用户名: 密码: 验证码:
牙鲆肌肉发育调节基因的克隆、表达及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文克隆了牙鲆的成肌因子MyoD和Myf5,以及牙鲆的Forkhead基因FoxD1、FoxD3和FoxD5,并对其在牙鲆肌肉发育中的功能进行了分析。
     牙鲆MyoD和Myf5基因都具有三个外显子,两个内含子。其编码的氨基酸序列都含有保守的bHLH;牙鲆FoxD1,FoxD3,FoxD5基因都只有一个外显子,编码的氨基酸序列都含有保守的翼状螺旋DNA结合结构域。
     在胚胎发育早期,Myf5在近轴中胚层中表达,体节发生过程中,Myf5在体节中表达,MyoD基因最早在分节板的体节前细胞中表达,随后在近轴细胞、体节中表达;随着胚胎的发育,Myf5在成熟体节中表达量降低,在新生体节中表达较强;MyoD自30个体节时期后只在新生的尾部体节中表达,在成熟的体节中表达量降低;在孵化期,MyoD和Myf5在头部及鳍的肌肉、尾部的体节中表达;生长期的牙鲆中,Myf5在骨骼肌和肠中表达,成体牙鲆中,Myf5只在肌肉中表达;生长期的牙鲆及成体牙鲆中,MyoD只在肌肉组织中表达。牙鲆MyoD和Myf5的启动子可以驱动绿色荧光蛋白在斑马鱼肌肉纤维中表达,其包含了这两个基因正常表达所需的核心区域,并可以跨物种行使功能。
     在胚胎发育早期,FoxD3在未迁移神经嵴前体细胞、体节、耳后的基板、头部和躯干的神经嵴细胞、松果体中表达。牙鲆FoxD1主要在脑,体节,肾脏及肠中表达。牙鲆FoxD5主要在体节、尾芽、前脑、耳泡中表达。
     在斑马鱼中过量表达牙鲆FoxD3,并与斑马鱼的同源基因进行比较,结果表明注射牙鲆和斑马鱼FoxD3的斑马鱼胚胎表型一致,它们在中轴两侧的发育出现了不同步现象,MyoD和Myf5在近轴中胚层中的表达受到不同程度抑制。因此,FoxD3在不同物种之间保守,并且FoxD3在肌肉发育的调控通路中可能通过与MyoD和Myf5相互作用而行使功能。
     在斑马鱼中过量表达FoxD1后,MyoD在一侧体节中的表达受到了严重抑制,而在近轴细胞中的表达未受影响,Myf5在体节前中胚层,近轴细胞,及体节中的表达都受到了抑制。FoxD1在胚胎发育的早期可能通过调控MyoD和Myf5的表达而参与肌肉发育的调控。
     将牙鲆FoxD5在斑马鱼中过量表达,MyoD在一侧体节中的表达量有所升高,而在近轴细胞中的表达未受影响;Myf5在一侧体节和体节前中胚层中的表达也有所升高,表明牙鲆FoxD5可以调控肌肉调节因子MyoD和Myf5的表达而参与早期肌肉发育的调控。
This study focused on the cloning and expression of flounder muscle regulatory genes, MyoD and Myf5, and Forkhead domain genes, FoxD1, FoxD3 and FoxD5, and the analysis of their functions during flounder muscle development.
     The genomic sequences of both flounder MyoD and Myf5 contain three exons and two introns, and a highly conserved bHLH domain. The flounder FoxD1, FoxD3 and FoxD5 contain only one exon and a conserved winged-helix DNA binding domain. In situ hybridization indicated that, Myf5 transcripts were first detected in the paraxial mesoderm, during somitogenesis, Myf5 expression was found in developing somites; MyoD expression was first detected as two rows of presomitic cells in the segmental plate, and then was present in the adaxial cells and the lateral somitic cells. With the development of embryo, Myf5 expression decreased gradually in somites in the anterior region, but remained strong in the newly formed somites; After 30 somites formed, MyoD expression decreased in the somites except the caudal somites. At the hatching stage, MyoD and Myf5 were expressed in head muscle cells and fin muscle cells. In the growing fish, Myf5 was expressed in the skeletal muscle and intestine, and in adult flounder, Myf5 was only expressed in muscle. In the growing fish and adult fish, MyoD was only expressed in muscle.
     The MyoD promoter and Myf5 promoter could drive GFP specifically expressed in zebrafish muscle fibers, indicating that the two promoters contained the core sequences required for the normal expression of the two genes, also, the two promoters were conserved because they could function across species.
     During the early stage of embryogenesis, FoxD1 was mainly expressed in the somites, kidney progenitor cells, brain progenitor cells and intestine. FoxD3 was expressed in premigratory neural crest cells, somites, post otic placodes, cranial and trunk neural crest cells, and pineal gland. FoxD5 was mainly expressed in the somites, tail bud, forebrain and otic vesicle etc.
     Flounder FoxD3 mRNA was over expressed in one cell of the two-cell stage zebrafish by microinjection, zebrafish homologue FoxD3 was used to confirm the effect of flounder FoxD3. After over expression, the two sides separated by the anterior-posterior axis of zebrafish embryo showed an asymmetrical development, the expression of MyoD and Myf5 in the paraxial mesoderm was inhibited. So the flounder FoxD3 might function in the muscle development regulatory network by interacting with MyoD and Myf5.
     Flounder FoxD1 mRNA was over expressed in one cell of the two-cell stage zebrafish, MyoD expression in the somites on one side was reduced, but the expression in the adaxial cells was not affected; Myf5 expression in the presomitic mesoderm, adaxial cells and somites on one side was reduced. It is indicated that FoxD1 might play a role in the muscle development by regulating MyoD and Myf5.
     Flounder FoxD5 mRNA was over expressed in one cell of the two-cell stage zebrafish, MyoD expression in the somites on one side was enhanced, but the expression in the adaxial cells was not affected; Myf5 expression in the somites and presomitic mesoderm on one side was also enhanced. FoxD5 might regulate the muscle development by regulating the expression of MyoD and Myf5.
引文
Alric S, Froeschle A, Piquemal D, Carnac G, Bonnieu A. Functional specificity of the two retinoic acid receptor RAR and RXR families in myogenesis [J]. Oncogene, 1998, 16: 273-282.
    Amthor et al. The expression and regulation of follistatin and a follistatin-like gene during avian somite compartmentalization and myogenesis [J]. Dev Biol. 1996, 178 (2):343-62.
    Ang S L, and Rossant J. HNF-3 beta is essential for node and notochord formation in mouse development [J]. Cell, 1994, 78: 561-574.
    Arber S, Halder G, Caroni P. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation [J]. Cell 1994, 79: 221-31.
    Arne C L et al. Zebrafish Wnt8 encodes two Wnt8 proteins on a biscistronic transcript and is required for mesoderm and neurectoderm patterning [J]. Cell, 2001, 1:103-104.
    Arnold HH, Winter B. Muscle differentiation: more complexity to the network of myogenic regulators [J]. Curr Opin Genet Dev, 1998, 8:539-45.
    Barresi M J, D’Angelo J A, Hernandez L P & Devoto S H. Distinct mechanisms regulate slow-muscle development [J]. 2001, Curr. Biol, 11, 1432-1438.
    Baxendale S, Davison C, Muxworthy C, Wolff C, Ingham P W & Roy S. The B-cell maturation factor Blimp-1 specifies vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling [J]. 2004, Nat. Genet. 36, 88-93.
    Benezra R, Davis R L, Lockshon D, Turner D L, Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA-binding proteins [J]. Cell, 1990, 61:49-59.
    Bentley D L, Groudine M. A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells [J]. Nature, 1986, 321: 702-706.
    Ben-Yair R, Kalcheim C. Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates [J]. Development, 2005, 132: 689-701
    Bergstrom D A, Tapscott S J. Molecular distinction between specification and differentiation in the myogenic basic helix-loophelix transcription factor family [J]. Mol Cell Biol, 2001, 21(7): 2404-12.
    Berry F B, Saleem R A, Walter M A. FOXC1 transcriptional regulation is mediated by N- and C-terminal activation domains and contains a phosphorylated transcriptional inhibitory domain [J]. J Biol Chem, 2002, 277 (12): 10292-10297.
    Biesiada E, Hamamori Y, Kedes L, Sartorelli V. Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiprotein transcriptional complex required for activity of the human cardiac a-actin promoter [J]. Mol Cell Biol 1999, 19: 2577-84.
    Black B L, Molkentin J D, Olson E N. Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2 [J]. Mol Cell Biol, 1998, 18 (1): 69-77.
    Black B L, Olson E N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins [J]. Annu Rev Cell Dev Biol 1998, 14: 167-96.
    Bone Q. Locomotor muscle. In Fish Physiology (eds W. S. Hoar & D. J. Randall), Academic Press, New York.1978, Vol. 7, pp. 361-424.
    Borello U, Coletta M, Tajbakhsh S, Leyns L, De Robertis E M, Buckingham M and Cossu G. Transplacental delivery of the Wnt antagonist Frzb1 inhibits development of caudal paraxial mesoderm and skeletal myogenesis in mouse embryos [J]. Development, 1999, 126 (19): 4247-55.
    Borycki A G and C P Emerson, Jr. Multiple tissue interactions and signal transduction pathways control somite myogenesis [J]. Curr Top Dev Biol, 2000, 48: 165-224.
    Bourguignon C, Li J, and Papalopulu N. XBF-1, a winged helix transcription factor with dual activity, has a role in positioning neurogenesis in Xenopus competent ectoderm [J]. Development, (1998) 125, 4889-4900.
    Brand-saberi B, Gamel A J, Krenn V, Muller T S, Wilting J and Christ B. N-cadherin is involved in myoblast migration and muscle differentiation in the avian limb bud [J]. Dev Biol, 1996, 178: 160-73.
    Braun T, Arnold HH Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development [J]. EMBO J, 1995, 14, 1176-1186.
    Braun T, Bober E, Buschhausen-Denker G, Kohtz S, Grzeschik K H, Arnold H H, Kotz, S, Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products [J]. EMBO J, 1989, 8: 3617-3625.
    Braun T, Bober E, Rudnicki M A, Jaenisch R, Arnold H H. MyoD expression marks the onset of skeletal myogenesis in homouzygous Myf5 mutant mice[J].. Development, 1994, 120: 3083-3092.
    Braun T, Rudnicki MA, Arnold HH, Jaenisch R.Targeted inactivation of the mouse regulatory gene Myf5 results in abnormal distal rib development and early postnatal death in homozygous mouse mutants [J].. Cell, 1992, 71: 369-382
    Brennan R G. The winged-helix DNA-binding motif: another helix–turn–helix takeoff [J]. Cell, 1993, 74: 773-776.
    Brennan T J, Chakraborty T, Olson E N. Mutagenesis of the myogenin basic region identifies an ancient protein motif critical for activation of myogenesis [J]. Proc Natl Acad Sci USA, 1991, 88: 5675-9.
    Buckingham M E. Muscle: the regulation of myogenesis [J]. Curr. Opin. Genet. Dev, 1994, 4: 745-751.
    Buckingham M E. Myogenic progenitor cells and skeletal myogenesis in vertebrates [J]. Curr Opin Genet Dev, 2006, 16: 525-532.
    Buonanno A, Apone L, Morasso M I, Beers R, Brenner H R, Eftimie R. The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf-5 cDNA [J]. Nucleic Acids Res, 1992, 20: 539-544.
    Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism [J]. Dev Biol, 2002, 250(1): 1-23.
    Casares F, Mann R S. Control of antennal versus leg development in Drosophila [J]. Nature 1998, 392:723-6.
    Chang T H, Priming M, Hadchouel J, Tajbakhsh S, Rocancourt D, Fernandez A, Kappler, R, Scherthan H, Buckingham M. An enhancer directs differential expression of the linked Mrf4 and Myf-5 myogenic regulatory genes in the mouse [J]. Dev. Biol, 2004 269: 595-608.
    Charbonnier F, Gaspera B D, Armand A S, Van der Laarse W J, Launay T, et al. Two myogenin-related genes are differentially expressed in Xenopus laevis myogenesis and differ in their ability to transactivate muscle structural genes [J]. J. Biol. Chem, 2002, 277: 1139-47.
    Charge S B and Rudnicki M A. Cellular and molecular regulation of muscle regeneration [J]. Physiol Rev, 2004, 84: 209-238,
    Charvet C, AlbertiI, LucianoF, et al. Proteolyticregulation of Forkhead transcription factor FOXO3a by caspase-3-likeproteases [J]. Oncogene, 2003, 22(29): 4557-4568.
    Chen A C, Kraut N, Groudine M, Weintraub H. I-mf, a novel myogenic repressor, interacts with members of the MyoD family [J]. Cell, 1996, 86: 731-41.
    Chen JCJ and Goldhamer D J. Skeletal muscle stem cells [J]. Reprod Biol Endocrinol, 2003, 1:101-107.
    Chen X, Weisberg E, Fridmacher V, et al. Smad4 and FAST-1 in the assembly of activin-responsive factor [J]. Nature, 1997, 389(6646): 85-89.
    Chen Y H, Lee H C, Liu CF, et al. Novel regulatory sequence -82/-62 functions as a key element to drive the somite-specificity of zebrafish myf-5 [J]. Dev. Dyn, 2003, 228: 41-50.
    Chen Y H, Lee W C, Liu C F, et al. Molecular structure, Dynamic Expression, and Promoter Analysis of Zebrafish (Danio rerio) myf-5 gene [J]. Genesis, 2001, 29: 22-35.
    Cheung M, Chaboissier M C, Mynett A, Hirst E, Schedl A, Briscoe J. The transcriptional control of trunk neural crest induction, survival, and delamination [J]. Dev Cell 2005, 8:179-192.
    Chi N, Epstein JA. Getting your Pax straight: Pax proteins in development and disease [J]. Trends Genet, 2002, 18: 41-47.
    Chiang C, Litingtung Y, Lee E, Young K E, Corden J L, Westphal H, and Beachy P A. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function [J]. Nature, 1996, 383: 407-413.
    Choi J, Costa M L, Mermelstein C, Chagas S, Holtzer S, Holtzer H. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigment epithelial cells into striated, mononucleated myoblasts and multinucleated myotubes [J]. Proc Natl Acad Sci USA, 1990, 87: 7988-92.
    Christ B and Ordahl C P. Early stages of chick somite development [J]. Anat Embryol (Berl), 1995, 191: 381-396.
    Chuang P T & McMahon A P. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein [J]. Nature, 1999, 397: 617–621.
    Chuang P T, Kawcak T & McMahon A P. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung [J]. Genes Dev, 2003, 17: 342-347.
    Clark K L, Halay E D, Lai E and Burley S K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5 [J]. Nature, 1993, 364: 412-420.
    Clevidence D E, Overdier D G, Peterson R S, Porcella A, Ye H, Paulson K E and Costa R H. Members of the HNF-3/forkhead family of transcription factors exhibit distinct cellular expression patterns in lung and regulate the surfactant protein B promoter [J]. Dev. Biol, 1994, 166: 195-209.
    Cossu G and Biressi S. Satellite cells, myoblasts and other occasional myogenic progenitors: possible origin, phenotypic features and role in muscle regeneration [J]. Semin Cell Dev Biol, 2005, 16: 623-631.
    Cossu G S, Tajbakhsh and Buckingham M E. How is myogenesis initiated in the embryo? [J]. Trends Genet, 1996, 12: 218-223.
    Coulombe J, Traiffort E, Loulier K, Faure H & Ruat M. Hedgehog interacting protein in the mature brain: membrane-associated and soluble forms [J]. Mol. Cell Neurosci. 2004, 25: 323-333.
    Coutelle O, Blagden C S, Hampson R, Halai C, Rigby P W, Hughes S M. Hedgehog signaling is required for maintenance of myf5 and myoD expression and timely terminal differentiation in zebrafish adaxial myogenesis [J]. Dev.Biol, 2001, 236: 136-50
    Currie P D and Igham P W. The generation and interpretation of positional information within the vertebrate [J]. Mechanism of Development, 1998, 73: 3-21.
    Davis R L, Cheng P F, Lassar A B, Weintraub H. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation [J]. Cell, 1990, 60: 733-46.
    Davis R L, Weintraub H, Lassar A B. Expression of a single transfected cDNA converts fibroblasts to myoblasts [J]. Cell, 1987, 51: 987-1000.
    Delalande JM, Rescan PY. Differential expression of two nonallelic MyoD genes in developing and adult myotomal musculature of the trout (Oncorhynchus mykiss) [J]. Dev Genes Evol, 1999, 209: 432-437.
    Della Gaspera B, Sequeira I, Charbonnier F, Becker C, Shi DL, Chanoine C. Spatio-temporal expression of MRF4 transcripts and protein during Xenopus laevis embryogenesis [J]. Dev Dyn, 2006, Feb; 235 (2):524-9.
    Derynck R, Feng X H, TGF-β receptor signaling [J]. Biochim. Biophys. Acta, 1997, 1333, F105-150.
    Derynck R, Zhang Y, Feng X H. Smads: Transcriptional activators of TGF-β responses [J]. Cell, 1998, 95: 737-740.
    Devoto S H, Melancon E, Eisen J S & Westerfield M. Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation [J]. Development, 1996, 122: 3371-3380.
    Devoto, S. H., Stoiber, W., Hammond, C. L. et al. Generality of vertebrate developmental patterns: evidence for a dermomyotome in fish [J]. Evol. Dev, 2006, 8: 101-110.
    Dirksen M L, Jamrich M. Differential expression of fork head genes during early Xenopus and zebrafish development [J]. Dev Genet 1995, 17: 107-116.
    Dottori M, Gross M K, Labosky P, and Goulding M. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate [J]. Development, 2001, 128, 4127-4138.
    Dou C, Lee J, Liu B, Liu F, Massague J, Xuan S, and Lai E. BF-1 interferes with transforming growth factor beta signaling by associating with Smad partners [J]. Mol. Cell. Biol, 2000, 20: 6201-6211.
    Draper B W, Stock D W & Kimmel C B. Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development [J]. Development, 2003, 130: 4639-4654.
    Du S J, Devoto S H, Westerfield M, Moon R T. Positive and negative regulation of muscle cell identity by members of the hedgehog and TGF-beta gene families [J]. J Cell Biol, 1997, 139:145-156.
    Du S J, Dienhart M. The zebrafish tiggy-winkle hedgehog promoter directs notochord and floor plate GFP expression in transgenic zebrafish embryos [J]. Dev Dyn, 2001, 222: 655-666.
    Echelard Y, Epstein D J, St-Jacques B, Shen L, Mohler J, McMahon J A, and McMahon A P. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity [J]. Cell, 1993, 75, 1417-1430.
    Edmondson D G, Olson E N. Helix-loop-helix proteins as regulators of muscle-specific transcription [J]. J. Biol. Chem, 1993, 268:755-758.
    Edom-Vovard F, Bonnin M A & Duprez D. Misexpression of Fgf-4 in the chick limb inhibits myogenesis by downregulating Frek expression [J]. Dev. Biol, 2001, 233, 56-71.
    Ernstsson S, Betz R, Lagercrantz S, Larsson C, Ericksson S, Cederberg A, Carlsson P, and Enerback S. Cloning and characterization of freac-9 (FKHL17), a novel kidney-expressed human forkhead gene that maps to chromosome 1p32–p34 [J]. Genomics, 1997, 46, 78-85.
    Esner M, Meilhac S M, Relaix F, Nicolas J F, Cossu G, Buckingham M E. Smooth muscle of the dorsal aorta shares a common clonal origin with skeletal muscle of the myotome [J]. Development, 2006, 133: 737-49.
    Feng X H and Derynck R. Specificity and versatility in tgf-beta signaling through Smads [J]. Annu Rev Cell Dev Biol, 2005, 21: 659-693.
    Fetka I, Doederlein G, Bouwmeester T. Neuroectodermal specification and regionalization of the Spemann organizer in Xenopus [J]. Mech. Dev, 2000, 93: 49-58.
    Firulli A B, Olson E N. Modular regulation of muscle gene transcription: a mechanism for muscle cell diversity [J]. Trends Genet, 1997, 13: 364-369.
    Fisher M E, Isaacs H V & Pownall M E. eFGF is required for activation of XmyoD expression in the myogenic cell lineage of Xenopus laevis [J]. Development, 2002, 129: 1307-1315.
    Freyaldenhoven B S, Freyaldenhoven M P, Iacovoni J S, and Vogt P K. Avian winged helix proteins CWH-1, CWH-2 and CWH-3 repress transcription from Qin binding sites [J]. Oncogene, 1997b, 15, 483-488.
    Freyaldenhoven B S, Freyaldenhoven M P, Iacovoni J S, Vogt P K. Aberrant cell growth induced by avian winged helix proteins [J]. Cancer Res 1997, 57: 123-129.
    Furumoto T A, Miura N, Akasaka T, Mizutani-Koseki Y, Sudo H, Fukuda K, Maekawa M, Yuasa S, Fu Y, Moriya H, Taniguchi M, Imai K, Dahl E, Balling R, Pavlova M, Gossler A, and Koseki H. Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development [J]. Dev. Biol, 1999, 210, 15-29.
    Gerber A N, Klesert T R, Bergstrom D A, Tapscott S J. Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis [J]. Genes Dev, 1997, 11: 436-50.
    Gomez-Skarmeta J L, de la Calle-Mustienes E, Modolell J, Mayor R. Xenopus brain factor-2 controls mesoderm, forebrain and neural crest development [J]. Mech. Dev, 1999, 80: 15-27.
    Gossett L A, Kelvin D J, Sternberg E A, Olson E N. A new myocytespecific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes [J]. Mol Cell Biol, 1989, 9: 5022-33.
    Gotoh Y & Nishida E. Activation mechanism and function of the MAP kinase cascade [J]. Mol. Reprod. Dev, 1995, 42: 486-492.
    Gros J, M Scaal and C Marcelle. A two-step mechanism for myotome formation in chick [J]. Dev Cell, 2004, 6: 875-882.
    Gros J, Manceau M, Thome V, Marcelle C. A common somitic origin for embryonic muscle progenitors and satellite cells [J]. Nature, 2005, 435: 954-58
    Groves J A, Hammond C L & Hughes S M. Fgf8 drives myogenic progression of a novel lateral fast muscle fibre population in zebrafish [J]. Development, 2005, 132: 4211-4222.
    Guo C S, Degnin C, Fiddler T A, Stauffer D, Thayer M J. Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1 [J]. J. Biol. Chem, 2003, 278: 22615-22622.
    Gurtner A, Manni I, Fuschi P, Mantovani R, Guadagni F, Sacchi A, Piaggio G. Requirement for down-regulation of the CCAAT-binding activity of the NF-Y transcription factor during skeletal muscle differentiation. Mol. Biol. Cell, 2003, 14: 2706-2715.
    Gustafson T A, Kedes L. Identification of multiple proteins that interact with functional regions of the human cardiac a-actin promoter [J]. Mol Cell Biol, 1989, 9:3269-83.
    Hadchouel J, Tajbakhsh S, Primig M, et al. Modular long-range regulation of Myf5 reveals unexpected heterogeneity between skeletal muscles in the mouse embryo [J]. Development, 2000, 127(20): 4455-67.
    Hamade A, Deries M, Begemann G. et al. Retinoic acid activates myogenesis in vivo through Fgf8 signalling [J]. Dev. Biol, 2006, 289: 127-140.
    Hamamori Y, Wu H Y, Sartorelli V, Kedes L. The basic domain of myogenic basic helix-loop-helix (bHLH) proteins is the novel target for direct inhibition by another bHLH protein [J]. Twist Mol Cell Biol, 1997, 17: 6563-73.
    Hanna L A, Foreman R K, Tarasenko I A, Kessler D S, Labosky P A. Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo [J]. Genes Dev, 2002, 16, 2650-2661.
    Hasty P, Bradley A, Morris J H, Edmondson D G, Venuti J M, Olson E N, et al. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene [J]. Nature, 1993, 364: 501-6.
    Hatini V, Huh S O, Herzlinger D, Soares V C, Lai E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of winged helix transcription factor BF-2 [J]. Genes Dev, 1996, 10: 1467-1478.
    Hatini V, Tao W, Lai E. Expression of winged helix genes, BF-1 and BF-2, define adjacent domains within the developing forebrain and retina [J]. J. Neurobiol, 1994, 25: 1293 -1309.
    Hatta K, Bremiller R, Westerfield M & Kimmel C B. Diversity of expression of engrailed-like antigens in zebrafish [J]. Development, 1991, 112: 821-832.
    Hawke T J and Garry D J. Myogenic satellite cells: physiology to molecular biology [J]. J Appl Physiol, 2001, 91: 534-551.
    Hellqvist M, Mahlapuu M, Blixt A, Enerback S, and Carlsson P. The human forkhead protein FREAC-2 contains two functionally redundant activation domains and interacts with TBP and TFIIB [J]. J. Biol. Chem, 1998, 273: 23335-23343.
    Herrera E , Marcus R, Li S, Williams S E, Erskine L, Lai E, Mason C. Foxd1 is required for proper formation of the optic chiasm [J]. Development, 2004, 131, 5727-5739
    Hirsinger E, Stellabotte F, Devoto S H & Westerfield M. Hedgehog signaling is required for commitment but not initial induction of slow muscle precursors [J]. Dev. Biol, 2004, 275, 143-157.
    Holley S A & Nusslein-Volhard C. Somitogenesis in zebrafish. Curr [J]. Top Dev. Biol. 2000, 47: 247-277.
    Hollway G E, Maule J, Gautier P et al. Scube2 mediates Hedgehog signalling in the zebrafish embryo [J]. Dev. Biol, 2006, 294: 104-118.
    Hopwood N D, Pluck A, Gurdon J B. MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos [J]. EMBO J, 1989a, 8: 3409-3417.
    Hopwood N D, Pluck A, Gurdon J B. Xenopus Myf-5 marks early muscle cells and can activate muscle genes ectopically in early embryos [J]. Development, 1991, 111 (2): 551-560.
    Horst D, Ustanina S, Sergi C, Mikuz G, Juergens H, et al. Comparative expression analysis of Pax3 and Pax7 during mouse myogenesis [J]. Int. J. Dev. Biol, 2006, 50: 47-54.
    Hromas R, Ye H, Spinella M, Dmitrovsky E, Xu D, Costa R H. Genesis, a winged helix transcriptional repressor, has embryonic expression limited to the neural crest, and stimulates proliferation in vitro in a neural development model [J]. Cell Tissue Res. 1999, 297, 371-382.
    Huang J, Weintraub H, Kedes L. Intramolecular regulation of MyoD activation domain conformation and function [J]. Mol Cell Biol, 1998, 18(9): 5478-84.
    Hynes M, Stone D M, Dowd M, Pitts-Meek S, Goddard A, Gurney A, and Rosenthal A. Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1 [J]. Neuron, 1997, 19, 15-26.
    Ikeya M, and Takada S. Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome.Development [J]. 1998, 125 (24): 4969-76.
    Ingham P W and McMahon A P. Hedgehog signaling in animal development: paradigms and principles [J]. Genes and Development. 2001, 15 (23): 3059-3087.
    Jennings C G. Expression of the myogenic gene MRF4 during Xenopus development [J]. Dev. Biol, 1992, 151: 319-32
    Johansen K A, Overturf K. Quantitative expression analysis of genes affecting muscle growth during development of rainbow trout (Oncorhynchus mykiss) [J]. Mar. Biotechnol. (NY), 2005, 7 (6): 576-587.
    Johansen K A, Overturf K. Sequence, conservation, and quantitative expression of rainbow trout Myf5 [J]. Comp. Biochem. Physiol., B, 2005a, 140: 533-541.
    Jurgens G, Wieschaus E, Nqsslein-Volhard C, Kluding H. Mutations affecting the pattern of larval cuticle in Drosophila melanogaster [J]. Roux’s Arch. Dev. Biol, 1984, 193: 283-295.
    Kablar B, Krastel K, Ying C et al. MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle [J]. Development 1997: 124: 4729-4738.
    Kaestner K H, Knochel W, and Martinez D E. Unified nomenclature for the winged helix/forkhead transcription factors [J]. Genes Dev, 2000, 14: 142-146.
    Kaestner K H, Silberg D G, Traber P G, and Schutz G. The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation [J]. Genes Dev, 1997, 11: 1583-1595.
    Karlstrom R O, Talbot W S & Schier A F. Comparative synteny cloning of zebrafish you-too: mutations in the Hedgehog target gli2 affect ventral forebrain patterning [J]. Genes Dev, 1999, 13: 388-393.
    Karlstrom R O, Trowe T, Klostermann S et al. Zebrafish mutations affecting retinotectal axon pathfinding [J]. Development, 1996, 123: 427-438.
    Karlstrom R O, Tyurina O V, Kawakami A et al. Genetic analysis of zebrafish gli1 and gli2 reveals divergent requirements for gli genes in vertebrate development. Development, 2003, 130: 1549-1564.
    Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, et al. Mrf4 determines skeletal muscle identitiy in Myf5:MyoD double-mutant mice [J]. Nature, 2004, 431: 466-71.
    Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomes D, and Tajbakhsh S. Pax3/Pax7 mark a novel population of primitive myogenic cells during development [J]. Genes Dev, 2005, 19: 1426-31.
    Kato K, Gurdon J B. Single-cell transplantation determines the time when Xenopus muscle precursor cells acquire a capacity for autonomous differentiation [J]. Proc. Natl.Acad. Sci. USA, 1993, 90: 1310-14.
    Kaufmann E W, Knochel. Five years on the wings of fork head [J]. Mech. Dev, 1996, 57: 3-20.
    Kaufmann E, Muller D, and Knochel W. DNA recognition site analysis of Xenopus winged helix proteins [J]. J. Mol. Biol, 1995, 248: 239-254.
    Kawahira H, Ma N H, Tzanakakis E S, McMahon A P, Chuang P T & Hebrok M. Combined activities of hedgehog signaling inhibitors regulate pancreas development [J]. Development, 2003, 130, 4871-4879.
    Kawakami A, Nojima Y, Toyoda A et al. The zebrafish secreted matrix protein you/scube2 is implicated in long range regulation of hedgehog signaling [J]. Curr. Biol. 2005. 15, 480-488.
    Kawakami K, Sato S, Ozaki H, Ikeda K. Six family genes-structure and function as transcription factors and their roles in development [J]. Bioessays, 2000, 22(7): 616-26.
    Kelly G M et al. Zebrafish Wnt8 and Wnt8b share a common activity but are involved in distinct developmental pathways [J]. Development, 1995, 121 (6): 1787-1799.
    Kelsh R N, Dutton K, Medlin J, Eisen J S. Expression of zebrafish fkd6 in neural crest-derived glia [J]. Mech Dev 2000, 93: 161-164.
    Kimmel C B, Ballard W W, Kimmel S R, Ullmann B and Schilling T F. Stages of embryonic development of the zebrafish [J]. Dev. Dynamics, 1995, 203: 253-310.
    Kimmel C B, Warga R M & Schilling T F. Origin and organization of the zebrafish fate map [J]. Development, 1990, 108, 581-594.
    Kobiyama A, Nihei Y, Hirayama Y, Kikuchi K, Suetak H e, Johnston I A, Watabe S .Molecular cloning and developmental expression patterns of the MyoD and MEF2 families of muscle transcription factors in the carp [J]. J Exp Biol, 1998 Oct; 201 (Pt 20) :2801-13.
    Kong Y, Flick M J, Kudla A J, Konieczny S F. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD [J]. Mol Cell Biol, 1997, 17(8): 4750-60.
    Konieczny S F, Baldwin A S, Emerson C P. Myogenic determination and differentiation in 10T1/2 cell lineages: evidence for a simple genetic regulatory system [J]. Mol Cell Biol, 1988, 29: 21-31.
    Kos R, Reedy M V, Johnson R L, and Erickson C A. The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and repressing melanogenesis in avian embryos [J]. Development, 2001, 128, 1467-1479.
    Koudijs M J, den Broeder M J, Keijser A et al. The zebrafish mutants dre, uki, and lep encode negative regulators of the Hedgehog signaling pathway [J]. PLoS. Genet, 2005, 1: e19.
    Kubota T, Zhang Q, Wrana JL, Ber R, Aubin J E, Butler W T and Sodek J. Multiple forms of SppI (secreted phosphoprotein, osteopontin) synthesized by normal and transformed rat bone cell populations: regulation by TGF-beta [J]. Biochem Biophys Res Commun, 1989, 162: 1453-1459.
    Labbe E, Silvestri C, Hoodless P A, Wrana J L, and Attisano L. Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNAbinding protein FAST2 [J]. Mol. Cell, 1998, 2, 109-120.
    Labosky P A, Kaestner K H. The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development [J]. Mech Dev 1998, 76: 185-190.
    Laclef C, Hamard G, Demignon J, Souil E, Houbron C, Maire P. Altered myogenesis in Six1-deficient mice [J]. Development, 2003, 130: 2239-52.
    Lai E, Clark K L, Burley S K, and Darnell J E, Jr. Hepatocyte nuclear factor 3/fork head or “winged helix” proteins: A family of transcription factors of diverse biologic function [J]. Proc. Natl. Acad. Sci. USA, 1993, 90: 10421-10423.
    Lang D, Powell S K, Plummer R S, Young K P, Ruggeri B A. PAX genes: roles in development, pathophysiology, and cancer [J]. Biochem. Pharmacol, 2007, 73: 1-14.
    Lassar A B, Paterson B M, Weintraub H. Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts [J]. Cell, 1986, 47(5): 649-56.
    Lassar A, Munsterberg A. Wiring diagrams: regulatory circuits and the control of skeletal myogenesis [J]. Curr Opin Cell Biol, 1994, 6(3): 432-42.
    Lee Hung-Chieh, Huang Hsing-Yen, Lin Cheng-Yung, Chen Yau-Hung, Tsai Huai-Jen Foxd3 mediates zebrafish myf5 expression during early somitogenesis [J]. Developmental Biology, 2006, 290: 359-372.
    Lef J, Dege P, Scheucher M, Forsbach-Birk V, Clement J H, Knochel W. A fork head related multigene family is transcribed in Xenopus laevis embryos [J]. Int J Dev Biol 1996, 40: 245-253.
    Lehmann O J, Sowden J C, Carlsson P, et al. Fox’s in development and disease [J]. Trends Genet, 2003, 19 (6): 339-344.
    Lemercier C, To R Q, Carrasco R A, Konieczny S F. The basic helix-loop-helix transcription factor Mist1 functions as a transcriptional repressor of MyoD [J]. EMBO J, 1998, 17(5):1412-22.
    Levinson R S, Batourina E, Choi C, Vorontchikhina M, Kitajewski J, and Mendelsohn C L. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development [J] Development ePress online publication date 5 Jan 2005.
    Lewis K E, Concordet JP & Ingham P W. Characterisation of a second patched gene in the zebrafish Danio rerio and the differential response of patched genes to Hedgehog signalling [J]. Dev. Biol. 1999a, 208: 14-29.
    Lewis K E, Currie P D, Roy S, Schauerte H, Haffter P & Ingham P W. Control of muscle cell-type specification in the zebrafish embryo by Hedgehog signalling [J]. Dev. Biol, 1999b, 216: 469-480.
    L'honore A, Lamb NJ, Vandromme M, Turowski P, Carnac G, Fernandez A. MyoD distal regulatory region contains an SRF binding CArG element required for MyoD expression in skeletal myoblasts and during muscle regeneration [J]. Mol. Biol. Cell, 2003, 14: 2151-2162.
    Li, J., Chang HW, Lai E, Parker E J, Vogt P K. The oncogene qin codes for a transcriptional repressor [J]. Cancer Res, 1995, 55: 5540-5544.
    Lily B, Zhao B, Ranganayakulu G, Paterson B M, Schultz R A, Olson E N. Requirement of MADS domain transcription factor D-Mef2 for muscle formation in Drosophila [J]. Science, 1995, 267: 688-93.
    Lin C Y, Chen Y H, Lee H C, et al. Novel cis-element in intron1 represses somite expression of zebrafish myf-5 [J]. Gene, 2004, 334: 63-72.
    Lin G F, Geng X, Chen Y, et al. T-box binding site mediates the dorsal activation of myf-5 in Xenopus gastrula embryos [J]. Dev. Dyn, 2003, 226: 51-58.
    Lin L and Peng S L. Coordination of NF-B and NFAT Antagonism by the Forkhead Transcription Factor Foxd11 [J]. The Journal of Immunology, 2006, 176: 4793-4803.
    Lin Q, Schwarz J, Bucana C, Olson E N. Control of mouse cardiac morphogenesis and myogenesis by transcription factor Mef2C [J]. Science, 1997, 276: 1404-7.
    Lister J A, Cooper C, Nguyen K, Modrell M, Grant K, Raible D W. Zebrafish Foxd3 is required for development of a subset of neural crest derivatives [J]. Developmental Biology, 2006, 290: 92-104.
    Liu B, Dou C L, Prabhu L, and Lai E. FAST-2 is a mammalian winged-helix protein which mediates transforming growth factor beta signals [J]. Mol. Cell. Biol, 1999, 19: 424-430.
    Liu C, McFarland D C, Velleman S G. Effect of genetic selection on MyoD and myogenin expression in turkeys with different growth rates [J]. Poult Sci, 2005, 84: 376-384.
    Lu J, Webb R, Richardson J A, Olson E N. MyoR: a musclerestricted basic helix-loop-helix transcription factor that antagonizes the actions of MyoD [J]. Proc Natl Acad Sci USA, 1999, 96(2): 552-7.
    Ludolph DC, Neff AW, Mescher AL, Malacinski GM, Parker MA, Smith RC. Overexpression of XMyoD or XMyf5 in Xenopus embryos induces the formation of enlarged myotomes through recruitment of cells of nonsomitic lineage [J]. Dev Biol. 1994 Nov, 166(1):18-33.
    Lun Y, Sawadogo M, Perry M. Autoactivation of Xenopus MyoD transcription and its inhibition by USF [J]. Cell Growth Differ, 1997, 8: 275-282.
    Luo D, Rando T A. The regulation of catalase gene expression in mouse muscle cells is dependent on the CCAAT-binding factor NF-Y [J]. Biochem. Biophys. Res. Commun, 2003, 303: 609-618.
    Ma R Y, Tong T H, Cheung A M, et al. Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c [J]. J. Cell Sci, 2005, 118 (Pt 4): 795~806.
    Ma R Y, Tong T H, Cheung A M, et al. Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c [J]. J Cell Sci, 2005, 118 (Pt 4): 795-806.
    Maeda R, Ishimura A, Mood K, Park EK, Buchberg AM, Daar IO. Xpbx1b and Xmeis1b play a collaborative role in hindbrain and neural crest gene expression in Xenopus embryos [J]. Proc Natl Acad Sci USA, 2002, 99(8): 5448-53.
    Mahlapuu M, Enerba¨ck S, and Carlsson P. Haploinsufficiency of the forkhead gene Foxf1, a target for Sonic hedgehog signaling, causes lung and foregut malformations [J]. Development, 2001a, 128, 2397-2406.
    Mahlapuu M, Pelto-Huikko M, Aitola M, Enerba¨ck S, and Carlsson P. FREAC-1 contains a cell type-specific transcriptional activation domain and is expressed in epithelial–mesenchymal interfaces [J]. Dev. Biol, 1998, 202: 183-195.
    Major M L, Lepe R, Costa R H. Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators [J]. MolCellBiol, 2004, 24(7): 2649-2661
    Makita R, Mizuno T, Koshida S, Kuroiwa A, Takeda H. Zebrafish wnt11: pattern and regulation of the expression by the yolk cell and No tail activity [J]. Mech Dev, 1998, 71(1-2): 165-76.
    Mantovani R. The molecular biology of the CCAAT-binding factor NFY [J]. Gene, 1999, 239: 15-27.
    Marchitelli C, Savarese M C, Crisa A, Nardone A, Marsan P A and Valentini A. Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene [J]. Mamm Genome, 2003, 14: 392-395.
    Mariani F V and Harland R M XBF-2 is a transcriptional repressor that converts ectoderm into neural tissue [J]. Development, 1998, Vol 125, 24: 5019-5031.
    Marics I, Padilla F, Guillemot J F, Scaal M & Marcelle C. FGFR4 signaling is a necessary step in limb muscle differentiation [J]. Development, 2002, 129, 4559-4569.
    Massagué, J. How cells read TGF-β signals [J]. Nature Rev. Mol. Cell. Biol, 2000, 1: 169-178.
    Matsuzaki H, Daitoku H, Hatta M, et al. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation [J]. Proc Natl Acad Sci USA, 2005, 102 (32): 11278-11283.
    Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop D R, and Bradley A. Multiple defects and perinatal death in mice deficient in follistatin [J]. Nature, 1995, 374: 360-363.
    McPherron A C and Lee S J. Double muscling in cattle due to mutations in the myostatin gene [J]. Proc Natl Acad Sci USA, 1997, 94: 12457-12461.
    McPherron A C and Lee S J. Suppression of body fat accumulation in myostatin deficient mice [J]. J Clin Invest, 2002, 109: 595-601.
    McPherron et al. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member [J]. Nature, 1997, 387(6628): 83-90.
    Megeney L, Rudnicki M A. Determination versus differentiation and the MyoD family of transcription factors [J]. Biochem Cell Biol, 1995, 73, 723-732.
    Mei W, Yang J, Tao Q, et al. An interferon regulatory factor-like binding element restricts Xmyf5 expression in the posterior somites during Xenopus myogenesis [J]. FEBS Lett, 2001, 505: 47-52.
    Miner J H, Wold B. Herculin, a fourth member of the MyoD family of myogenic regulatory genes [J]. Proc. Natl. Acad. Sci. U. S. A, 1990, 87: 1089-1093.
    Mino J M. Serum response factor: toggling between disparate programs of gene expression [J]. J. Mol. Cell, Cardiol, 2003, 35: 577-593.
    Minty A, Kedes L. Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif [J]. Mol. Cell. Biol, 1986, 6: 2125-2136.
    Mizuseki K, Kishi M, Matsui M, Nakanishi S, Sasai Y. Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction [J]. Development, 1998, 125: 579-587.
    Molkentin J D, Black B L, Martin J F, Olson E N. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins [J]. Cell, 1995, 83:1125-36.
    Munsterberg A E, Kitajewski J, Bumcrot D A, McMahon A P and Lassar A B Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite [J]. Genes Dev, 1995, 9(23): 2911-22.
    Nabeshima Y K, Hanaoka M, Hayasaka M, Esumi E, Li S, Nonaka I. Myogenin gene disruption results in perinatal lethality because of severe muscle defect [J]. Nature, 1993, 364: 532-5.
    Neuhold L A, Wold B. HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. Cell [J], 1993, 74: 1033-42.
    Nicolas N, Gallien C L, Chanoine C. Expression of myogenic regulatory factors during muscle development of Xenopus: myogenin mRNA accumulation is limited strictly to secondary myogenesis [J]. Dev. Dyn, 1998a, 213: 309-321.
    Nicolas N, Mira J C, Gallien C L, Chanoine C Neural and hormonal control of expression of myogenic regulatory factor genes during regeneration of Xenopus fast muscles: myogenin and MRF4 mRNA accumulation are neurally regulated oppositely [J]. Dev. Dyn, 2000, 218: 112-22
    Niewkoop P D, Faber J. Normal Table of Xenopus laevis (Daudin). North-Holland, Amsterdam, 1967.
    Nishimura D Y, Searby C C, Alward W L, et al. A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye [J].Am J Hum Genet, 2001, 68(2): 364-372.
    Noden D M, Francis-West P. The differentiation and morphogenesis of craniofacial muscles [J]. Dev. Dyn, 2006, 235: 1194-218.
    Norris W, Neyt C, Ingham P W & Currie P D. Slow muscle induction by Hedgehog signalling in vitro [J]. J. Cell Sci, 2000, 113 (Pt 15), 2695-2703.
    Ochi H, Pearson B J, Chuang P T, Hammerschmidt M. & Westerfield M. Hhip regulates zebrafish muscle development by both sequestering Hedgehog and modulating localization of Smoothened [J]. Dev. Biol, 2006, 297: 127-140.
    Odenthal J, Nüsslein-Volhard C, Fork head domain genes in zebrafish [J]. Dev Genes Evol, 1998, 208: 245-258.
    Overdier D G, Porcella A, and Costa R H. The DNA binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix [J]. Mol. Cell. Biol, 1994, 14: 2755-2766.
    Ozaki H, Watanabe Y, Takahashi K, Kitamura K, Tanaka A, Urase K, et al. Six4, a putative myogenin gene regulator, is not essential for mouse embryonal development [J]. Mol Cell Biol, 2001, 21: 3343-50.
    Pani L, Overdier D G, Porcella A, Qian X, Lai E, and Costa R H. Hepatocyte nuclear factor 3 beta contains two transcriptional activation domains, one of which is novel and conserved with the Drosophila fork head protein [J]. Mol. Cell. Biol, 1992, 12: 3723-3732.
    Parker M H, Seale P, Rudnicki M A. Looking back to the embryo: defining transcriptional networks in adult myogenesis [J]. Nat. Rev. Genet, 2003, 4: 497-507.
    Parr B A, Shea M J, Vassileva G, and McMahon A P. Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds [J]. Development, 1993, 119: 247-261.
    Patapoutian A, Yoon JK, Miner JH, Wang Sl, Stark K, Wold B. Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome [J]. Development, 1995, 121, 3347-3358.
    Penn B H, Bergstrom D A, Dilworth F J, Bengal E, Tapscott S J. A MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation [J]. Genes Dev, 2004, 18: 2348-53.
    Pera M F, Reubinoff B, Trounson A. Human embryonic stem cells [J]. J Cell Sci 2000, 113: 5-10.
    Peter W.J. Rigby b, Simon M. Hughes Yao J, Lai E, and Stifani S. The winged-helix protein brain factor 1 interacts with groucho and hes proteins to repress transcription [J]. Mol. Cell. Biol, 2001, 21: 1962-1972.
    Pierrou S, Hellqvist M, Samuelsson L, Enerback S and Carlsson P. Cloning and characterization of seven human forkhead proteins: Binding site specificity and DNA bending [J]. EMBO J, 1994, 13, 5002-5012.
    Pohl B S, Knochel W. Overexpression of the transcriptional repressor FoxD3 prevents neural crest formation in Xenopus embryos [J]. Mech Dev, 2001, 103:93-106.
    Pourquie O, Cotley M, Breant C, LeDouarin N M. Control of somite patterning by signaling form lateral plate [J]. Proc Natl Acad Sci U S A, 1995, 92: 3219-23.
    Pourquie O, Cotley M, Teillet M A, Ordahl C, LeDouarin N M. Control of dorsoventral patterning of somitic derivaties by nochord and floor plate [J]. Proc Natl Acad Sci U S A, 1993, 90: 5242-6.
    Pourquie O, Fan C M, Cotley M, Hirsinger E, Watanabe Y, Breant C, et al. Lateral and axial signals involved in avian somite patterning: a role for BMP4 [J]. Cell, 1996, 84: 461-71.
    Qian X, and Costa R H. Analysis of hepatocyte nuclear factor-3 beta protein domains required for transcriptional activation and nuclear targeting [J]. Nucleic Acids Res, 1995, 23: 1184-1191.
    Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan R C, Melton D A. “Stemness”: transcriptional profiling of embryonic and adult stem cells [J]. Science, 2002, 298(5593): 597-600.
    Reifers F, Bohli H, Walsh E C, Crossley P H, Stainier D Y & Brand M. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain–hindbrain boundary development and somitogenesis [J]. Development, 1998, 25: 2381-2395.
    Relaix F, Rocancourt D, Mansouri A, Buckingham M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells [J]. Nature, 2005, 435: 948-53.
    Relaix F, Rocancourt D, Mansouri A, Buckingham M. Divergent functions of murine Pax3 and Pax7 in limb muscle development [J]. Genes Dev, 2004, 18: 1088-105
    Rescan P Y, Delalande J M, Gauvry L, Fauconneau B. Differential expression of two MyoD genes during early development of the trout: comparison with myogenin [J]. J. Fish Biol, 1999, 55 (Supplement A): 19-25.
    Rescan P Y, Gauvry L, Paboeuf G, Fauconneau B. Identification of a muscle factor related to MyoD in a fish species [J]. Biochim. Biophys. Acta, 1994, 1218: 202-204.
    Rescan P Y, Gauvry L, Paboeuf G. A gene with homology to myogenin is expressed in developing myotomal musculature of the rainbow trout and in vitro during the conversion of myosatellite cells to myotubes [J]. FEBS Lett, 1995, 362: 89-92.
    Rhee J W, Arata A, Selleri L, Jacobs Y, Arata S, Onimaru H, et al. Pbx3 deficiency results in central hypoventilation [J]. Am J Pathol, 2004, 165(4): 1343-50.
    Rhodes S J, Konieczny S F. Identification of MRF4: a new member of the muscle regulatory factor gene family [J]. Genes Dev, 1989, 3 (12B), 2050-2061.
    Ridgeway A G et al. Wnt signaling regulates the function of MyoD and myogenin [J]. J Biol Chem, 2000, 275(42): 32398-32405.
    Rissi M, Wittbrodt J, Delot E, Naegeli M, Rosa F M. Zebrafish Radar: A new member of the TGF-β superfamily defines dorsal regions of the neural plate and the embryonic retina [J]. Mechanisms of Development, 1995, 49: 223-234.
    Robson E J, He S J, Eccles M R. A PANorama of PAX genes in cancer and development [J]. Nat. Rev. Cancer, 2006, 6: 52-62.
    Rodriguez C, Huang L J, Son J K, McKee A, Xiao Z, and Lodish H F. Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-beta signaling [J]. J. Biol. Chem, 2001, 276: 30224-30230.
    Rong P M, Teillet M A, Ziller C, Le Douarin N M. The neural tube/notochord complex is necessary for vertebral but not limb and bodywall striated muscle differentiation [J]. Development, 1992, 115: 657-72
    Roux J, Pictet R and Grange T. Hepatocyte nuclear factor 3 determines the amplitude of the glucocorticoid response of the rat tyrosine aminotransferase gene [J]. DNA Cell Biol, 1995, 14: 385-396.
    Rowlerson A, Veggetti A. Cellular mechanisms of post-embryonic muscle growth in aquaculture species. Muscle Growth and Development [J], Fish Physiology, 2001, vol. 18. Academic Press, London, pp. 103-140.
    Roy S, Wolff C & Ingham P W. The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo [J]. Genes. Dev, 2001, 15: 1563-1576.
    Rudnicki M A, Braun T, Hinuma S, Jaenisch R. Inactivation of MyoD in mice leads to upregulation of the myogenic HLH gene Myf5 and results in apparently normal muscle development [J]. Cell, 1992, 71: 383-390.
    Rudnicki M A, Schnegelsberg P N, Stead R H, Braun T, Arnold H H, Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle [J]. Cell, 1993, 75: 1351-1359.
    Rudnicki M, Jaenisch R The MyoD family of transcription factors and skeletal myogenesis [J]. BioEssays, 1995, 17, 203-209.
    Sartorelli V,Webster K A, Kedes L. Muscle-specific expression of the cardiac alpha-actin gene requires MyoD1, CArG-box binding factor, and Sp1 [J]. Genes Dev, 1990, 4: 1811-1822.
    Sasai N, Mizuseki K, and Sasai Y. Requirement of FoxD3-class signaling for neural crest determination in Xenopus [J]. Development, 2001, 128: 2525-2536.
    Sasaki H, Hui C, Nakafuku M, and Kondoh H. A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro [J]. Development, 1997, 124: 1313-1322.
    Sassoon DA. Myogenic regulatory factors: dissecting their role and regulation during vertebrate embryogenesis (review) [J]. Dev. Biol, 1993, 156: 11-23.
    Schauerte H E, van Eeden F J, Fricke C, Odenthal J, Strahle U & Haffter P. Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish [J]. Development, 1998, 125, 2983-2993.
    Scheucher M, Dege P, Lef J, Hille S, Knfchel W. Transcription patterns of four different fork head/HNF-3 related genes (XFD-4, 6, 9 and 10) in Xenopus laevis embryos [J]. Roux’s Arch. Dev. Biol, 1995, 204: 203-211.
    Schienda J, Engleka K A, Jun S, Hansen M S, Epstein J A, et al. Somitic origin of limb muscle satellite and side population cells [J]. Proc. Natl. Acad. Sci. USA, 2006, 103: 945-50.
    Schier A F. Nodal signaling in vertebrate development [J]. Annu Rev Cell Dev Biol 2003, 19: 589-621.
    Schuddekopf, K., Schorpp, M. and Boehm, T. The whn transcription factor encoded by the nude locus contains an evolutionarily conserved and functionally indispensable activation domain [J]. Proc. Natl. Acad. Sci, 1996, 93(18): 9661-4.
    Schuelke M, Wagner K R, Stolz L E, Hubner C, Riebel T, Komen W, Braun T, Tobin J F and Lee S J. Myostatin mutation associated with gross muscle hypertrophy in a child [J]. N Engl J Med, 2004, 350: 2682-2688.
    Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H. Genetic control of flower development by homeotic genes in Antirrhinum majus [J]. Science, 1990, 250: 931-936.
    Sekimizu K, Nishioka N, Sasaki H, Takeda H, Karlstrom R O & Kawakami A. The zebrafish iguana locus encodes Dzip1, a novel zinc-finger protein required for proper regulation of Hedgehog signaling [J]. Development, 2004, 131: 2521-2532.
    Selleri L, Depew M J, Jacobs Y, Chanda S K, Tsang K Y, Cheah KSE, et al. Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation [J]. Development, 2001, 128: 3543-57.
    Selleri L, DiMartino J, Van Deursen J, Brendolan A, Sanyal M, Boon E, et al. The TALE homeodomain protein Pbx2 is not essential for development and long-term survival [J]. Mol Cell Biol, 2004, 24(12): 5324-31.
    Sharma M, Kambadur R, Matthews K G, Somers W G, Devlin G P, Conaglen J V, Fowke P J and Bass J J. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct [J]. J Cell Physiol, 1999, 180: 1-9.
    Shi D L et al. Zygotic Wnt/ β-Catenin signaling preferentially regulates the expression of Myf-5 gene in the mesoderm of Xenopus [J]. Dev Biol, 2002, 245 (1): 124-135.
    Shi X and Garry D J. Muscle stem cells in development, regeneration, and disease [J]. Genes Dev, 2006, 20: 1692-1708.
    Shore P, Sharrocks A D. The MADS-box family of transcription factors [J]. Eur. J. Biochem, 1995, 229, 1-13.
    Snider L, Thirlwell H, Miller J R, Moon R T, Groudine M, Tapscott S J. Inhibition of Tcf3 binding by I-mfa domain proteins [J]. Mol Cell Biol, 2001, 21(5):1866-73.
    Solter M, Kfster M, Hollemann T, Brey A, Pieler T, Knfchel W. Characterization of a subfamily of related winged helix genes XFD-12/12V/12U (XFLIP), during Xenopus embryogenesis [J]. Mech. Dev, 1999, 89: 161-165.
    Soulez M, Gauthier-Rouvière C, Chafey P, Hentzen D, Vandromme M, Lautredou N, et al. Growth and differentiation of C2 myogenic cells are dependent on serum response factor [J]. Mol. Cell. Biol, 1996, 16: 6065-6074.
    Spicer D B, Rhee J, Cheung W L, Lassar A B. Inhibition of myogenic bHLH and Mef2 transcription factors by the bHLH protein Twist [J]. Science, 1996, 272: 1476-80.
    Spitz F, Demignon J, Porteu A, Kahn A, Concordet J P, Daegelen D, et al. Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site [J]. Proc Natl Acad Sci USA, 1998, 95: 14220-5.
    Steiner A B, Engleka M J, Lu Q, Piwarzyk E C, Yaklichkin S, Lefebvre J L, Walters J W, Pineda-Salgado L, Labosky P A, Kessler D S. FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development [J]. Development 2006, 133: 4827-4838.
    Stern H M, Brown A M, and Hauschka S D. Myogenesis in paraxial mesoderm: preferential induction by dorsal neural tube and by cells expressing Wnt-1 [J]. Development, 1995, 121(11): 3675-86
    Stewart R A, Arduini B L, Berghmans S, George R E. Kanki J P, Henion P D, Look A T. Zebrafish foxd3 is selectively required for neural crest specification, migration and survival [J]. Developmental Biology, 2006, 292: 174-188.
    Stoiber W, Haslett J R, Goldschmid A, S?nger A M. Patterns of superficial fibre formation in the European pearlfish (Rutilus frisii meidingeri) provide a general template for slow muscle development in teleost fish [J]. Anat. Embryol. (Berl), 1998, 197, 485-496.
    Stroud J C, Wu Y, Bates D L, et al. Structure of the forkhead domain of FOXP2 bound to DNA [J]. Structure, 2006, 14 (1): 159-166.
    Sullivan S A, Akers L, Moody S A. FoxD5a, a Xenopus winged helix gene, maintains an immature neural ectoderm via transcriptional repression that is dependent on the C-terminal domain [J]. Dev. Biol, 2001, 232(2): 439-57.
    Sutton J, Costa R, Klug M, Field L, Xu D, Largaespada D A, Fletcher C F, Jenkins N A, Copeland N G, Klemsz M, and Hromas R. Genesis, a winged helix transcriptional repressor with expression restricted to embryonic stem cells [J]. J. Biol. Chem, 1996, 271, 23126-23133.
    Tajbakhsh S, Borello U, Vivarelli E, Kelly R, Papkoff J, Duprez D,Buckingham M and Cossu G. Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5 [J]. Development, 1998, 125(21): 4155-62.
    Tajbakhsh S, Buckingham M. The birth of muscle progenitor cells in the mouse: spatiotemporal considerations [J]. Curr. Top Dev. Biol, 2000, 48: 225-68.
    Tajbakhsh S, Rocancourt D and Buckingham M E. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice [J]. Nature, 1996, 384: 266-270.
    Tajbakhsh S. Stem cells to tissue: molecular, cellular and anatomical heterogeneity in skeletal muscle [J]. Curr Opin Genet Dev, 2003, 13: 413-422.
    Tan P B, Lackner M R, and Kim S K. MAP kinase signaling specificity mediated by the LIN-1 Ets/LIN-31 WH transcription factor complex during C. elegans vulval induction [J]. Cell, 1998, 93: 569-580.
    Tan X, Du S J. Differential expression of two MyoD genes in fast and slow muscles of gilthead seabream (Sparus aurata) [J]. Dev Genes Evol, 2002, 212: 207-217.
    Tan X, Zhang Y, Zhang P-J, et al. Molecular structure and expression patterns of flounder (Paralichthys olivaceus) Myf-5, a Myogenic regulatory factor [J]. Comp. Biochem. Physiol. B, 2006, 145: 204-213.
    Tan, X, Hoang L, Du S J. Characterization of muscle-regulatory genes, Myf5 and Myogenin, from striped bass and promoter analysis of muscle specific expression [J]. Mar. Biotechnol, 2002, (NY) 4: 537-545.
    Thayer M J, Tapscott S J, Davis R L,Wright W E, Lassar A B,Weintraub H. Positive autoregulation of the myogenic determination gene MyoD1 [J]. Cell, 1989, 58: 241-248.
    Thisse B, Heyer V, Lux A et al. Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening [J]. Meth. Cell Biol, 2004, 77: 505-519. Thisse C, Thisse B, Schilling T F, Postlethwait J H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos [J]. Development, 1993, 119: 1203-1215.
    Tiainen, M., Pajalunga, D., Ferrantelli, F., Soddu, S., Salvatori, G., Sacchi, A., Crescenzi, M., 1996. Terminally differentiated skeletal myotubes are not confined to G0 but can enter G1 upon growth factor stimulation. Cell Growth Differ. 7, 1039–1050.
    Tompers D M, Foreman R K, Wang Q, Kumanova M, Labosky P A. Foxd3 is required in the trophoblast progenitor cell lineage of the mouse embryo [J]. Dev. Biol, 2005, 285: 126-137.
    Treier M, O’Connell S, Gleiberman A et al. Hedgehog signaling is required for pituitary gland development [J]. Development, 2001, 128: 377-386.
    Tufan A C and Tuan R S. Wnt regulation of limb mesenchymal chondrogenesis is accompanied by altered N-cadherin-related functions [J]. Faseb J, 2001, 15: 1436-8.
    Van Auken K, Weaver D, Robertson B, Sundaram M, Saldi T, Edgar LUE, et al. Roles of the homothorax/Meis/Prep homolog UNC-62 and the Exd/Pbx homologs CEH-20 and CEH-40 in C. elegans embryogenesis [J]. Development, 2002, 129(22): 5255-68.
    Van Eeden F J, Granato M, Schach U. et al. Mutations affecting somite formation and patterning in the zebrafish, Danio rerio [J]. Development, 1996, 123: 153-164.
    Vandromme M, Gauthier-Rouvière C, Carnac G, Lamb N, Fernandez A. Serum response factor p67SRF is expressed and required during myogenic differentiation of both mouse C2 and rat L6 muscle cell lines [J]. J. Cell Biol, 1992, 118: 1489-1500.
    Varga Z M, Amores A, Lewis K E et al. Zebrafish smoothened functions in ventral neural tube specification and axon tract formation [J]. Development, 2001, 128: 3497-3509.
    vonBoth I, Silvestri C, Erdemir T, etal. Foxh1 is essential for development of the anterior heart field [J]. Dev Cell, 2004, 7(3): 331-345.
    Vorobyov E, Horst J. Getting the proto-Pax by the tail [J]. J. Mol. Evol, 2006, 63: 153-64.
    Wagner K, Mincheva A, Korn B, Lichter P, Popperl H. Pbx4, a new Pbx family member on mouse chromosome 8, is expressed during spermatogenesis [J]. Mech Dev, 2001, 103(1–2): 127-31.
    Wang J C, Waltner-Law M, Yamada K, Osawa H, Stifani S, and Granner D K. Transducin-like enhancer of split proteins, the human homologs of Drosophila groucho, interact with hepatic nuclear factor 3beta [J]. J. Biol. Chem, 2000, 275: 18418–18423.
    Wang Y, Jaenisch R. Myogenin can substitute for Myf5 in promoting myogenesis but less efficiently [J]. Development, 1997, 124(13): 2507-13.
    Wang Y, Schnegelsberg PNT, Dausman J, Jaenisch R. Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin [J]. Nature, 1996, 379: 823-825.
    Waskiewicz A J, Rikhof H A, Hernandez R E, Moens C B. Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning [J]. Development, 2001, 128: 4139-51.
    Waskiewicz A J, Rikhof H A, Moens C B. Eliminating zebrafish Pbx proteins reveals a hindbrain ground state [J]. Dev Cell, 2002, 3: 723-33.
    Wasserman W W, Fickett J W. Identification of muscle regulatory regions which confer muscle-specific gene expression [J]. J Mol Biol, 1998, 278: 167-81.
    Weinberg E S, Allende M L, Kelly C S, Abdelhamid A, Murakami T, Andermann P, Doerre O G, Grunwald D J, Riggleman B. Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos [J]. Development, 1996, 122: 271-280.
    Yamagata M, Noda M. Neurosci Lett. The winged-helix transcription factor CWH-3 is expressed in developing neural crest cells [J]. Neurosci Lett 1998, 249: 33-36.
    Yan J Z, Xu L S, Crawford G, et al. The forkhead transcription factor foxI1 remains bound to condensed mitotic chromosomes and stably remodels chromatin structure [J]. MolCell Biol, 2006, 26(1): 155-168
    Yang J, Mei W, Otto A, et al. Repression through a distal TCF-3 binding site restricts Xenopus Myf-5 expression in gastrula mesoderm [J]. Mech. Dev., 2002, 115: 79-89.
    Yaniv Hinits, Daniel P.S. Osborn , Jaime J. Carvajal. Mrf4 (myf6) is dynamically expressed in differentiated zebrafish skeletal muscle. Gene Expression Patterns, 2007, 7 738-745.
    Yao J, Lai E, and Stifani S. The winged-helix protein brain factor 1 interacts with groucho and hes proteins to repress transcription [J]. Mol. Cell. Biol, 2001, 21: 1962-1972.
    Yeo C Y, Chen X, and Whitman M. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis [J]. J. Biol. Chem, 1999, 274: 26584-26590.
    Yoshida S, Fujisawa-Sehara A, Taki T, Arai K & Nabeshima Y. Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts [J]. J. Cell Biol, 1996, 132: 181-193.
    Yuasa J, Hirano S, Yamagata M, Noda M. Visual projection map specified by topographic expression of transcription factors in the retina. Nature, 1996, 382: 632 -635.
    Zhang W, Behringer R R, Olson E N. Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies [J]. Genes Dev, 1995, 9, 1388-1399.
    Zhang Y, Tan X, Zhang P-J, et al. Characterization of Muscle-Regulatory Gene, MyoD, from Flounder (Paralichthys olivaceus) and Analysis of its Expression Patterns during Embryogenesis [J]. Mar Biotechnol (NY), 2006, 8 (2):139-48.
    Zhou S, Zawel L, Lengauer C, Kinzler K W, and Vogelstein B. Characterization of human FAST-1, a TGF beta and activin signal transducer [J]. Mol. Cell, 1998, 2: 121-127.
    Zhu Z, Miller J B. MRF4 can substitute for myogenin during early stages of myogenesis [J]. Dev Dyn, 1997, 209: 233-41.
    谭训刚。鱼类肌肉发育及成肌因子的进化。中国科学院博士论文,2003。
    王先磊。牙鲆rag基因的克隆与表达研究。中国科学院博士论文,2006。
    徐 芃。牙鲆成肌因子 Myogenin 和 MRF4 的研究。中国科学院博士论文,2007。
    Yamagata M, Noda M. Neurosci Lett. The winged-helix transcription factor CWH-3 is expressed in developing neural crest cells [J]. Neurosci Lett 1998, 249: 33-36.
    Yan J Z, Xu L S, Crawford G, et al. The forkhead transcription factor foxI1 remains bound to condensed mitotic chromosomes and stably remodels chromatin structure [J]. MolCell Biol, 2006, 26(1): 155-168
    Yang J, Mei W, Otto A, et al. Repression through a distal TCF-3 binding site restricts Xenopus Myf-5 expression in gastrula mesoderm [J]. Mech. Dev., 2002, 115: 79-89.
    Yaniv Hinits, Daniel P.S. Osborn , Jaime J. Carvajal. Mrf4 (myf6) is dynamically expressed in differentiated zebrafish skeletal muscle. Gene Expression Patterns, 2007, 7 738-745.
    Yao J, Lai E, and Stifani S. The winged-helix protein brain factor 1 interacts with groucho and hes proteins to repress transcription [J]. Mol. Cell. Biol, 2001, 21: 1962-1972.
    Yeo C Y, Chen X, and Whitman M. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis [J]. J. Biol. Chem, 1999, 274: 26584-26590.
    Yoshida S, Fujisawa-Sehara A, Taki T, Arai K & Nabeshima Y. Lysophosphatidic acid and bFGF control different modes in proliferating myoblasts [J]. J. Cell Biol, 1996, 132: 181-193.
    Yuasa J, Hirano S, Yamagata M, Noda M. Visual projection map specified by topographic expression of transcription factors in the retina. Nature, 1996, 382: 632 -635.
    Zhang W, Behringer R R, Olson E N. Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies [J]. Genes Dev, 1995, 9, 1388-1399.
    Zhang Y, Tan X, Zhang P-J, et al. Characterization of Muscle-Regulatory Gene, MyoD, from Flounder (Paralichthys olivaceus) and Analysis of its Expression Patterns during Embryogenesis [J]. Mar Biotechnol (NY), 2006, 8 (2):139-48.
    Zhou S, Zawel L, Lengauer C, Kinzler K W, and Vogelstein B. Characterization of human FAST-1, a TGF beta and activin signal transducer [J]. Mol. Cell, 1998, 2: 121-127.
    Zhu Z, Miller J B. MRF4 can substitute for myogenin during early stages of myogenesis [J]. Dev Dyn, 1997, 209: 233-41.
    谭训刚。鱼类肌肉发育及成肌因子的进化。中国科学院博士论文,2003。
    王先磊。牙鲆rag基因的克隆与表达研究。中国科学院博士论文,2006。
    徐 芃。牙鲆成肌因子 Myogenin 和 MRF4 的研究。中国科学院博士论文,2007。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700