用户名: 密码: 验证码:
新型醚类聚羧酸超塑化剂的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚羧酸系超塑化剂是一种能显著改善混凝土和易性和显著减少其拌合水量的新型化学外加剂。它掺量低,减水率高,增强效果显著,坍落度经时损失低,是21世纪高性能混凝土超塑化剂的研究热点。论文对醚类聚羧酸超塑化剂的合成及性能研究进行了以下工作:
     1.研究了经Willianmson反应制备甲氧基聚氧乙烯基烯丙基醚的合成条件,获得了用不同聚合度聚氧乙烯单甲醚(MPEG,n=17、29、45)合成的不饱和大分子单体(MAPEG)。
     2.以自制的大分子单体MAPEG(n=17、29、45)、顺(MA)及烯丙基磺酸钠(SAS)为共聚合反应单体,过硫酸铵(APS)为引发剂,设计合成了新型醚类聚羧酸超塑化剂(PC)。研究了引发剂用量,聚合反应温度、聚合时间等反应条件对产物分散性的影响;研究了分子结构中侧链长度对分散性和分散稳定性的影响;用正交实验对合成工艺进行了优化。结果表明,在聚合温度88℃左右,聚合7h的条件下:
     (1)采用聚合度n=17的大分子单体,最佳反应条件为:n_(SAS):n_(MA):n_(MAPEG)=2.0:4.0:2.5,引发剂用量为单体总质量的2%,掺加产物的水泥净浆流动度(水灰比W/C=0.29,掺量为0.3%,下同)为235mm。采用聚合度n=29的大分子单体,最佳反应条件为:n_(SAS):n_(MA):n_(MAPEG)=1.0:3.5:1.0,引发剂用量为单体总质量的5%,掺加产物的水泥净浆流动度为248mm。采用聚合度n=45的大分子单体,最佳反应条件为:n_(SAS):n_(MA):n_(MAPEG)=1.5:3.0:0.5,引发剂用量为单体总质量的7%,掺加产物的水泥净浆流动度为240mm。
     (2)将一定比例聚合度n=17和n=45的大分子单体混合后参与聚合反应,得到分子结构中含有不同侧链长度的产物,最佳单体配比:n_(SAS):n_(MA):n_(MAPEG)(n=17:45)=2.5:3.5:1.0(1:3),引发剂用量为单体总物质的量的5%,掺加聚合物的水泥净浆流动度达250mm。
     3.探索微波辐射法合成醚类聚羧酸超塑化剂,研究辐射功率和时间对共聚物结构和性能的影响。在单体配比为n_(SAS):n_(MA):n_(MAPEG)(n=29)=1.0:3.5:1.0,引发剂用量为单体总质量5%时,采用辐射功率260W辐射6min,或辐射功率130W辐射8~10min,可获得掺加聚合物的水泥净浆流动度稳定在230mm左右的产物。
     4.用特性粘数、红外光谱对所合成醚类聚羧酸超塑化剂进行结构表征;测定了产物的表面张力及其在水泥—水体系中ζ电位,观测了硬化水泥和硬化混凝土的微观形貌,测定了掺加产物的新拌混凝土的减水率及硬化混凝土的抗压强度。结果表明:醚类超塑化剂的特性粘数在2.431×10~(-2)dL·g~(-1)~3.042×10~(-2)dL·g~(-1)范围内时,性能较好。相同实验条件下,微波辐射聚合产物特性粘数较小。分子结构中含有不同侧链长度的PC的ζ电位绝对值增大幅度比单一侧链聚合度PC大;掺加PC(n=17:45)0.3%时,混凝土减水率达23.7%,28天抗压强度比达到163%。
Polycarboxylic acids superplasticizers,a kind of new chemical admixtures,can improve the concrete's workability obviously and reduce the dosage of water.The advantages of low admixing dosage,high water reducing rate,high performance in reinforcing and low slump loss cause them to hit the research area in 21st century.The work on synthesis and performances of ether type polycarboxylic acid superplasticizer was showed as follow.
     1.Different degree of polymerization macromonomers monomethoxy-poly(ethylene glycol) allyl ether(MAPEG,n=17,29,45) were obtained by Willianmson reaction, and the reacting conditions of preparing MAPEG were studied.
     2.New type of Polycarboxylic acid superplasticizers(PC) were designed and synthesized by using self-made macromonomers MAPEG(n=17,29,45),maleic anhydride(MA) and sodium allyl sulphonate(SAS) as copolymerization monomer, ammonium persulfate(APS) as the initiator.The effects of initiator and polyreaction time and temperature on dispersing capability of the superplasticizers were studied, and the length of side-chain on dispersing capability and dispersion stability of the superplasticizers were studied also.The optimum synthesis condition(88℃,7h) by orthogonal experiment was obtained.
     (1) Superplasticizer with the fluidity on cement slurry 235mm at the dosage of 0.3% and water to cement mass ratio of 0.29 was obtained at the optimum ratio of monomers of n_(SAS):n_(MA):n_(MAPEG)=2.0:4.0:2.5(mole ratio) and initiator 2%while using MAPEG(n=17);and that 248mm at the optimum ratio of monomers of n_(SAS):n_(MA): n_(MAPEG)=1.0:3.5:1.0(mole ratio) and initiator 5%while using MAPEG(n=29);and that 240mm at the optimum ratio of monomers of n_(SAS):n_(MA):n_(MAPEG)=1.5:3.0:0.5(mole ratio)and initiator 7%while using MAPEG(n=45).
     (2) Superplasticizer with different length side-chain using mixed MAPEG(n=17,n=45) as macromonomer and fluidity on cement slurry 250mm at the dosage of 0.3%and water to cement mass ratio of 0.29 was obtained at the optimum ratio of monomers of n_(SAS):n_(MA):n_(MAPEG)(n=17:45)=2.5:3.5:1.0(1:3) and initiator 5%.
     3.New type of polycarboxylic acid superplasticizer was synthesized under microwave irradiation,and effects of irradiation time and irradiation power on the molecular structure and performances of superplasticizer were studied.Under conditions of n_(SAS):n_(MA):n_(MAPEG)(n=29)=1.0:3.5:1.0 and initiator 5%,irradiation power 260W for 6min, or 130W for 8~10min,superplasticizer with the fluidity on cement slurry 230mm at the dosage of 0.3%and water to cement mass ratio of 0.29 was obtained.
     4.The structures of superplasticizers synthesized were characteristed by intrinsic viscosity and infrared spectrum analysis.The surface tensionin andζpotential in the system of cement-water of superplasticizers were tested,and water reducing rate, solid cement compressive strength after adding superplasticizers are tested also.The hardened cement and concrete morphology sclerosis are observed by SEM.
     The results showed that the intrinsic viscosities of superplasticizers with good capability may range from 2.431×10~(-2)dL·g~(-1) to 3.042×10~(-2)dL·g~(-1).At the same reacting condition,the vaules of intrinsic viscosity by microwave radiation are less than normal heating.The extent of increasingζabsolute value of superplasticizer with defferent length side-chain is higher than that of with homogeneous length side-chain. The superplasticizer with mixed side-chain(17:45=3:1) got the performances of water reducing ratio of 23.7%and compressive strength ratio of 163%(28d) at the dosage of 0.3%.
引文
[1]陈建奎.混凝土外加剂原理与应用(第二版)[M],北京:中国建筑工业出版社,2004:1-6
    [2]陈文豹.混凝土外加剂及其在工程中的应用[M].北京:中国建筑工业出版社,1998:1-37
    [3]蒋亚清.混凝土外加剂应用基础[M].化学工业出版社,2004:97-114
    [4]K.Yoshioka,E.Sakai,M.Daimon et al.Role of steric hindrance in the performance of superplasticizers for concerte,J.Am.Ceram.Soc.1997,80(10):2667-2671
    [5]冉千平,游有鳃,周伟玲.聚羧酸类超塑化剂现状及研究方向[J].化学建材,2001,12:25-27
    [6]张恂,顾丽瑛,张洪涛.国内聚羧酸系高性能减水剂的合成及研究状况[J].胶体与聚合物,2007,25(2):45-47
    [7]李崇智,李永德,陈荣军等.聚羧酸系高性能减水剂的合成与性能[J].化学建材,2002,(2):3-6
    [8]公瑞煜,肖传健,徐诗强等.聚羧酸型梳状共聚物超分散剂的构性关系研究[J].高分子材料科学与工程,2003,19(1):132-135
    [9]郭睿,朱军峰,李慧等.聚羧酸高效减水剂的分子设计与合成及性能表征[J].新型建筑材料,2005(8):11-14
    [10]游长江等.聚羧酸系高效减水剂的研究进展[J].高分子材料科学与工程,2003(2):4-38
    [11]李崇智,冯乃谦,李永德.聚羧酸类高性能减水剂的研究进展[J].化学建材,2001(6):38-41
    [12]杨修明,王智,王华.聚羧酸系超塑化剂的最新研究进展[J].混凝土,2006(8):38
    [13]廖国胜,王劲松,马保国等.新型聚羧酸类化学减水剂合成的几个关键问题研究探讨[J].国外建材科技,2004,(2):48-51
    [14]廖国胜,刘其华.新型聚羧酸类化学减水剂合成路线探讨[J].国外建材科技,2006,27(4):63
    [15]卞荣兵,沈健.聚羧酸混凝土高效减水剂的合成和研究现状[J].精细化工,2006,23(2):181
    [16]Kazuo Yamada,Tomoo Takahashi.Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer[J].Cement and Concrete Research,2000,(30):197-207
    [17]E Sakai,et al.Action mechanisms of comb-type superplasticizers containing grafted polyethylene oxide chain[A].Sixth CENMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete[C].USA:American Concrete institute,2000,75-89
    [18]Etsuo Saka,et al.Dispersion mechanisms of comb type superplasticizer containing grafted poly(ethylene oxide) chains[J].Macromol.Symp.2001,175(3):367-376
    [19]中军,傅乐峰,沈军等.聚羧酸高效减水剂的结构与性能关系研究[J].化学建材,2006,22(2):39
    [20]M Kinoshita,et al.Effect of chemical structure on fluidizing mechanism of concrete superplasticizer containing polyethylene oxide graft chain[A].Sixth CENMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete[C].USA:American Concrete institute,2000,163-179
    [21]ChongZhi Li,etal.Effect of polyethylene oxide chains on the performance of polyethylene type water-reducers[J].Cement and Concrete Research,2005,30(8):867-873
    [22]T.nawa,et al.The effects of chemical structure of superplasticizers on the fluidity of cement pastes and the hydration of cement,Semento,Konkuritou Ronbunshu,1999(53):751
    [23]李崇智,冯乃谦,李永德.聚羧酸系减水剂结构与性能关系的试验研究[J].混凝土,2002(4):3
    [24]公瑞煜,李建蓉,肖传健等.聚羧酸型梳状共聚物超分散剂的构性关系[J].化工学报,2002,53(11):1143-1147
    [25]Tanaka Y,et al.U.S.5661206(1997)
    [26]Etsuo Sakai,et al.Molecular structure and dispersion adsorption mechanisms of comb type superplasticizers used in Japan[J].Journal of Advanced Concrete Technology,2003,1(1):16-15
    [27]Johann Plank.当今欧洲混凝土外加剂的研究进展[A].混凝土外加剂及其应用技术[C].北京:机械工业出版社,2004:13-22
    [28]王明丽,管学茂,张家彬.聚羧酸系高效减水剂合成工艺研究现状[J].混凝土,2007(6):67
    [29]T.Hirata,et al.Cementitious composition acrylic copolymers[P].EP0792850A1,1997
    [30]刘彤,王冬梅,柳勇臻.PSL低塌落度损失缓凝高效减水剂的研制[J].化学建材,1999,(2):38-40
    [31]Shunsuke Hanehara,et al,Interaction between cement and chemical admixture from the point of cement hydration,absorption behaviour of admixture,and paste rheology[J].Cement and Concrete Research,1999(8):1159-1165
    [32]赵石林,岳阳,黄小彬.聚羧酸盐多元共聚物高效减水剂的研制[J].化学建材,2000,(4):37-39
    [33]Edward T.Shawl and Xinhan zhou.Method of making a water reducing additive for cement[P].US5985989,1999
    [34]Valenti,Salvatore,Chemically treated anhydride copolymers and cementitious mixtures containing the copolymers[P].US:5158996,1992
    [35]Ohtsu Kimiyo et al,Dispersing Agent and Cement Admixture[P].JP:9012642,1993
    [36]Ferrari G,Gerulli T et al.羧酸酯超塑化剂中羧酸与羧酸酯比率对水泥混合物性能的影响[A].见:中国混凝土外加剂协会.第六届超塑化剂及其他混凝土外加剂国际会议论文译文集(上)[C].法国尼斯,2000:324-332
    [37]廖兵,何靖,庞浩.一种聚醚接枝聚羧酸型混凝土减水剂的制备方法[P],公开号CN1712381A.
    [38]吴绍祖,郭新秋.共聚羧酸类高效混凝土减水剂[P].公开号CN1600736A
    [39]李崇智,冯乃谦,王栋民等.梳形聚羧酸系减水剂的制备、表征及其作用机理[J].硅酸盐学报,2005(1):97-92
    [40]沈军,傅乐峰,沈中军等.聚醚基超塑化剂的合成及其性能研究[J].混凝土,2005(6):61-64
    [41]寿崇琦,康洁分,宋南京等.含不饱和聚醚的新型聚羧酸类减水剂的合成与应用[J].混凝土,2007(1):59-63
    [42]张晓梅,韩姗姗.微波辐射梳形聚羧酸共聚物合成及其分散性能[J].石油化工,2006,35(12):1175-1178
    [43]郭新秋,方占民,王栋民.共聚羧酸超塑化剂的合成与性能评价(第一部分)[J].应用基础与工程科学学报.2002,10(3):219-225
    [44]陈建奎.混凝土外加剂的原理与应用[M].北京:中国计划出版社,1997:53-55
    [45]左彦峰,王栋民,隋同波.超塑化剂作用机理初探[J].混凝土,2004(4):11-14
    [46]Christopher M,Neubauer,Yang M,etal.Interparticle potential and sedimentation behavior of cement suspensions:Effects of admixtures[J].Advn Cem Bas Mat,1998,8(1):17-21
    [47]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学出版社,1999,1-2
    [58]何德林,王锡臣.微波技术在聚合反应中的应用研究进展[J].高分子材料科学与工程,2001,17(1):20-24
    [49]张玉平等.微波技术在高分子合成中的应用[J].化工进展,2007(6):834-837
    [50]Bram G,Loupy A,Majdoub M.Microwave iradation plus solid lquid Phase transefer catalysis without solvent:Further imProvement anionic activation[J].Synth.Commun,1990,20(2):125-129
    [51]李杰,赵建青.微波作用下的甲基丙烯酸甲酯的本体聚合[J].高分子材料科学与工程,1999,15(2):155-156
    [52]路建美,朱秀林,朱健.马来酸的微波固相聚合研究[J].高分子材料科学与工程,1999,15(1):158-160
    [53]Marry M,Charlesworth D,Swires L,et al.J Chem Soc Farady Trans,1994,90:1999
    [54]包建军,张爱民.微波聚合制备单分散、超细聚甲基丙烯酸甲酯微球[J].功能高分子学报,2003,3(16):59-64
    [55]顾梅,朱秀林,路建美.丙烯酰胺的微波聚合研究[J].高分子材料科学与工程,1997,13(5):36-39
    [56]冯芳,田丰,赵斌元等.微波合成技术应用于壳聚糖功能材料研究的进展[J].功能高分子学报,2002,16(3):412-416
    [57]Shadpour E,Mallakapour,Abdol-Reza H,et al.Eur Polym,J.2001,37:119
    [58]李冬梅,武海良,吴长春等.微波场中淀粉-丙烯酸接枝浆料浆纱性能的研究[J].纺织科学研究,2004,3:27
    [59]Vandana Singh a,Devendra Narayan Tripathi,Ashutosh Tiwari,et.al.Microwave synthesized chitosan-graft poly(methylmeth -acrylate):An efficient Zn ion binderCarbohydrate Polymers 65(2006)35-41
    [60]Saburo Moriwaki,Motoi Machida,Hideki Tatsumoto,et.al.Dehydrochlorination of poly(vinyl chloride) by microwave irradiation Applied Thermal Engineering.26(2006) 745-750
    [61]张晓梅,邓成刚,朱宗君等.聚羧酸型超塑化剂研究进展[J].现代化工,2002,22(S1):82-84
    [62]张晓梅,邓成刚,朱宗君等.聚羧酸型梳状共聚物的合成及对水泥塑化效果研究[J].新型建筑材料,2005,(4):43-46
    [63]韩操,张晓梅.聚羧酸系超塑化剂的合成及性能研究[J].云南化工,2007,34(1):40-43
    [64]GB/T7383-97,非离子表面活性剂聚烷氧基化衍生物羟值的测定邻苯二甲酸
    [65]李崇智,李永德,冯乃谦.聚竣酸系减水剂的合成工艺研究[J].建筑材料学报,2002,5(4):326-329
    [66]冯开才,李谷,符若文等编.高分子物理实验[M].北京:化学工业出版社,2004,12-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700