用户名: 密码: 验证码:
VV-Ocean海洋环境仿真与海洋数据动态可视化系统的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着“数字海洋”一步步地深入研究,人们亟需采用先进的计算机虚拟现实与可视化手段给参与者提供逼真的感受,并直观地揭示海洋信息中隐藏的各种规律。本文基于VC++、OpenGL和GPU创建海洋水体3D渲染引擎,综合对海洋环境中地形、水体及模型等各种可见要素进行3D虚拟,同时研究各种真实的海洋监测和遥感数据在虚拟环境中进行可视化的方法,在此基础上研发实现面向海洋的虚拟现实与可视化系统—VV-Ocean(Ocean Oriented Virtual Reality and Visualization System)。在空间上,VV-Ocean可以实现城市、极地和全球范围的虚拟环境表达和交互性地理信息空间分析与可视化展示。论文的主要内容如下:
     (1)海陆地形的数据组织与绘制研究
     本文以多尺度地形绘制的研究为基础。针对局部小范围平面地形渲染,本文对传统的四叉树方法和最新的Geometry Clipmap方法进行分析比较与选择。针对南北两极区域以及全球性区域分别提出了数据重采样与坐标变换算法,采用Geometry Clipmap的手段取得了很好的效果和效率,同时能方便地进行地形坐标查询和交互漫游。
     (2)海洋环境的高逼真度实时渲染研究
     本文研究的核心是虚拟海洋环境的渲染。通过顶点纹理、法线纹理、反射纹理、刻蚀纹理和GPU像素着色编程实现仿真水面、反射折射光照、实时反射倒影、刻蚀叠加等水上及水下动态渲染效果;利用三维建模、透明贴图、粒子系统等方法模拟海底空间效果,对光线、雾效、气泡等进行实时渲染;同时,对虚拟鱼类进行路径规划和避障处理,最终构造一个丰富逼真的海洋环境。
     (3)虚拟海洋环境中真实数据的多维动态可视化研究
     数据是分析、研究、预测各种海洋属性与现象的基础。本论文的研究特色在于将海洋三维虚拟场景与数据可视化集成到一起,按需要在虚拟场景中进行有效展示。将海洋表面数据的可视化与海洋水面的仿真进行一体融合,将海洋水体数据在虚拟海洋场景中用点、线、面、体等形式展示,还可以将可视化结果按时间顺序动态播放出来,同时并提供了单独可视化展示窗口。系统整体上结合了虚拟现实的实时交互性与可视化的直观规律性等特点,能够为海洋科研和工作人员对相关的数据和现象进行描述、分析、预测提供虚拟支持。
     (4)面向海陆一体仿真的系统集成技术研究
     结合已有面向陆地城市3D仿真的VRGIS平台,进行技术集成创新,将VV-Ocean技术集成并应用于海陆景观一体化虚拟现实平台的建设,对水体渲染引擎插件式软件集成、水域可控性灵活编辑等海陆一体虚拟现实技术进行研究,实现三维海陆直观可视环境下的空间分析、实时查询、虚拟展示。
     本文着重研究多尺度海陆地形的高速绘制和各种海洋动态水体要素的一体化渲染,并探索真实海洋数据多维动态可视化的方法,主要创新点有:
     (1)提出多尺度海陆地形均采样变换方法与叠加显示的“镶嵌”算法
     将地形数据均采样变换流程与绘制流程分离,针对极地区域范围和全球区域范围的地形绘制提出数据重采样和坐标映射算法实现对不同纬度地区的近似均匀采样,借助Geometry Clipmap手段实现海滨城市平面地形、极地区域平面地形以及全球区域球面地形的实时绘制。所采用的数据组织与坐标映射算法能快速地完成正向、逆向坐标映射,且与所采用的地形渲染流程分离,是将平面局部地形绘制扩展到半球、全球区域地形绘制的有效方法。在多尺度地形绘制基础上,研究并创新性地提出任意形状的局部地形“镶嵌”显示在全球球面地形上的算法。
     (2)构建基于纹理的海洋动态水体3D高效渲染引擎
     本文分析水面波动、光照、碰撞等物理模型的特点,构建专门对水面、水上水下光照、实时反射、光线、气泡、鱼类进行一体渲染的海洋水体3D渲染引擎,广泛采用动态顶点纹理、动态法线纹理、动态刻蚀纹理以及实时反射纹理来高效渲染海洋特效,极大地利用GPU纹理高速缓冲存储器,发挥GPU加速渲染的效能。该引擎能解决一系列海洋虚拟现实所特有的问题,包括水面动态光照、实时反射,虚拟鱼类的路径规划,水体环境复杂的碰撞检测,水底刻蚀效果的叠加等。
     (3)提出海表真实数据4D可视化与海面动态仿真的GPU融合算法
     改进仿真水面的网格分布模型,创新性地基于同一套水面网格模型将海表真实标量数据,尤其是MSLA数据在经度、纬度、高度以及时间维上的4D可视化与实时仿真水面的渲染通过GPU顶点程序进行水面顶点位置的融合,通过GPU片段程序进行输出色彩的融合;一方面能动态表达仿真的海表面,另一方面能直观展示真实数据在海表面上的分布与变化规律。这是将真实数据的可视化与环境的虚拟进行紧密结合的具体有效实践。
With the rapid development of“Digital Ocean”, there are higher demands for the virtual of true feeling environments and the reveal of the rules hidden in massive marine data. In VV-Ocean (Ocean Oriented Virtual Reality and Visualization System), all kinds of land-sea terrains can be rendered, besides, a waterbody rendering engine is established to render all kinds of waterbody elements in 3D space. At the same time, a variety of ocean monitoring and remote sensing data is expressed intuitively in the virtual environment. For regional, hemispherical, and global areas, roaming anywhere at any angle of view and geospatial analysis are interactively obtained and dynamically presented. Main works are:
     (1) Research on data organization and rendering methods of all kinds of land-sea terrains
     The foundation of this research is the rendering of multi-scale land-sea terrain. The traditional quadtree method and the latest Geometry Clipmap method are separately used to express surface topography; by contrast, the latter one is selected for the rendering of urban area. Transformation and data organization strategies are separately proposed for both hemispheric area and global area which are rendered through Geometry Clipmap way. On the one hand, satisfying efficiencies and effectivenesses could be achieved; on the other hand, coordinates query and profile analysis can be implemented on all kinds of virtual terrains.
     (2) Research on the real-time rendering of highly realistic marine environment
     The core of this research is the real-time rendering of realistic marine environment. Dynamic water surface are simulated in real time based on GPU vertex textures created by continuous height maps; dynamic lighting, real-time reflections and caustics are created through normal textures, reflected textures and caustic textures which are sampled in GPU pixel shaders. Three-dimensional modeling, transparent mapping and particle system are used to produce rays, fog and bubbles in the submarine space; at the same time, path planning and obstacle avoidance methods are designed to drive the virtual fish. All of the elements above comprise rich and realistic virtual marine scenes.
     (3) Research on dynamic visualization of multi-dimensional marine data in the virtual environment
     Real data is the basis of analyzing, investigating, and predicting ocean properties and phenomena. The characteristic feature of this research is seamless integration of virtual reality technology and visualization technology. In VV-Ocean system, visualization works of sea surface data are combined with sea water rendering, waterbody data are displayed in the form of point rendering, line rendering, surface rendering and volume rendering. Furthermore, dynamic broadcasting of continuous data in the time dimension could be executed as needed, and a separate window is provided as needed for the output of visualization results. The system has integrated the interactive characteristic of virtual reality technology and intuitive characteristic of visualization technology, and it may assist the ocean related researchers and experts in depicting, understanding, and forecasting marine data and phenomena in the virtual environment.
     (4) Research on system integration technologies of land-sea oriented virtual reality platform
     On the basis of urban simulation oriented VRGIS platform, a land-sea oriented platform is developed relying on the integrating of VV-Ocean technologies. Waterbody rendering is encapsulated as a plug-in and water areas can be edited easily in the integrated platform. At last, land-sea oriented geospatial analysis, interactive query, and random wandering can be carried out in the virtual land-sea environment.
     Several effective practice are done during the process of my work, including rapid rendering of multi-scale terrains, comprehensive displaying of dynamic submarine scenes in a 3D rendering engine of waterbody, and intuitive expression of multi-dimensional marine data. Main innovative aspects are:
     (1) Uniform sampling methods and mosaic display algorithm of multi-scale land-sea terrains
     The uniform sampling work flow and rendering flow are separated, and different rendering methods are provided for areas of different scale. For the rendering of hemispheric scale and world scale terrains, data organization and transformation methods are separately provided. At last, not only spherical tarrain of global scale, but also flat terrains of both urban and polar scale could be rendered in real time by means of Geometry Clipmap. For all kinds of terrains, it is easy to do coordinate querying, camera positioning, and interactive roaming with the help of forward and backward coordinate mappings. In addition, an algorithm of mosaic display of local terrain in the global spherical terrain is proposed.
     (2) Construction of texture based 3D rendering engine for dynamic marine waterbody
     Considering physical characteristic of wave, light, and collision, a marine waterbody 3D engine is established to deal with the rendering of lighting effects, real time reflections, rays, bubbles, fish, etc. To make full use of the GPU texture cache and explore the accelerateon ability of GPU rendering, dynamic vertex textures, normal textures, caustic textures and reflection texture are widely used for all kinds of ocean effects. The waterbody 3D engine solves a series of ocean related virtual reality problems, such as dynamic lighting effects, real time reflections, path planning of the virtual fish, complex collisions in the submarine space, mixture of caustics effects and so on.
     (3) Seamless fusion of 4D visualization works and realistic water rendering through GPU programming
     The model and work flow of simulated water is improved for the visualization of sea surface data. Sea surface data (especially MSLA data) is visualized in the longitude dimension, the latitude dimension, the altitude dimension, and the time dimension using the same mesh that is used for the rendering of simulated water. To switch between visualization work and simulation work with flexibility, the positions of the vertices are manipulated by one GPU vertex program, and the colors output are manipulated by one GPU fragment program. One the one hand, the dynamic water surface could be displayed; on the other hand, the distribution and rule of marine data could be expressed intuitively. This is specific and effective practice in combining the real data based visualization work with 3D simulation work.
引文
[1]郭华东,杨崇俊.建设国家对地观测体系,构筑“数字地球”.遥感学报. 1999;3:90-93.
    [2]孙志辉.加强海洋管理谱写蓝色辉煌.海洋开发与管理. 2009;26:3-5.
    [3]陈勇,胡德生,李海林.地球空间信息技术在数字海洋中的应用.武汉航海. 2006;1:12-14.
    [4]张明. GPU加速的实时三维海洋漫游系统:[硕士学位论文].大连:大连理工大学; 2006.
    [5]艾万铸,李桂香.海洋科学与技术.北京:海洋出版社; 2000. p. 319.
    [6]苏奋振,周成虎,杨晓梅,张杰,骆剑承.海洋地理信息系统-原理、技术与应用.北京:海洋出版社; 2005.
    [7]龚建华,林珲,肖乐斌,谢传节.地学可视化探讨.遥感学报. 1999;3:236-244.
    [8]高俊.地理空间数据的可视化.测绘工程. 2000;9:2-8.
    [9]刘勇奎,周晓敏.虚拟现实技术和科学计算可视化.中国图象图形学报. 2000;5(A) 794-798.
    [10] Bailey JE, Chen A. The role of Virtual Globes in geoscience. Computers & Geosciences. 2011;37:1-2.
    [11] Turk J, Miller S, Castello C. A dynamic global cloud layer for virtual globes. International Journal of Remote Sensing. 2010;31:1897-1914.
    [12] Sun E, Nieto A, Li Z. GPS and Google Earth based 3D assisted driving system for trucks in surface mines. Mining Science and Technology (China). 2010;20:138-142.
    [13] Yamagishi Y, Yanaka H, Suzuki K, Tsuboi S, Isse T, Obayashi M, et al. Visualization of geoscience data on Google Earth: Development of a data converter system for seismic tomographic models. Computers & Geosciences. 2010;36:373-382.
    [14]周筠珺,李展,瞿婞,李哲.基于Google Earth的气象多参数综合显示系统.地理空间信息. 2010;8:16-19.
    [15]段慧娟,边少锋.基于Google Earth的海洋物理场数据可视化研究.海洋测绘. 2008;28:36-39.
    [16]向杰.我国建成全球第一个“数字海洋”原型系统.科技日报.北京:科技日报社; 2008. p. 2008-2006-2013.
    [17] Iwasaki K, Dobashi Y, Nishita T. Efficient rendering of optical effects within water using graphics hardware. In: Suzuki H, Rockwood A, Kobbelt LP, editors. Pacific Graphics 2001. Tokyo: IEEE Computer Society Press; 2001. p. 374-383.
    [18]涂晓媛.人工鱼--计算机动画的人工生命方法.北京:清华大学出版社; 2001.
    [19] Fournier A, Reeves WT. A simple model of ocean waves. In: Evans DC, Athay RJ, editors.SIGGRAPH'86. Dallas: Association for Computing Machinery; 1986. p. 75-84.
    [20]王胜正.一种实时的3D动态海洋模拟新方法.计算机应用. 2007;27:1147-1149.
    [21]罗玉,钟珞.基于海浪谱的3D海浪模拟.武汉理工大学学报(交通科学与工程版). 2008;32:323-325.
    [22] Zhao X, Li F, Zhan S, Li Z. Ocean Wave Simulation under Wind Change Effect. In: Pan J-S, Shi P, Zhao Y, editors. the First International Conference on Innovative Computing, Information and Control. Beijing: IEEE Computer Society; 2006. p. 26-29.
    [23]石贱弟,姜昱明.基于OpenGL的三维浅水海浪可视化仿真.微电子学与计算机. 2006;23:137-140.
    [24]高伟,巫影,肖剑波.基于Vega的虚拟海洋视景仿真研究.中国舰船研究. 2008;3:54-56, 60.
    [25]潘牧野,刘笃仁.实时3D场景中水面效果的实现.电子元器件应用. 2006;8:47-49.
    [26]马骏,朱衡君,龚建华.基于Cg和OpenGL的实时水面环境模拟.系统仿真学报. 2006;18:395-400.
    [27] Miandji E, Sargazi Moghadam MH, Samavati FF, Emadi M. Real-time multi-band synthesis of ocean water with new iterative up-sampling technique. The Visual Computer. 2009;25:697-705.
    [28] Li B, Wang C, Li Z, Chen Y. A practical method for real-time ocean simulation. 2009 4th International Conference on Computer Science and Education. Nanning: IEEE Computer Society; 2009. p. 742-747.
    [29]杨延,张建中,何晓曦.基于GPU编程的真实感水面模拟绘制.电脑知识与技术. 2009;5:3483-3485.
    [30] Chen J, Yuan Y, Yang J. Shader-based visual simulation of ocean wave. 2010 The 2nd International Conference on Computer and Automation Engineering. Singapore: IEEE Computer Society; 2010. p. 635-638.
    [31] Premo?e S, Ashikhmin M. Rendering Natural Waters. Computer Graphics Forum. 2001;20:189-200.
    [32] Nishita T, Nakamae E. Method of displaying optical effects within water using accumulation buffer. Proceedings of the 21st annual conference on Computer graphics and interactive techniques: ACM; 1994. p. 373-379.
    [33] Dobashi Y, Yamamoto T, Nishita T, Hokkaido Univ. S. Interactive Rendering Method for Displaying Shafts of Light. Pacific Graphics2000. Hong Kong2000. p. 31-37.
    [34] Jensen HW, Christensen PH. Efficient simulation of light transport in scences with participating media using photon maps. Proceedings of the 25th annual conference on Computer graphics and interactive techniques: ACM; 1998. p. 311-320.
    [35] Brière N, Poulin P. Adaptive Representation of Specular Light. Computer Graphics Forum. 2001;20:149-159.
    [36] Stam J. Random Caustics: Natural Textures and Wave Theory Revisited. SIGGRAPHTechnical Sketch1996. p. 1.
    [37] Kunimatsu A, Watanabe Y, Fujii H, Saito T, Hiwada K, Takahashi T, et al. Fast simulation and rendering techniques for fluid objects. Computer Graphics Forum. 2001;20:57-67.
    [38] Trendall C, Stewart AJ. General Calculations using Graphics Hardware with Applications to Interactive Caustics. In: B. P, H. eR, editors. Proceedings of the Eurographics Workshop on Rendering Techniques 2000: Springer-Verlag; 2000. p. 287-298.
    [39] Yuksel C, Keyser J. Fast real-time caustics from height fields. The Visual Computer. 2009;25:559-564.
    [40]王平侠,胡琼杰.基于Direct3D实现虚拟水泡技术.计算机工程与设计. 2005;26:1043-1047.
    [41] Chiu Y-F, Chang C-F. GPU-based Ocean Rendering. 2006 IEEE International Conference on Multimedia and Expo. Toronto: IEEE Computer Society; 2006. p. 2125-2128.
    [42]姚远.基于GPU的实时水体渲染及交互:[硕士学位论文].北京:北京大学; 2006.
    [43]方剑,张赤军.中国海及邻近海域2′×2′海底地形.武汉大学学报(信息科学版). 2003;28:38-40.
    [44] Amante C, Eakins BW. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24; 2009. p. 19.
    [45]郝燕玲,路辉.基于OpenGL实现海底地形显示的研究.计算机仿真. 2003;20:81-84.
    [46]上官伟,郝燕玲,卢志忠,杨宗元,朱怡.真实海洋环境视景仿真技术研究.系统仿真学报. 2006;18:394-397.
    [47]马劲松,徐寿成,贾培宏,顾国琴.数字海洋虚拟水下数字地形实现的关键技术.海洋测绘. 2007;27:48-51.
    [48]马照亭,李成名,王继周,潘懋.海量地形可视化的研究现状与前景展望.测绘科学. 2006;31:134-136.
    [49]杜莹.全球多分辨率虚拟地形环境关键技术的研究:[博士学位论文].郑州:解放军信息工程大学; 2005.
    [50]万刚,韩阳,曹雪峰.基于GPU的全球海量数据的快速高度与渲染.系统仿真学报. 2008:44-49.
    [51]康宁.基于GPU的全球地形实时绘制技术:[硕士学位论文].郑州:解放军信息工程大学; 2007.
    [52] Bhattacharjee S, Narayanan PJ. Hexagonal Geometry Clipmaps for Spherical Terrain Rendering. ACM Transactions on Graphics. 2008;27:1.
    [53] Tanner CC, Migdal CJ, Jones MT. The clipmap: a virtual mipmap. SIGGRAPH '98. New York: ACM; 1998. p. 151-158.
    [54]白皓,龚光红,丁莹.基于Clipmap的大规模地形可视化技术研究.中国体视学与图像分析. 2009;14:202-208.
    [55] Asirvatham A, Hoppe H. Terrain Rendering Using GPU-Based Geometry Clipmaps. In: MattPharr RF, editor. Programming Techniques for High-Performance Graphics and General-Purpose Computation (GPU Gems2). New Jersey: Addison-Wesley Professional 2005. p. 27–46.
    [56] Losasso F, Hoppe H. Geometry Clipmaps: Terrain Rendering Using Nested Regular Grids. ACM Transactions on Graphics. 2004;23:769-776.
    [57]李文. VRGIS中海量数据绘制关键技术与算法研究:[硕士学位论文].青岛:中国海洋大学; 2010.
    [58]于卓,梁晓辉,马上,赵沁平.一种支持大规模多种精度地形的实时绘制算法.计算机研究与发展. 2010;47:988-995.
    [59] Fr?hlich T. The virtual oceanarium. Communications of the ACM 2000;43:94-101.
    [60] Dabrowski J, Kulawiak M, Moszynski M, Bruniecki K, Kaminski L, Chybicki A, et al. Real-time Web-based GIS for Analysis, Visualization and Integration of Marine Environment Data. In: Popovich VV, Schrenk M, Claramunt C, Kyrill V. Korolenko PE, editors. Information Fusion and Geographic Information Systems. Berlin: Springer-Verlag Berlin Heidelberg 2009; 2009. p. 277-288.
    [61]韩李涛,朱庆,侯澄宇.构建虚拟海洋环境若干问题探讨.海洋通报. 2006;25:85-91,96.
    [62]苏奋振,杜云艳,裴相斌,杨晓梅,周成虎.中国数字海洋构建基准与关键技术.地球信息科学. 2006;8:12-15,20.
    [63] Chen H, Li Q, Wang G, Zhou F, Tang X, Yang K. An efficient method for real-time ocean simulation. 2nd International Conference on Edutainment. Hong Kong: Springer Verlag; 2007. p. 3-11.
    [64]王金华,严卫生,刘旭琳.一种简化虚拟海洋环境建模与渲染方法.系统仿真学报. 2009;21:3985-3988,3996.
    [65]刘金,姜晓轶,李四海.数字海洋水体模型建立与三维可视化技术研究.海洋通报. 2009;28:141-146.
    [66]赵新华,孙尧,卢志忠.虚拟海洋环境中潜艇六自由度运动的视景仿真.系统仿真学报. 2006;18:226-229.
    [67]汤晓燕,刘少军,云忠.基于虚拟样机技术的深海采矿主动式升沉补偿系统设计.北京工业大学学报. 2008;34:454-458.
    [68]李苏军,吴玲达,胡世才,宋汉辰.数字化海战场态势表现系统研究.系统仿真学报. 2009;21:6144-6147, 6151.
    [69] Chang Y, Meng Q, Wang H. Research on Simulation System of the Interfacing Apparatus of Underwater Vehicle Based on VR. Key Engineering Materials. 2010;419-420:697-700.
    [70]张淑军.虚拟海洋环境中人工鱼的认知模型和行为控制研究:[博士学位论文].青岛:中国海洋大学; 2007.
    [71] Tang Y, Wong D. Exploring and visualizing sea ice chart data using Java-based GIS tools. Computers & Geosciences. 2006;32:846-858.
    [72] Xie H, Zhou X, Vivoni E, Hendrickx J, Small E. GIS-based NEXRAD Stage III precipitationdatabase: automated approaches for data processing and visualization. Computers & Geosciences. 2005;31:65-76.
    [73]徐敏,方朝阳,朱庆,林珲.海洋大气环境的多维动态可视化系统的设计与实现.武汉大学学报(自然科学版). 2009;34:57-63.
    [74]涂超.海洋温度场的三维可视化.武汉大学学报(工学版). 2007;40:126-128.
    [75]杨峰,杜云艳,苏奋振,肖如林.基于Web服务的海洋矢量场远程可视化研究.地球信息科学. 2008;10:749-756.
    [76] Poulter B, Halpin PN. Raster modelling of coastal flooding from sea-level rise. International Journal of Geographical Information Science. 2008;22:167-182.
    [77] Brown I, Jude S, Koukoulas S, Nicholls R, Dickson M, Walkden M. Dynamic simulation and visualisation of coastal erosion. Computers, Environment and Urban Systems. 2006;30:840-860.
    [78] Zhang H, Shi Y, Yuen DA, Yan Z, Yuan X, Zhang C. Modeling and visualization of tsunamis. Pure and Applied Geophysics. 2008;165:475-496.
    [79]刘小帆.深度探讨基于GIS的海洋水文数据的可视化方法.科技资讯. 2010;13:49-50.
    [80] Brooks S, Whalley J. Multilayer hybrid visualizations to support 3D GIS. Computers, Environment and Urban Systems. 2008;32:278-292.
    [81] Liu Y, Lv X, Qin X, Guo H, Yu Y, Wang J, et al. An integrated GIS-based analysis system for land-use management of lake areas in urban fringe. Landscape and Urban Planning. 2007;82:233-246.
    [82] Mwenge Kahinda J, Taigbenu AE, Sejamoholo BBP, Lillie ESB, Boroto RJ. A GIS-based decision support system for rainwater harvesting (RHADESS). Physics and Chemistry of the Earth, Parts A/B/C. 2009;34:767-775.
    [83]黄杰.海洋环境综合数据时空建模与可视化研究:[博士学位论文].杭州:浙江大学; 2008.
    [84]马纯永.城域景观VRGIS一体化仿真平台的研究与实现:[博士学位论文].青岛:中国海洋大学; 2010.
    [85] Kryachko Y. Using Vertex Texture Displacement for Realistic Water Rendering. In: Pharr M, Fernando R, editors. Programming Techniques for High-Performance Graphics and General-Purpose Computation (GPU Gems2). New Jersey: Addison-Wesley Professional 2005.
    [86]王占刚,潘懋,王斌.三维多元地学数据一体化显示框架设计.计算机工程与应用. 2008;44:72-75,86.
    [87] Santos Sd, Brodlie K. Gaining understanding of multivariate and multidimensional data through visualization. Computers & Graphics. 2004;28:311-325.
    [88] Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K. Accelerating molecular modeling applications with graphics processors. Journal of Computational Chemistry. 2007;28:2618-2640.
    [89]马淑芳.基于GPU加速的分形地形生成方法:[硕士学位论文].大连:大连理工大学; 2008.
    [90] Hadwiger M, Ljung P, Salama CR, Ropinski T. Advanced illumination techniques for GPU volume raycasting. ACM SIGGRAPH ASIA 2008 courses. Singapore: ACM; 2008. p. 1-166.
    [91] Guthe S, Roettger S, Schieber A, Strasser W, Ertl T. High-quality unstructured volume rendering on the PC platform. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. Saarbrucken, Germany: Eurographics Association; 2002. p. 119-125.
    [92] Chan E, Ng R, Sen P, Proudfoot K, Hanrahan P. Efficient partitioning of fragment shaders for multipass rendering on programmable graphics hardware. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. Saarbrucken, Germany: Eurographics Association; 2002. p. 69-78.
    [93] Gautron P, K?ivánek J, Bouatouch K, Pattanaik S. Radiance cache splatting: a GPU-friendly global illumination algorithm. ACM SIGGRAPH 2008 classes. Los Angeles, California: ACM; 2008. p. 1-10.
    [94] Schmittler J, Wald I, Slusallek P. SaarCOR: a hardware architecture for ray tracing. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. Saarbrucken, Germany: Eurographics Association; 2002. p. 27-36.
    [95] Mark WR, Glanville RS, Akeley K, Kilgard MJ. Cg: a system for programming graphics hardware in a C-like language. ACM SIGGRAPH 2003 Papers. San Diego, California: ACM; 2003. p. 896-907.
    [96]马照亭,潘懋,胡金星,吴焕萍,王占刚.一种基于数据分块的海量地形快速漫游方法.北京大学学报(自然科学版). 2004;40:619-625.
    [97] Kang L, Xu J, Yang C, Yang B, Wu L. An efficient simplification and real-time rendering algorithm for large-scale terrain. Int J Comput Appl Technol. 2010;38:106-112.
    [98] Dick C, Krüger J, Westermann R. GPU Ray-Casting for Scalable Terrain Rendering. Proceedings of Eurographics 2009-Areas Papers2009. p. 43-50.
    [99] Lindstrom P, Koller D, Ribarsky W, Hodges LF, Faust N, Turner GA. Real-time, continuous level of detail rendering of height fields. Proceedings of the 23rd annual conference on Computer graphics and interactive techniques: ACM; 1996. p. 109-118.
    [100] Duchaineau M, Wolinsky M, Sigeti DE, Miller MC, Aldrich C, Mineev-Weinstein MB. ROAMing terrain: real-time optimally adapting meshes. Proceedings of the 8th conference on Visualization '97. Phoenix, Arizona, United States: IEEE Computer Society Press; 1997. p. 81-88.
    [101]吴兰.基于高度图的实时地形渲染算法研究与改进.忻州师范学院学报. 2008;24:38-41.
    [102]苏虎,周美玉.一种大规模地形的实时绘制算法.武汉大学学报(工学版). 2003;36:81-85.
    [103] Ma C, Han Y, Yongyang Q, Yong C, Ge C. An integrated VR-GIS navigation platform for cityregion simulation. Computer Animation and Virtual Worlds. 2010;21:499-507.
    [104] Fernando R, Kilgard MJ. Cg教程.北京:人民邮电出版社; 2004.
    [105]马骏,朱衡君.利用P-Buffer模拟虚拟场景的后视镜和鸟瞰图.计算机辅助设计与图形学学报. 2006;18:748-752.
    [106] Kim D, Song O-y, Ko H-S. A practical simulation of dispersed bubble flow. ACM Transactions on Graphics. 2010;29:1-5.
    [107]金小进,马尧海.基于粒子系统的火焰模拟与优化.计算机工程与设计. 2010;31:1118-1120,1124.
    [108] Hong J-M, Lee H-Y, Yoon J-C, Kim C-H. Bubbles alive. ACM Transactions on Graphics. 2008;27:1-4.
    [109]李建明,吴云龙,何荣盛,钱昆明.基于粒子系统和GPU加速的喷泉实时仿真.系统仿真学报. 2009;21:3139-3141,3145.
    [110]陈俊,杨克俭,袁源.基于粒子系统的流体交互应用.计算机应用研究. 2010;27:365-367.
    [111]张卓鹏,王长波,钱嫕婧,阳鹏.基于GPU粒子系统的烟花实时仿真.东华大学学报(自然科学版). 2010;36:347-350,384.
    [112]何亮,巴力登.基于粒子系统的动态雪景模拟.西北大学学报(自然科学版). 2010;40:603-606.
    [113]魏迎梅,吴泉源,石教英.碰撞检测中的固定方向凸包包围盒的研究.软件学报. 2001;12:1056-1063.
    [114]赵伟,谭睿璞,李勇.复杂虚拟环境下的实时碰撞检测算法.系统仿真学报. 2010;22:125-129.
    [115]李昭.虚拟海洋环境时空数据建模与可视化服务研究:[博士学位论文].杭州:浙江大学; 2010.
    [116]董文,张新,江毓武,池天河.基于球体的海洋标量场要素的三维可视化技术研究.台湾海峡. 2010;29:571-577,595.
    [117]刘玉光.卫星海洋学.北京:高等教育出版社; 2009. p. 337.
    [118]颜梅,左军成,傅深波,陈美香,曹越男.全球及中国海海平面变化研究进展.海洋环境科学. 2008;27:197-200.
    [119] Picaut J, Hackert, E., Busalacchi, A. J., Murtugudde, R., Lagerloef, G. S. E. Mechanisms of the 1997–1998 El Ni?o-La Ni?a, as inferred from space-based observations. Journal of Geophysical Research. 2002;107:3037-3054.
    [120] Tiwaria VM, Cabanesb, C., DoMinhb, K., Cazenave, A. Correlation of interannual sea level variations in the Indian Ocean from Topex/Poseidon altimetry, temperature data and tide gauges with ENSO. Global and Planetary Change. 2004;43:183-196.
    [121] Fu LL, Traon P-YL. Satellite altimetry and ocean dynamics. Comptes Rendus Geosciences.2006;338:1063-1076.
    [122] Chen G, Wang Z, Qian C, Lv C, Han Y. Seasonal-to-decadal modes of global sea level variability derived from merged altimeter data. Remote Sensing of Environment. 2010;114:2524-2535.
    [123] Dibarboure G, Lauret, O., Mertz, F., Rosmorduc, V. SSALTO/DUACS User Handbook: (M)SLA and (M)ADT near-real time and delayed time products. 1.9 ed. Ramonville St. Agne2008. p. 39.
    [124] Su Y, Slottow J, Mozes A. Distributing proprietary geographic data on the world wide web: UCLA GIS database and map server. Compuers & Geosciences. 2000;26:741-749.
    [125] Chen S-C, Wang X, Rishe N, Weiss MA. A web-based spatial data access system using semantic R-trees. Information Sciences. 2004;167:41-61.
    [126] Reinhard E, Ashikhmin M, Gooch G, Shirley P. Color transfer between images. IEEE Computer Graphics and Applications. 2001;21:34-41.
    [127] Welsh T, Ashikhmin M, Mueller K. Transferring color to greyscale images. ACM Transactions on Graphics. 2002;21:277-280.
    [128]冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社; 1999.
    [129]张利,王俊彪,张贤杰.基于矩形网格追踪法的曲面主曲率等值线生成算法.计算机应用研究. 2009;26:3179-3181.
    [130]蒋瑜,杜斌,卢军,王鹏.基于Delaunay三角网的等值线绘制算法.计算机应用研究. 2010;27:101-103.
    [131]周乃健,王志亚,郝久青.回归等值线图在土壤水分时空变化动态分析中的应用.农业工程学报. 1997;13:112-115.
    [132] Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics 1987;21:163-169.
    [133]江东,冯成德,林大全,鲍华.基于MC重建算法等值面的优化.中国测试技术. 2006;32:80-82.
    [134]胡新宇,肖华秀,刘炜琪,高贵兵,黄劲.基于MC算法的等值面方向平滑处理方法.中国水运. 2007;5:158-159.
    [135] Kruger J, Westermann R. Acceleration Techniques for GPU-based Volume Rendering. Proceedings of the 14th IEEE Visualization 2003 (VIS'03): IEEE Computer Society; 2003. p. 38.
    [136] Stegmaier S, Strengert M, Klein T, Ertl T. A simple and flexible volume rendering framework for graphics-hardware- based raycasting. Fourth International Workshop on Volume Graphics. New York2005. p. 187-241.
    [137] Thomas Klein MS, Simon Stegmaier, Thomas Ertl. Exploiting Frame-to-Frame Coherence for Accelerating High-Quality Volume Raycasting on Graphics Hardware. Proceedings of IEEE Visualization'05. Minneapolis,Minnesota: IEEE; 2005. p. 223-230.
    [138]陈为,彭群生,鲍虎军.视点相关的层次采样:一种硬件加速体光线投射算法(英文).软件学报. 2006;17:587-601.
    [139]袁斌. 3D非均匀直线网格GPU体绘制方法研究.工程图学学报. 2010;2010:76-83.
    [140]陈戈,齐永阳,陈勇,马纯永.面向城市仿真的VRGIS平台设计与实现.系统仿真学报. 2009;21:457-460,464.
    [141]张盛,卢建华,卢欣华. COM组件技术研究.科技信息. 2008:343,379.
    [142]王国强,张贝克.基于Python的嵌入式脚本研究.计算机应用与软件. 2010;27:107-109.
    [143] Fang T-P, Piegl LA. Delaunay Triangulation Using a Uniform Grid. IEEE Computer Graphics and Applications. 1993;13:36-47.
    [144]俞聿修.随机波浪及其工程应用.大连:大连理工大学出版社; 2003. p. 271-273.
    [145]皮学贤,杨旭东,李思昆,宋君强.近岸水域的波浪与水面仿真.计算机学报. 2007;30:324-329.
    [146]朱卫军,邹峥嵘,邹杰.虚拟现实技术在城市规划中的应用研究与实践.测绘与空间地理信息. 2006;29:125-127.
    [147]郭境,朱小明.实施海岸带综合管理保护我国海洋生物多样性.浙江万里学院学报. 2010;23:61-66.
    [148] Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, et al. Global patterns and predictors of marine biodiversity across taxa. Nature. 2010;466:1098-1101.
    [149]马程琳,邹记兴.我国的海洋生物多样性及其保护.海洋湖沼通报. 2003;2003:41-47.
    [150] Mitrovica JX, Gomez N, Clark PU. The Sea-Level Fingerprint of West Antarctic Collapse. Science. 2009;323:753-753.
    [151]周琴,赵进平,何宜军.用TOPEX/POSEIDON高度计数据研究南极绕极流流域海面高度的低频变化.海洋与湖沼. 2003;34:256-266.
    [152] Steele M, Morley R, Ermold W. PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean. Journal of Climate. 2001;14:2079-2087.
    [153]逄瀛,岳承君.可视化技术在环境仿真中的应用.辽宁大学学报. 2000;27:123-127.
    [154] Meng X, Ban X, Yin Y. Interaction model of artificial fish in virtual environment. Journal of Systems Engineering and Electronics. 2008;19:982-987.
    [155]吴崇浩,班晓娟.计算机动画中的虚拟角色路径规划研究.计算机应用. 2008;28:315-318.
    [156]陈磊,李忠新.电子海图导航系统的构想与实现.航海技术. 2003;2003:25-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700