presented based on the stress-related yield of brittle materials. Based on the experimental data, numerical simulations of tungsten long rods penetration into 45# steel and confined AD95 ceramic targets were investigated, using Ansys/Lsdyna finite element analysis software. Since the computational results are in good agreement with the experimental results, the material constants of AD95 ceramic were obtained for the JH-2 model. The response of confined AD95 ceramic targets were also been investigated through finite element simulations. Then, using the newly proposed tensile damage model of brittle materials, the successful simulation of ceramic spall experiments showed that the proposed new tensile damage model of brittle materials is desirable. Finally, using brittle shear tensile damage and pressure-shear coupled damage presented in this chapter, spalling of concrete materials, and one-dimensional spherical explosion were simulated, given the simultaneous existence of tensile damage and pressure-shear coupled failure modes of concrete.
引文
[1]P.M.贡德哈勒卡尔著,孙洪涛译.抓住引力[M].北京.中国青年出版社.2007
    [2]朱林法.金属材料冲击损伤和破坏行为的数值模拟研究[D].中国科学技术大学硕士学位论文.2003.
    [3]Kachanov, L.M.,1958. On creep rupture time. Izvestiya Akademii Nauk SSSR, Otdeleniya Tekhnicheskikh I Nauk 8,26-31.
    [4]J.勒迈特,损伤力学教程[M].科学出版社,1996
    [5]Lemaitre J. Evaluation of dissipateion and damage in metals submitted to dynamoic loading[J].. Proceeding of ICM-1, Kyoto,1971
    [6]蒋东,李永池,郭扬.Tuler-Butcher模型中考虑已有损伤影响的一种修正[J].高压物理学报.2009,23(4):271-276
    [7]Tuler FR, Butcher BM. A criterion for the time dependence of dynamic fracture [J]. Int J Fract Mech 1968; 4:431.
    [8]Kachanov, L.M.,1986. Introduction to Continuum Damage Mechanics. Martinus [J], Nijhoff Publisher, Boston-Dordrecht, ISBN 90-247-3319-7.
    [9]J. Cagnoux, J. Physique C5(1985) 343-350
    [10]M.G Cockcroft, D.J. Latham, J. Inst. Metals 96 (1968) 33-39.
    [11]P. Brozzo, B. DeLuca, R. Rendina, in:Proceedings of the Seventh Biennial Conference of the International Deep Drawing Research Group,1972.
    [12]M. Oyane, T. Sato, K. Okimoto, S. Shima, J. Mech. Work. Technol.4(1980) 65-81.
    [13]S.E. Clift, P. Hartley, C.E.N. Sturgess, GW. Rowe, Int. J. Mech. Sci.32 (1990) 1-17.
    [14]GR. Johnson, W.H. Cook, Eng. Fract. Mech.21(1985) 31-48
    [15]J.H. Liu, GL. Li, GSh. Liu, X.Y. Hao, Damaged evaluation of ferrite ductile iron with electric resistance[J]. Materials Letters 58 (2004) 1051-1055
    [16]D.R.Curran, D.A.Shockey, L.Seaman, J.Appl.Phys., vol.44,1973:4025
    [17]L.Seaman, D.R.Curran, D.A.Shockey, ibid, vol.17,1976,4814-4826
    [18]D.R.Curran, L.Seaman. Dynamic Failure of Solids[R], North-Holland, Amsterdan, Physics Reports [4], No.5&6,1987,253-388.
    [19]柯孚久,白以龙,夏蒙棼,理想微裂纹系统演化的特征[J],中国科学A辑,1990.6,621-631
    [20]夏蒙棼,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱致突变(Ⅱ)[J].力学进展.vol.25(2),1995.5.145-173
    [21]白洁,夏蒙棼,柯孚久,白以龙,损伤统计演化方程的性质和数值模拟[J].力学学报,vol.31(1),1999.1,38-48
    [22]Y.L. Bai, J. Bai, H.L. Li, F.J. Ke, M.F. Xia, Damage evolution, localization and failure of solids subjected to impact loading [J]. International Journal of Impact Engineering,24(2000),685-701
    [23]封加波,金属动态延性破坏的损伤度函数模型[D](博士学位论文),北京理工大学,1992
    [24]张伟,含损伤塑性本构关系的研究及在柱壳破裂问题中的应用[D](硕士学位论文),中国科技大学,1998
    [25]Moxley R, Cargile D, Phillabaum R. Experiment results for the ricochet and perforation of concrete and penetration into damaged concrete by steel fragment projectiles at high velocity[C]. In:Proceedings of the 77th shock and vibration symposium, Monterey, CA, Vicksburg, MS, USA:SAVIAC, October 29-November 3,2006.
    [26]王道荣.高速侵彻现象的工程分析方法和数值模拟研究[D].中国科学技术大学(合肥).2002.5
    [27]A. J. Rosakis, et al.Cracks Faster than the Shear Wave SpeedJ].Science.1999,284:1337
    [28]D. Rittel,Z. G. Wang, and M. Merzer.Adiabatic Shear Failure and Dynamic Stored Energy of ColdWork [J].PHYSICAL REVIEW LETTERS.PRL 96,075502,2006
    [29]George M. Amulele,Murli H. Manghnani,et al.Liermann2Compression behavior of WC and WC-6%Co up to 50 GPa determined by synchrotron x-ray diffraction and ultrasonic techniques [J]. JOURNAL OF APPLIED PHYSICS.2008,103,113522
    [30]Wei Liu,Baosheng Li.Compressional and shear-wave velocities of the polycrystalline CaGeO3 perovskite to 10 GPa[J].PHYSICAL REVIEW B,200775,024107
    [31]D. Rittel, P. Landau,A. Venkert.Dynamic Recrystallization as a Potential Cause for Adiabatic Shear Failure[J].PHYSICAL REVIEW LETTERS.2008.PRL 101,165501
    [32]X. Teng, T. Wierzbicki.Numerical study on crack propagation in high velocity perforation[J].Computers and Stuctures.2005,83:989-1004
    [33]D Rittel.A different viewpoint on adiabatic shear localization[J].JOURNAL OF PHYSICS D:APPLIED PHYSICS.2009,42 214009
    [1]Tan H. Introduction to Experimental Shock-Wave Physics [M]. National Defense Industry Press.2007.2:193-194.(in Chinese)
    [2]Rinehart J S. Some quantitive data bearing on the scabbing of metals under explosive attack [J]. Journal of Applied Physics,1951,22:131.
    [3]Tuler F R, Butcher B M. A criterion for the time dependence of dynamic fracture [J]. International Journal of Fracture and Mechanics,1968,4 (4):431-437.
    [4]Seaman L, Curran D R, Shockey D A. Computation models for ductile and brittle fracture [J]. Journal of App-lied Physics,1976,47 (11):4814-4826.
    [5]Curran D R, Seaman L, Shockey D A. Dynamic failure of solid [J]. Physics Reports,1987,147 (5 /6):253-388.
    [6]Johnson J N. Dynamic fracture and spallation in ductile solids [J]. Journal of App lied Physics,1981,52 (4):2812-2825.
    [7]Bai Y L, Bai J, Li H L. Damage evolution, localization and failure of solids subjected to impact loading [J]. International Journal of Impact Engineering,2000,24:685-701.
    [8]Feng J B. Damage Function Models for the Dynamic Ductile Fracture of Metals [D]. Beijing:Beijing Science and Technology University,1992. (in Chinese)
    [9]LI Y C,Tan F L.Guo Y, et al. Determination of the Damage Evolution Equation and Spallation Criterion of Metals [J]. J Ningbo University, Dec.2003
    [10]Wang Y G, He H L, Chen D P, et al. Comparison of different spall models for simulating spallation in ductile metals [J]. Explosion and Shockwaves,2005,25(5):467-471. (in Chinese)
    [11]袁福平.复合应力波的传播特性和工程效应研究[D]中国科学技术大学,2002
    [12]Johnson GR, and Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures[A]. In:Procof the 7th Intern Symp on Ballistics[C] Netherlands:Am Def Orp(ADPA).1983:541-547
    [13]肖大武.锆金属动态力学性能及其本构关系研究.[D]中国科学技术大学,2008
    [14]Steinberg DJ, Cochran SG, Guinan MW. A constitutive model for metals applicable at high strain rate. Journal of Applied Mechanics.1980,51(3):1498-1504
    [15]Steinberg DJ, Lund CM. A constitutive model for strain rates from 10-4to 106 s-1. Journal of Applied Mechanics.1989,65(4):1528-1533
    [16]陈大年,刘国庆,俞宇颖等.高压、高应变率与低压、高应变率实验的本构关联性.高压物理学报.2005,19(3):193-200
    [17]兰彬.长杆弹侵彻半无限靶的数值模拟和理论研究.[D]中国科学技术大学,2008
    [18]Tan H.Determination of Effective Shear Modulus of Shock-Compressed LY12 Al from Particle Velocity Profile Measurements.[J] JAP, Vol.103,103529,2008
    [19]Johnson JN. Dynamic fracture and spallation in ductile solids [J]. J Appl Phys.1981,52(4):2812-25.
    [20]Li Y C, Guo Y,Tan F L, et al. Equation of State for A12Li Alloy [J]. Chinese Journal of High Pressure Physics,2003,17(2):81-87. (in Chinese)
    [21]Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Eng Fract Mech 1985;21(1):31-48.
    [22]陈刚,陈忠富,徐伟芳等.45钢的J-C损伤失效参量研究[J].爆炸与冲击.27(2):131-135
    [23]V.R. Ikkurthi, S. Chaturvedi. Use of different damage models for simulating impact-driven spallation in metal plates. INT J IMPACT ENQ(30)2004 275-301
    [24]G I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov. K. Baumung, H et al.Spall strength of molybdenum single crystals[J]. Journal of applied physics 74 (12):7162-7165 DEC 15 1993
    [25]R. W. Minich, J. U. Cazamias, M. Kumar, and A. J. Schwartz, Metall.Mater. Trans. A 35,2663 (2004)
    [26]D. A. Shockey, L. Seaman, and D. R. Curran, in Metallurgical Effects at High Strain Rates[M], edited by R. W. Rohde, B. M. Butcher, J. R. Holland, and C. H. Karnes (Plenum, New York,1973), p.473.
    [27]Chen X., J. R. Asay.and S. K. Dwivedi. Spall behavior of aluminum with varying microstructures [J].Journal of applied physics 99,023528,2006
    [28]Anoun T., Seamen L., D. Curran R., G.et al. Spall Fracture pringer[M], New York,2003
    [29]Li Y C,Guo Y.Tan F L,et al. Equation of State for Al-Li Alloy [J]. Chinese Journal of High Pressure Physics,2003,17(2):81-87. (in Chinese)
    [30]Zhang L, Zhang Z G,QIN X Y, et al. Dynamic Fracture and Mechanical Property of D6A.921 and 45 Steels under Low Shock Pressure[J]. Chinese Journal of High Pressure Physics,2003,17(4):305-310. (in Chinese)
    [31]Zhou H Q, Qin C S, Zhang S D, et al. A New Statistical Meso-Scopic Damage Model and Its Applications in Spalling Processes [J].Chinese Journal of High Pressure Physics,2005,19(3):201-205. (in Chinese)
    [32]Dong J, Li Y C, Chen X D. A New Damage Model of Microvoids [J]. Chinese Journal of High Pressure Physics,2007,21(4):414-418. (in Chinese)
    [33]Cao J D. Numerical method for thermo-viscoplastic-damage constitutive relation and research on dynamic response of Al-Li alloys [D]. University of Science and Technology of China,2006. (in Chinese)
    [34]Taylor G.I., Quinney H. The latent heat remaining in the metal after cold working [M], Proc.Roy.Sco.London,1937, A163,pp:157-181.
    [35]Tan, S. C.,1994, Stress Concentrations in Laminated Composites [J]. Technomic Publishing Company, Lancaster, PA.
    [36]朱兆祥,李永池,王肖钧.爆炸作用下钢板层裂的数值分析[J].应用数学和力学,1981(2):351-368
    [37]朱林法.金属材料冲击损伤和破坏行为的数值模拟研究[D].中国科学技术大学硕士学位论文.2003.
    [38]肖绍平.有限元法和有限差分法计算脉冲载荷产生的结构响应的对比研究[D].中国科学技术大学硕士学位论文.1998.
    [39]蒋东,李永池,郭扬Tuler-Butcher模型中考虑已有损伤影响的一种修正[J].高压物理学报.2009,23(4):271-276
    [1]Y. L. Bai and B. Dodd, Adiabatic Shear Localization-Occurrence, Theories and Applications [M] (Pergamon,New York,1992).
    [2]D. Rittel, Z. G. Wang, and M. Merzer,Adiabatic Shear Failure and Dynamic Stored Energy of ColdWork.PHYSICAL REVIEW LETTERS[J].PRL 96,075502 (2006)
    [3]D. Rittel,P. Landau,A. Venkert,Dynamic Recrystallization as a Potential Cause for Adiabatic Shear Failure.PHYSICAL REVIEW LETTERS[J].PRL 101,165501 (2008)
    [4]王立礼,余同希,李永池.冲击动力学进展[M].中国科学技术出版社.1992
    [5]E. Hanina, D. Rittel.Z. Rosenberg,Pressure sensitivity of adiabatic shear banding in metals[J],APPLIED PHYSICS LETTERS.90,021915(2007)
    [6]J.K. Solberg, J.R. Leinum,J.D. Embury, S. Dey et al.Localised shear banding in Weldox steel plates impacted by projectiles[J].Mechanics of materials.39(2007) 865-880
    [7]Sergey N. Medyanik, Wing Kam Liu,Shaofan Li.On criteria for dynamic adiabatic shear band propagation[J]. Journal of the mechanics and physics of solids.55 (2007) 1439-1461
    [8]Zhou, M., Rosakis, A.J., Ravichandran, G.,1998. On the growth of shear bands and failure-mode transition in prenotched plates:a comparison of singly and doubly notched specimens[J]. Int. J. Plasticity 14 (4-5), 435-451.
    [9]谭成文,王富耻,李树奎.绝热剪切变形局部化研究进展及发展趋势[J].兵器材料科学与工程.26(5):62-67,2003
    [10]杨扬,程信林.绝热剪切的研究现状及发展趋势[J].中国有色金属学报.12(3):401-408,2002
    [11]Martan N.Raftenberg. A shear banding model for penetration calculations[J],Int J.of Impact Engineering, vol.25,2001.
    [12]T.Borivk, O.S.Hopperstad, T.Berstad, M.Labgseth et al.Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses Part Ⅱ:numerical simulations[J].Int. J. Impact Engineering.2002,27:37-64.
    [13]朱林法,李永池,胡秀章.绝热剪切损伤和破坏的数值模拟研究[J].固体力学学报.2005,26(1):37-42.
    [14]Sergey N. Medyanik, Wing Kam Liu,Shaofan Li.On criteria for dynamic adiabatic shear band propagation[J]. Journal of the Mechanics and Physics of Solids.2007,55:1439-1461
    [15]A. Arias, J.A. Rodriguez-Martinez,A. Rusinek.Numerical simulations of impact behaviour of thin steel plates subjected to cylindrical, conical and hemispherical non-deformable projectiles[J].Engineering Fracture Mechanics.2008,75:1635-1656
    [16]X.W. Chen, X.Q. Zhou,X.L. Li.On perforation of ductile metallic plates by blunt rigid projectile[J].European Journal of Mechanics A/Solids.2009,28:273-283.
    [17]J.J.Mason, AJ.Rosakis, GRavichandran, On the strain and strain rate dependence of the friction of plastic work converted to heat:an experimental study using high speed infrared detectors and the Kolosky bar. [J] Mechanics of Materials,1994 Vol.17, pp:135-145。
    [18]P.Rosakis, A.J.Rosakis, GRavichandran, J. Hodowany, A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals[J], J. Mech. Phys. Solids,2000, vol.48, pp:581-607。
    [19]G.I.Taylor, H.Quinney, The latent heat remaining in the metal after cold working[M], Proc.Roy.Sco.London, 1937,A163,pp:157-181.
    [20]A.-S. Bonnet-Lebouvier 1, A. Molinari, P. Lipinski, Analysis of the dynamic propagation of adiabatic shear bands[J], Int.J.of Solids and Structure. Vol.39,2002.
    [21]H. Feng, M.N. Bassim, Finite element modeling of the formation of adiabatic shear bands in AISI4340 steel [J], Materials Science and Engineering. A266,1999.
    [22]Charles E. Anderson, JR, Volker Hohler, James, D.Walker.et al, Time-Resolved Penetration of Long Rods into Steel Targets[J], Int.Impact Engng, Vol.16(1),1995
    [23]T.Borivk, O.S.Hopperstad, T.Berstad, M.Labgseth, A computational model of viscoplasticity and ductile damage for impact and penetrateion[J],Eur.J.Mech.A/Solid(20),2000,pp:685-712.
    [24]T.Borivk, T, Hopperstad, O.S., Berstad, T.,et al, A computational model of viscoplasticity and ductile damage for impactand penetration[J]. European Journal of Mechanics, A/Solids2001,20 (5),685-712.
    [25]T.Borivk, T, Hopperstad, O.S., Berstad, T, Langseth, M.,2001b. Numerical simulation of plugging failure in ballistic penetration [J].International Journal of Solids and Structures.2001,38 (34-35),6241-6264.
    [26]T.Borivk, T., Hopperstad, O.S., Berstad, T, Langseth, M., Perforation of 12 mm thick steel plates by 20 mm diameter projectileswith flat, hemispherical and conical noses-Part Ⅱ:Numerical simulations. [J]International Journal of Impact Engineering 2002,27(1),37-64.
    [27]T.Borivk, T, Hopperstad, O.S., Langseth, M., Malo, K.A., Effect of target thickness in blunt projectile penetration of Weldox 460 Esteel plates. International Journal of Impact Engineering.2003.28(4),413-464.
    [28]P. R. Guduru, A. J. Rosakis, and G. Ravichandran.Dynamic shear bands:an investigation using high speed optical and infrared diagnostics[J]..Mechanics of Materials.2001,33(7):371-402
    [29]Y.Yang,Y.Zeng,D.H. Li et al.Damage and fracture mechanism of aluminium alloy thick-walled cylinder under external explosive loading[J].Materials Science and Engineering.2008,490(1-2):378-384
    [30]白以龙,力学学报,23(3),1991.
    [31]黄筑平等,塑性力学近代进展与展望[M].北京大学,1992.
    [32]J.勒迈特[法],损伤力学教程[M].(倪金刚,陶春虎译).科学出版社.1996
    [33]竹内洋一郎[日],热应力[M](郭连玮,李安全译).科学出版社.1996.
    [34]封加坡.金属动态延性破坏损伤函数模型[D].北京理工大学博士学位论文.1992.
    [35]张伟.含损伤塑性本构关系的研究及在柱壳破裂问题中的应用[D].中国科学技术大学硕士学位论文,1998.
    [36]王红五.含损伤热粘塑性本构关系的研究及对弹壳破裂问题的应用[D].中国科学技术大学学士学位论文.1999.
    [37]朱林法.金属材料冲击损伤和破坏行为的数值模拟研究[D].中国科学技术大学硕士学位论文2003.
    [1]L. Westerling, P. Lundberg, B. Lundberg. Tungsten long-rod penetration into confined cylinders of boron carbide at and above ordnance velocities[J].Int. J. Impact Eng., Vol:25(3),2001, p.703-714
    [2]T. J. Holmquist, D. W. Templeton, A.M. Rajendran, et al. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications[J]. Int. J. Impact Eng., Vol:25(3),2001, p.211-231
    [3]T. J. Holmquist, A.M. Rajendran,,D. W. Templeton, et al. A Ceramic Armor Material Database[R]. U.S. Army Tank Automotive Research, Development and Engineering Center.1999
    [4]李英雷.装甲陶瓷的本构关系和抗弹机理研究[D].博士论文.合肥:中国科学技术大学大学.2003
    [5]李平.陶瓷材料的动态力学响应及其抗长杆弹侵彻机理[D].博士论文.北京:北京理工大学.2002,p.86-89.
    [6]Sun Yu-xin, Li Yong-chi, Yu shao-juan, et al. An experimental study on the penetration confined A95 ceramic targets.[J] Journal of Ballistics,2005,17(2):38—41.
    孙宇新,李永池,于少娟等.长杆弹受约束AD95陶瓷靶的实验研究.弹道学报[J].2005,17(2):38-41.
    [7]M.Y. Lee, R.M. Brannon, and D.R. Bronowski:Sandia National Laboratories Report 2004-6005.
    [8]REBECCA M. BRANNON, JOSEPH M. WELLS, O. ERIK STRACK.Validating theories for brittle damage[J]. Metallurgical and Materials Transcations. VOLUME 38A, DECEMBER 2007—2861
    [9]Horri H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solid:axial splitting and shear failure[J]. Journal of Geophysical Research,1985,90(b4):1305-1325
    [10]Horri H. Nemat-Nasser S. Brittle failure in compression:splitting, faulting and brittle-ductile transition [J]. Philosophical Transactions of the Royal Society of London,1986,319:497-510
    [11]M. F. Ashby, C. G. Sammis, The damage mechanics of brittle solids in compression. Pure and Applied Geophysics, Vol:133,1990, p.489-521
    [12]薛志刚.水泥沙浆在围压下的动态力学性能研究[D].中国科学技术大学(合肥).2007.6
    [13]S.Bouzid a, A.Nyoungueb, Z.Azaric.et al. Fracture criterion for glass under impact loading[J]. Int. J. Impact Eng., Vol:25,2001, p.831-845.
    [14]Moxley R, Cargile D, Phillabaum R. Experiment results for the ricochet and perforation of concrete and penetration into damaged concrete by steel fragment projectiles at high velocity. In:Proceedings of the 77th shock and vibration symposium, Monterey, CA, Vicksburg, MS, USA:SAVIAC, October 29-November 3, 2006.
    [15]陈小伟,陈裕泽.脆性陶瓷靶高速侵彻/穿甲动力学的研究进展[J].力学进展.2006,36(1):85-102
    [16]E.stassburger,H.Senf,H.Rothenhausler. Fracture Propagation During Impact in Three Types of Ceramics[J]. Journal De Physique IV,Colloque C8,Vol.4,September 1994,pp.653-658
    [17]Strassburger E.Senf H,Rosenhausler H. Fracture propagation during impact in three types of ceramic. J Phys IV,1994,C8:653-658
    [18]A. J. Rosakis,O. Samudrala, D. Coker.Cracks Faster than the Shear Wave Speed.Science 284,1337-1340 (1999)
    [19]王道荣.高速侵彻现象的工程分析方法和数值模拟研究[D].中国科学技术大学(合肥).2002.5
    [20]X.Quan, R.A.Clegg, M.S.Cowler et al.Numerical simulation of long rods impacting silicon carbide targets using JH-1 model[J]. Int. J. Impact Eng., Vol:33,2006, p.634-644
    [21]W.Chen,H.Luo. Dynamic compressive responses of Intact and Damaged AD995 Alumia[J]. International Journal of Applied Ceramic Technology,2004
    [22]H.C.Heard and C.F.Cline,"Mechanical Behaviour of Polycrytalling Beo,Al2O3 and ALN at High Pressure," Journal of Materials Science, Vol.15,1889-1897.
    [23]M.Adams and G.Sines,"Determination of Biaxial Compressive Strength of a Sintered Alumina Ceramic[J]. Journal of the American Ceramic Society, Vol.59,No.7-8,1976,pp.300-304.
    [24]M.L.Wilkins,C.F.Cline and C.A.Honodel. Fourth Progress Report of Light Armor Program[J]. Lawrence Radiation Laboratory Report UCRL-50694(1969)
    [25]M.L.Wilkins,C.F.Cline and C.A.Honodel. Fifth Progress Report of Light Armor Program[J]. Lawrence Radiation Laboratory Report UCRL-50980(1971)
    [26]M.L.Wilkins. Mechanics of Pernetration and Perforation[J], International journal of Engineering Science. 1978,16:793-807
    [27]L.W.Meyer.I. Faber.Investigations on Grandular Ceramics and Ceramic Powder[J]. Jounal De Physique IV,1997,7(3):565-570
    [28]P.W.Bridgeman.Linear Compressions to 30000Kg.cm2, Includeing Relatively Incompressible SUbstances[J]. Proceedings of the American Academy of Arts and Sciences,Vol.77,No.7,1949,pp.189-234
    [29]H.V.Hart and H.GDrickamer, Effect of High Pressure on the Lattice Parameters of Al2O3[J]. Journal of chemical physics,1965,43(7):2265-2266
    [30]Y.Sato and S.Akimoto. Hydrostatic Compression of Four Corundum-Type Coumpounds:Al2O3,V2O3,Cr2O3 and Fe2O3[J]. Journal of Applied Physics,1979,50(8):5285-5291
    [31]Z.Rosenberg,N.S.Brar and S.J.Bless. Elastic Precurser Decay in Ceramics as Determined with ManGanin Stress Gauges[J]. Journal De Physique.Colloque C3,September 1988:701-711
    [32]N.J.Lynch. Constant Kinetic Energy Impacts of Scale Size KE Projectiles at Ordance and Hypervelocity[J]. Int. J. Impact Eng,1999
    [33]C.E.Anderson,S.A. Mullin,A.J.Piekutowski,et al. Scale Model Experiments with Ceramic Laminate Targets[J]. Int. J. Impact Eng., Vol:18(1),1996, p.1-22
    [34]美国ANSYS公司上海办事处ANSYS/LS-DYNA培训手册.2000
    [35]王峰.有限元方法及其在高速碰撞中的应用[D].中国科学技术大学博士学位论文.2007.
    [36]D.S.Cronin,K.Bui,C.kaufmann et al. Implementation and validation of the Johnson-holmquist ceramic material model in ls-dyna[J].4th European Ls-dyna users conference,2004
    [37]W.D. Zhang, LJ. Chen, J.J Xiong, Ultra-high g deceleration-time measurement for the penetration into steel target[J]. Int. J. Impact Eng., Vol:34,2007, p.436-447
    [38]J.Wu, J.B. Liu, Y.X. Du. Experimental and numerical study on the flight and penetration properties of explosively-formed projectile [J]. Int. J. Impact Eng., Vol:34,2007, p.1147-1162
    [39]SONG Shun-cheng, WANG Jun, WANG Jian-jun. Numerical simulation for penetration of ceramic composite plate by long-rod projectile of tungsten alloy [J]. Explosion and Shockwaves,2005,25(2):102-106
    [40]LI Ping, LI Da-hong, NING Jian-guo. Experimental study on the ballistic performance and mechanism of confined ceramic targets against long rod penetrators [J]. Explosion and Shockwaves,2005,23(4):289-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700