用户名: 密码: 验证码:
不同浓度NaCl处理对盐地碱蓬营养器官内部结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物的耐盐机理非常复杂,涉及植物生理生化的很多方面,但生理生化的变化最终都体现在植物的形态解剖结构上,因此植物在适应盐渍环境的过程中,形成了自己独特的形态解剖特征。本实验通过对盐地碱蓬进行不同浓度的NaCl处理,之后通过石蜡切片观察、电镜观察,分析盐地碱蓬在适应盐渍生境过程中的形态结构变化。所得实验结果主要为:
     (1) 在盐胁迫下,肉质化程度增加,主要表现为同化组织和贮水组织的厚度增加。但随着NaCl浓度增加,同化组织厚度占叶厚的比重降低,而贮水组织厚度占叶的比重增加。另外随着NaCl浓度增加,单位叶面积上的表皮细胞个数减少,表皮细胞长度、宽度、高度变大,即表皮细胞变肥厚,对叶的肉质化也有很大作用。
     (2) 随盐浓度增加,叶片整体逐渐变得小而厚,叶表面积与体积的比值小,从而减少蒸腾面积,同时角质层变厚,单位面积上的气孔数目减少,气孔器面积减小,都可以使植物尽量降低蒸腾速率,减少体内水分散失。避免在高盐浓度中,植物体内水分的蒸腾消耗超过了植物根系从高盐环境中吸收的水分,而造成生理干旱。
     (3) 在盐胁迫下,维管束组织比重变大尤其是木质部明显变大,导管口径变大,导管数目也随之增多,NaCl浓度越高,促进作用越显著。叶片中输导组织的比重增加,既可以在一定的水分供应下,保证叶片中细胞获得充足的水分供应,同时保证一定的蒸腾拉力,以水分的蒸发来减少体内的盐分。导管口径变大,导管数增多尤其增强了上述作用
     (4) 在盐胁迫下,叶绿体中淀粉粒逐渐变大,叶绿体数目比对照增加。在50、100mH NaCl处理下,细胞中有些叶绿体的基质、基粒片层稍有变形,被膜界限出现模糊现象,类囊体出现膨大。200mM有些叶绿体中被膜破碎,基粒、基质片层界限非常混乱,类囊体结构扭曲,排列杂乱,淀粉粒轮廓模糊,有些叶绿体被膜向外突出,形成管泡状结构。400mM处理下有些叶绿体出现形状规则的结晶体,基质、基粒片层完全模糊,被膜消失,趋于解体。
     (5) 随盐浓度的增加,茎皮层细胞层数未发生明显的变化,但皮层厚度所占茎的比重增加,维管组织占茎的比重同皮层厚度与茎半径的比值表现出相同的趋势。
     (6) 随盐浓度的增加,茎的横向生长受到抑制,直径随盐浓度增加而明显降低,
    
     不同浓度NaCI处理对盐地碱蓬营养器官内部结构的影响
    维管组织直径,导管日径也随盐浓度升高而降低。
    * 随盐浓度升高,在 0亿00InM NaCI范围内根皮层半径的比重降低,维管束在
    根中的比重逐渐增加,但输导组织的比重呈下降趋势,具贮存功能的髓的发育得
    到促进,导管口径变小。
    侣)髓在对照中仅由有限数目的较小的薄壁细胞构成,髓的形状表现为长椭圆
    形,50、100、200、400InM NaCI处理下,髓中的薄壁细胞较大,细胞数目较多,
    髓呈“十” 字形,将初生木质部分割为四部分,这一特殊现象在前人的工作中
    尚未报道。
    O)根、茎、叶中的胞间隙或空腔紧密相连,使植物体上下贯通进行气体交换,
    从而保证盐地碱蓬在盐生环境中正常生长。
Plant responses to salt via a complex mechanism including many kinds of biochemical events, thus the plant displays singular structure during its adaptation to salt stress. The aim of the present investigation was to shed light on the mechanism of salt tolerance in plants by studying the different microstructure and ultratructure of tissues and organs of suaeda salsa and relating the differences in response to salinity at different concentration. The main results are shown as follows:
    1 Under NaCl stress, the succulent degree of leaves was enhanced, which was showed by measurement of well-developed palisade tissues, water-storing parenchyma and thick epidermis layer made of big parenchyma cells.
    2 Leaflets from plants grown in the increasing salt concentrations (up to 200mM) became smaller and thicker, leading to the smaller ratio between superficial area and mesophyll tissue volume. In the same process, the cuticle became thickness significantly increased while stomata became less in number and smaller in area.
    3 Growth of stellar tissue increased with the stimulation of NaCl, especially the xylem and its vessel.
    4 Comparing with control, bigger starch grains and more chloroplast were commonly found in the leaves of the salined surrounding. In addition, at the ultrastructure scale , there are evident differences in chloroplast. In lower salinity (50,100mM), the lamellae of stoma and grana in some chloroplast expanded lightly; the boundary of the chloroplast was dim. In higher salinity (200,400mM) the lamellae expanded remarkably, the membrane of the chloroplast was broken, some crystallinity
    
    
    was found in some chloroplast. There is also some compound vesicular structure in the mesophyll cells under salt stress.The results were discussed with regard to the mechanism by which the vesicular structure was produced.
    5 Layer number of cortical cells in stem wasn't changed evidently, however the ratio between cortical thickness and stem increased as well as the ratio between vascular cylinder and stem, up the gradient of NaCl concentration.
    6 Stem DM of suaeda salsa remarkably decreased with increasing NaCl concentration, so did the vessel DM of xylem in the stem.
    7 Within the range of 0-200mM NaCl concentration, the ratio between cortical thickness and root got lower; the growth of stele was stimulated; vessel DM decreased evidently .In stele , conducting tissue was reduced while the growth of pith was stimulated.
    8 The pith made of small parenchyma cells was long - oval, However the pith looked like a cross which devided the preliminary xylem into four parts was made of larger parenchyma cells.
    9 There are well-developed aerenchyma in suaeda salsa, including large sub -stomatal chambers and intercellular spaces in palisade layer, spaces produced by lysigenous breakdown of cortical cells in stem and roots.
引文
(1) 林栖凤,李冠一.植物耐盐性研究进展.(2000).生物工程进展.20(2):20-25.
    (2) Serrano R., Gaxiola K. (1994). Critical reviews in plant siences. 13(2): 121-138.
    (3) 王宝山,邹琦,赵克夫.(1997).高粱不同器官离子含量的影响.作物学报.26:848-850.
    (4) Greanway H.,,Munns R.(1980). Mechanisms of salt tolerance in nonhalophytes. Annu. ReV. Plant Physiol. 31:149-190.
    (5) Kinraide T.B.(1998). Three Mechanisms for the calcium alleviation of mineral toxiocities. Plant Physiol. 118:513-520.
    (6) Munns R. Termaat A. (1986). Whole-plant responses to salinity. Aust. J. plant Physiol, 13:143-160.
    (7) Storey R, Wyn Jones RG. (1979). Responses of Atriplex. spongiosa and Suaeda monoica to salinity. Plant Physiol. 63:156-162.
    (8) Hsiao TC.,Xu LK. (2000). Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J. Exp. Bot.51:1595-1616.
    (9) Allen JA. (1994). Intraspecific variation in the response of baldcypress, (Taxodium distichum) to salinity. Ph. D. Dissertation. Louisiana State University.Baton rouge. LA. USA. 183-184.
    (10) Waisel Y, Breckle SW.(1987). Diffences in responses of various radish roots to salinity. Plant Physiol. 114:191-194.
    (11) Bernstein N., Silk Wk., Lauchli A. (1993). Growth and Development of sorghum leaves under conditions of NaCl stress spatial and temporal aspects of leaf growth inhibion. Panta. 91:433-439.
    (12) Ponce G., Lujan R., Canpos ME., Reyes A., Nieto-Sotelo J. ,Feldman LJ., Cassab GI. (2000). Three maize root-specific genes are not correctly expressed in regenerated caps in the absense of the quiescent center. Planta. 211:23-33.
    (13) Munns R. (1993). Physiological processes limiting plant growth in saline soils:
    
    some dogmas and hypothesis. Plant cell Emiron. !6:15-24.
    (14) Munns R., Passiura JB., Guo J.,Chazeno, Cramer GR. (2000). Water relations and leaf expansion: importance of time scale. J. Exp. Bot. 51:1495-1504.
    (15) 杨明锋等.(2002).NaCl和KCl胁迫对碱蓬根和地上部分生长的效应.山东师范大学学报(自然科学版).17(1):68-72.
    (16) Flowers TJ., Troke Ji., Yeo AR. (1977)..The mechanism of salt tolerance in halophytes. Ann. Rev. Plant Physiol. 28: 89-121.
    (17) Maggio A., Reddy MP. Joly RJ. (2000). Leaf gas exchange and solute accumu-lation in the halophyte Sahadora persica grown at moderate salinity. Environ Exp. Bot. 44:31-38.
    (18) 刘左良,汪良驹.(1999).植物对盐胁迫的反应和耐盐性.植物生理与分子生物学(第二版)余叔文,汤章程主编.北京:北京科学出版社.752-769.
    (19) Jeschke WD. Pate JS. (1991). Cation and chloride partitioning through xylem and phloem within the whole plant of Ricinus communis L. under conditions of salt stress. T. EXP. BOT. 42:1105-1116.
    (20) Jeschke WD. Pate JS. (1987).Partitioning of K~+,Na~+,Mg~+ and Ca~(2+) through xylem and phloem to component organs of nodulated while lupin under wild salinity. J. Plant Physiol. 128:77-93.
    (21) 王宝山,邹琦.(2000).NaCl胁迫对高粱根、叶鞘和叶片液泡膜酶和焦磷酸酶活性的影响.植物生理学报.26:181-188.
    (22) 王宝山,邹琦,赵可夫.(2000).NaCl胁迫对高粱不同器官离子含量的影响.作物学报.26:848-850.
    (23) Ballesteros E., Blumwalt E.,Donaire JP., Belver A. (1997). Na~+/H~+ antiport activity in tonoplast vesicles isolated from sunflower roots induced by NaCl stress. Physiol Plant. 99:328-334.
    (24) Wang BS, Ratajczak R., Zhang JH. (2000). Activity, amount and subunit composition of vacuolar-type H~+-ATPase and H~+-PPase in wheat roots under severe
    
    NaCl stress. J. Plant Physiol. 157:109-116.
    (25) Zhu JK. Liu JP, Li MX. (1998). Genetic analysis of tolerance in arabidoxis evidence for a critical role of potassium nutrition. Plant Cell. 10:1181-1192.
    (26) Nakamura Y., Tanaka K.,Ohta E., Sakata M. (1990). Protective effect of external Ca~(2+) on elongation and the intracellular condition of K~+ intact muny bean roots under high NaCl stress. Plant Cell Physiol. 31: 815-821.
    (27) Kinraide TB. (1999). Interactions among Ca~(2+),Na~+ and K~+ in salinity toxicity: quantitative effects. J. Exp. Bot. 50:1495-1505.
    (28) Edward Glenn, Rachael Pfister, J.Jed Brown. (1996).Na~+ and K~+ accumulation and salt tolerance of Atriplex Canescens(Chenopodiaceae) genotypes. Journal of Batany. 83:997-1003.
    (29) Cheeseman J.M. (1985). An effect of Na~+ on K~+ uptake in intact seedlings of maize. Plant Phisiol. 64:243-246.
    (30) 贺志理,李锦树,汤章成.渗透胁迫对高粱根中K~+累积的刺激作用。植物生理学报.(1993).19(4):379-388.
    (31) 李景生,黄韵珠.(1995).浅述植物的耐盐生理.植物学通报.12(3):15-19.
    (32) Jeschke WD., Wolf D. (1988). External potassium supply is not required for root growth in saline conditions: experiment with Ricinus communis L. grown in a recipro-cal spli-root system. J. Exp. Bot. 39:1149-1167.
    (33) Weimberg R., Lemer HR.,Poljakoff- Mayer A. (1984). Changes in growth and water-soluble concentrations in sorghum bicolor stressed with sodium and potassium salts Plant. Physiol. 62:472-488.
    
    
    (34) Jeschke WD, Pate JS,Atkins CA. (1987). Partitioning of K~+,Na~+,Mg~(2+) and Ca~(2+) through Xylem and phloem to component organs of nodulated while lupin under mild salinity. J Plant Physiol, 128:77-93.
    (35) Wolf O., Jeschke WD. (1987). Modeling of sodium and potassium flows via phloem and xylem in the shoot of salt-stressed barley. J. Plant Physiol. 128:371-386.
    (36) Wimmers LE, Ewing NN., Benntt AB.(1992). Higher plant Ca~(2+)-ATPase: primary structure and regulation of mRNA abundance by salt. Proc Natl Aczd Sci.USA.89:9205-9209.
    (37) 赵克夫,范海.(2000).盐胁迫下真盐生植物与泌盐生植物的渗透调节物质及其贡献的比较研究.应用与环境学报.6(2):99-105.
    (38) Claes B., Dekeyestr R., Villarroel R., Van den Buleke M.,bauw G., Van Montagu M. and Caplan A.(1990). Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell. 2:19-27.
    (39) 陆静梅,李建东.(1994).角碱蓬解剖学研究.东北师范大学学报(自然科学版).3:104-107.
    (40) 陆静梅,李建东.(1994).两种不同生态环境植物解剖结构比较.东北师范大学学报(自然科学版).3:100-103.
    (41) 陆静梅,李建东.(1994).西伯利亚蓼解剖结构的扫描电镜观察.东北师范大学学报(自然科学版).3:83-87.
    (42) Valenti GS., Ferro M., Ferraro D., Riveros F.(1991). Anatomical changes in Prosopis tarnasingo Phil. seedings growing at different levels of NaCl salinity. Ann. Bot. 68:47-53.
    
    
    (43) Hajibagheri MA., Yeo AR., Flower TJ.(1985). Salt tolerace in Suaeda maritima(L.) Durn.:fine structure and ion concentration in the apical region of roots. New Physiol, 99:331-343.
    (44) Huang CX.,Van steveninck REM.(1990). Salinity induced structural changes in meristematic cells of barley roots. New Phytol, 115:17-22.
    (45) Rajua Saadeddin, Henk Doddema. 1986.Anatony of the extreme halophyte arthrocnemum fruticosum(L.)Moq. in relation to its physiology. Annals of botany. 57:531-544.
    (46) Mazal Solomon, esther gedalovich. A.M.Mayer. A.Pojakoff Mayber (1986). Changes induced by salinity to the anatomy and morphol;ogy of exised pea roots in culture. Annals of Botany. 57:871-818.
    (47) 王虹,邓彦斌,许秀珍,王东.(1998).新疆10种旱生、盐生植物的解剖与研究.新疆大学学报(自然科学版).4:69-73.
    (48) 贾恢先,赵曼容.(1985).几种典型盐地植物的显微镜结构的研究.植物学通报.3(3):49-51.
    (49) 杨德奎,秦月秋等.(1996).盐胁迫对白刺叶片结构的影响.山东师大学报(自然科学版).逆境植物研究专辑:97-100.
    (50) 陆静梅,李建东.(1994).松嫩草地五种耐盐植物叶表皮的解剖结构观察.东北师大学报(自然科学版).3:79-82.
    (51) 沈禹颖(1997).三种盐生境植物叶表的扫描电镜观察.草业学报.6(3):32-36.
    (52) 辛华,张秀芬,初庆刚.(1998).山东滨海盐生植物叶结构的比较研究.西北植物学报.18(4):584-589.
    
    
    (53) 肖雯,张振霞,贾恢先.(1997).典型盐地植物小獐毛的形态学研究.西北植物学报.17(6):1-4.
    (54) Peter S., Curtis, Andre Lauchli. (1987). The effect of moderate salt stress on leaf anatonny in Hibiscus cannabinus(kenaf) and its relation to leaf area. Amer. J. Bot.74(4):538-542.
    (55) 叶庆华,林鹏.(1995).两种盐度下桐花树叶肉细胞结构变化.厦门大学学报(自然科学版).34(1):104-107.
    (56) 贾恢先,赵曼容.(1990).典型盐地植物叶绿体超微结构的研究.西北植物学报.10(1):70-72.
    (57) 曲仲湘,程玉树,王焕校等.(1990).植物生态学[M].北京高等教育出版社.
    (58) Strogonov B.P.(1962).Fisiologithcheskie osnovg soleustoitchiv losti rastnii (physiological bases of salt tolerance in plants)[M].Moskra: Akademi Nauk SSSR. 291.
    (59) Waisel Y. (1972). Biology of hslophytes [M]. New York: Academic Press.127.
    (60) 刘家琼,蒲锦春,刘新民.(1987).我国沙漠中部地区不同生态类型植物的水分关系和早生结构比较.植物学报.29(6):662-673.
    (61) 黄志伟,彭敏,陈桂琛,史萍.(2001).青海湖盐碱湿地灰绿藜叶的形态解剖学研究.西北植物学报.2l(6):1199-1203.
    (62) Singh A. (1996). Growth, physiological and biochemical response of three tropical legumes to enhanced UV-B radiation[J]. Canadian Journal of Botany. 74(1):135-139.
    (63) 任昱坤.(1994).细叶车前叶片结构与环境研究.宁夏农学院学报.15(4):38.
    (64) 章英才,张晋宁.(2001).两种不同盐浓度环境中盐地碱蓬叶的形态结构特征研究.22(1):70-72.
    
    
    (65) 赵可夫.(1993).植物抗盐生理.北京:中国科学出版社.221-243.
    (66) 许玲,张伟.(1990).低温冷害对哈密瓜外部形态和细胞结构的影响.植物学报.32(10):772-776.
    (67) 李琪,王双.(1998).沙冬青叶肉细胞中液泡膜内陷特征的电境观察.电子显微学报.12(1):101.
    (68) Endress AG,,Sjolundrd. Ultrastructural cytology of callus cultures of Streptanthus tortuosus as affected by temperature. (1976). American Journal Botany. 63(9):1213-1224.
    (69) BlumenthalL-goldschmidts, Poljakoff-maybera. (1968). Effeact of salinity on growth and submicroscopic structure of Atriplex Leaves. Aust. J. Bot. 16:469-478.
    (70) 刘建国,赵可夫.(1991).盐度对碱蓬幼苗地上部分膜脂过氧化作用的影响.海洋与湖泊.22(6):579-582.
    (71) 龚明.(1989).盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系.植物学报.31(1):841-846.
    (72) Robertson G.A.,Loughmab B.C.(1974). Response to boron deficiencys a comparision with response produced by chemical methods of retarding root alongation. New York Phyiol. 73: 821-832.
    (73) 贾恢先,赵曼容.(1985).几种典型盐地植物显微和亚显微结构研究.植物学通报.3(3):49-51.
    (74) Greeway H, Osmond CB. (1972). Salt response of enzymes from species differing in salt tolerance.Plant Physiol. 49:256-259.
    (75) 韩善华.(1988).油菜叶肉细胞中特殊管泡状结构的形成及其与干旱的关系.西北植物学报.9(3):145-149.
    (76) 谷安根,陆静梅,王立军.(1993).维管植物演化形态学.长春:近邻科学出版社.139-148.
    (77) 简令成.(1987).植物冻害和抗冻性的细胞生物学研究[J].植物生理生化进展.5:1-16.
    (78) Fahn. A. (1994).Some anatomical adaptation of desert plant
    
    Phytomorpholog 14:93-102.
    (79) Reimold J.R.,A.W. Queen. (1974).Ecology of Halophytes. Academic press.New York.307-342.
    (80) 王勋陵.(1987).植物形态结构与环境.兰州:兰州大学出版社.69-72.
    (81) 李正理,李荣敖.(1981).我国甘肃九种旱生植物同化枝的解剖观察.植物学报.23(3):351-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700