用户名: 密码: 验证码:
锌基复合絮凝剂的制备与应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
絮凝剂是重要的水处理材料。国内外主要使用铝盐和铁盐絮凝剂。由于铝盐絮凝剂效率较低且存在环境问题,铁盐存在严重的腐蚀性。因此,目前世界上絮凝剂的研究主要向着高效低耗、安全无害、无二次污染的方向发展,而复合絮凝剂被认为是未来絮凝剂的发展方向之一。本研究利用硫酸锌等为原料,研究了絮凝效果好、能部分取代有机高分子絮凝剂、无毒及安全无害化的锌基复合絮凝剂的制备与絮凝作用机理,为应用锌基絮凝剂作了有益的探索和努力。
     主要研究内容有:无机高分子复合絮凝剂聚硅酸锌(PZSS)的研究;无机/有机复合絮凝剂锌基淀粉改性物(Zn-CSM)的研究;无机-有机杂化絮凝剂锌基聚丙烯酰胺(H-ZnPAM)的研究。这些均包括了制备、絮凝机理、絮凝效果的研究及水处理应用试验等。主要研究成果如下:
     (1)制备了聚硅酸锌(PZSS)。
     研究结果表明:SiO_2含量为1.3%~2.2%,Zn/Si摩尔比为1.0~2.0,PZSS的pH值为1.5~2.0,硅酸活化时间在l~2h,可获得絮凝性能优良且稳定性较好的絮凝剂。
     在絮凝作用机理的研究方面,利用微电泳等技术探索了PZSS的絮凝作用机理,揭示了絮凝作用的优势形态,为絮凝剂的研制开发提供了依据。通过研究聚合硅酸(PSA)及PZSS的pH变化等规律发现:在制备初期,PZSS并未达到化学平衡状态,而是存在一个相互作用、自行调整聚合的过程,表现在其pH值存在一个变化过程。IR、X-射线衍射以及TEM等研究表明:PZSS不是Zn~(2+)、PSA的混合,而是复合。PZSS的聚合形态结构取决于SiO_2含量、Zn/Si摩尔比、聚合时间、pH值等的大小。PZSS体系中的硅酸、聚硅酸、锌羟基、硅羟基等各成分间存在着相互作用。Zn~(2+)与共存的PSA起螯合(络合)反应生成锌硅聚合物。锌与硅酸的络合作用,以及高分子量的PSA有较强的吸附架桥功能,有利于增强絮凝剂的絮凝性能。
     对PZSS中硅的形态分布与转化规律,通过Si-Mo逐时络合比色法研究表明:pH值(0.8)较低时,陈化一定时间后,在PZSS中的PSA主要是高聚体或凝胶态(Sic);pH值(1.5, 2.0)较高时,陈化一定时间后,PZSS中的PSA中聚体(Si_b)含量比低pH值(0.8)时要高。通过絮凝性能研究得出:PZSS在pH值为1.5和2.0时絮凝效果比低pH值(0.8)时更好,由此证明,PZSS中PSA的优势絮凝形态为中聚体(Si_b)。
     ζ电位研究表明:PZSS的电荷特性受pH值、SiO_2含量及Zn/Si摩尔比等因素影响。PZSS的电中和作用不太显著,其絮凝作用机理,表现出较明显的吸附架桥和网捕卷扫特征。
     (2)采用ZnSO_4·7H_2O与有机阳离子改性淀粉合成了锌基淀粉改性絮凝剂(Zn-CSM)。
     通过正交对比实验等,获得了制备Zn-CSM的最佳工艺条件:①环氧氯丙烷与二甲胺摩尔比为1.5:1,反应温度选择为65~70℃,反应时间3h,交联剂为乙二胺,合成阳离子聚环氧氯丙烷-二甲胺(CF);②用NaOH预胶化淀粉,再利用CF对预胶化淀粉淀粉进行改性,制得阳离子改性淀粉(CSM):NaOH加量为淀粉干基的4%,预胶化温度为65℃,预胶化时间为2h,CF与改性淀粉有效质量比为1.8:1,接枝温度50℃,反应时间为2h;③利用硫酸锌与CSM合成了Zn-CSM:调整CSM的pH值为5.0左右,硫酸锌与CSM的质量比为1:1,反应温度45℃,聚合反应时间3h。
     由絮凝试验及TEM可知:Zn-CSM的最佳絮凝pH范围为6.0~9.0,最佳絮凝形态是产生Zn(OH)_4~(2-)后在此基础上进一步聚合成带正电的锌基高聚物。综合分析表明,其优异的絮凝性能是由其特殊的分子结构决定的,是电性中和与吸附架桥、网捕卷扫协同作用的结果。
     (3)基于对无机/有机复合絮凝剂的系统研究,本课题采用原位聚合法合成了无机-有机杂化絮凝剂:氢氧化锌-聚丙烯酰胺离子键型杂化絮凝剂(H-ZnPAM)。
     通过IR、粘度、电导、TEM和TGA等手段对H-ZnPAM进行了表征,表明得到的H-ZnPAM是离子键结合的杂化PAM。并系统考察了氢氧化锌的粒径、用量等因素对原位聚合的影响:在原位聚合的过程中,随着氢氧化锌颗粒粒径和用量的增大,H-ZnPAM的特性粘数均呈现先升高而后下降的趋势。
     采用粘度法对H-ZnPAM的稀溶液性质进行了系统研究。实验表明在稀溶液状态下,与纯PAM不同,H-ZnPAM的粘度行为偏离Huggins方程。即H-ZnPAM的η_(sp)/C~C曲线呈向下转折。并研究了H-ZnPAM的特性粘数(分子量)、无机物粒径和无机物用量等因素对稀溶液粘度偏离行为的影响,结果表明η_(sp)/C~C曲线开始下折时的浓度C_η,随H-ZnPAM中无机物粒径和用量增加而增大,随H-ZnPAM特性粘数(分子量)的升高而降低。采用电导法研究了H-ZnPAM在稀溶液中的电离行为。研究结果表明H-ZnPAM的K~C关系曲线呈非线性行为,存在转折似平台现象。定义K~C曲线开始呈平台下折时的浓度为C_K,则H-ZnPAM的特性粘数(分子量)、无机物粒径和用量等因素对C_K的影响规律类同于对C_η值的影响规律。
     应用高分子溶液的团簇理论研究了杂化絮凝剂的絮凝机理,稀溶液中高分子链团簇的形成是产生最佳絮凝的必要条件。絮凝剂H-ZnPAM的杂化结构既有利于发挥无机絮凝剂的电中和、吸附及有机絮凝剂的架桥作用,又有利于聚合物链团簇的形成。研究表明,高分子絮凝剂最佳加量(C_(od))与高分子稀溶液动态接触浓度(CS)和硅藻土悬浮液浓度(C_(SS))之间存在线性依赖关系,即C_(od)=5.8×10~(-2)·(CS·C_(SS))~(0.5)-4.1,揭示了高分子稀溶液分子链的聚集状态与絮凝效果之间的内在联系。
     (4)将锌基絮凝剂应用于实际稠油废水和含油污泥。
     锌基絮凝剂对实际稠油废水比传统絮凝剂PAC、PFS等具有较好的絮凝效果,其中以杂化絮凝剂具有最低加量和较好的絮凝效果,杂化絮凝剂形成的絮体密实且具有较高的抗剪切性能。将锌基絮凝剂用于稠油废水的絮凝处理,与过滤等结合后,出水水质可以达到回用于热采注汽锅炉的要求。对含油污泥絮凝脱水实验中,经絮凝脱水后,H-ZnPAM及PZSS絮凝的污泥比阻抗最低,热值提高为原来的40倍,污泥密实,成型容易,剥离性能好,能够更有效焚烧,节省了处理成本。可以预见,锌基絮凝剂在废水处理中具有良好的应用前景。
Flocculants are the important materials in water treatment. At present, flocculants based on aluminum and ferric salts are chiefly used abroad and in China. Because of low efficiency and environment problems by the aluminum salt, and the corrosion by ferric salt, in the world, the research and application of flocculants are required to develop to high efficiency, low consumption, safety, harmlessness and non-second pollution. The composite flocculants are one of important development trends in future. In this paper, ZnSO_4·7H_2O has been used as the materials to study the preparation and flocculation theory of composite flocculant based on zinc with higher flocculation efficiency, partly replacing the organic synthesis polymer flocculants, non-toxicity and environment-friendly. The main researches of this paper are: the study of inorganic polymer composite flocculant - poly silicate zinc sulfate (PZSS), inorganic-organic composite flocculant (Zn-CSM) based on zinc sulfate and cationic starch-modified, inorganic-organic hybrid flocculant (H-ZnPAM) on the basis of zinc hydroxide [Zn(OH)_2] in nanometer size and polyacrylamide (PAM). They all include the investigations of preparation, flocculation mechanism, flocculation effect, wastewater treatment application and so on.
     (1)The studies of PZSS are summarized as following:
     The researches about PZSS showed that the percentge of SiO_2 was between 1.3~2.2 %, the molar ratio of zinc to silicon was between 1.0~2.0, the pH value of PZSS was 1.5~2.0, the polymerization time of silicic acid was between 1~2 hours, the flocculant had excellent flocculation and better stability.
     The flocculation theory of PZSS was probed with micro-electrophoresis technology which revealed the advantageous configuration and provided the science basis for researching the flocculants. By studying the pH value change rules of PSA and PZSS, it was found that in the initial stages of preparation, their reaction was not in equilibrium but was in the process of interaction and adjust to aggregate by self, which was exhibited that there existed a changing process of pH value. The results of IR, XRD and TEM proved that the reaction was not the simplex physical blend, but the chemical reaction forming the inorganic polymer with special structure. The structure of PZSS are lied on the concentration of SiO_2, molar ratio of Zn/Si, polymerization time, pH value and so on. There are some interactions between silicic acid, PSA, zinc hydroxide radicle and silicic hydroxide radicle. Zn~(2+) and hydrolyzed ion are chelated with polysilicic acid to produce the polymer of zinc-silicon. The chelation of Zn~(2+) with PSA, and the macromolecule PSA with stronger adsorption and bridge function can help to boost up the flocculation performance of flocculants.
     The researches about the species distribution and transformation of PZSS by Si-Mo timed complexation for colorimetric method displayed that the high aggregate species (Sic) was in PZSS at low pH value (0.8) after depositing for some days; the content of Si_b in PZSS with higher pH value (1.5 and 2.0) was more than that in PZSS with lower pH value. It was proved from the flocculation experiments that the optimum species in PZSS for flocculation was Si_b, and PZSS at pH 1.5 and 2.0 had better flocculation efficiency than at lower pH value of 0.8.
     Zeta (ζ) potential investigations showed that the charge characteristics of PZSS changed with pH value, concentration of SiO_2, Zn/Si molar ratio of f1occulants, and so on. The flocculation mechanism of PZSS does not display the prominent charge neutralization ability, but reveals the obvious effects of absorption-bridging and net-sweeping.
     (2)The new type of inorganic-organic composite flocculant named cationic starch-modified with zinc radicel was prepared with ZnSO_4·7H_2O and cationic starch-modified.
     The optimal procedure was determined by orthogonal experiments and so on. The reaction conditions are as following:①The cationic polymer (CF) was prepared with ethylene diamine as the cross-linking agent at the molar ratio n(epichlorohydyin)/n(organic amine) 1.5:1 and 65~70℃for 3 h;②Starch was preliminary gelled with 4 % NaOH at 65℃for 2 h; the cationic starch-modified (CSM) was inarched at 50℃and the weight ratio (CF/starch) 1.8:1 for 2 h;③The inorganic-organic composite flocculant of cationic starch-modified with zinc radicel (Zn-CSM) was synthesized with ZnSO_4·7H_2O and CSM at the optimum conditions: pH value of CSM was adjusted to 5.0 with the weight ration of ZnSO_4·7H_2O/ CSM 1:1 at 45℃for polymerizing 3 h.
     It was known by flocculation experiments, microphotometric method and TEM for Zn-CSM that the optimum range of flocculation pH value was between 6.0~9.0 and the optimal flocculation species was the complex zinc hydrolysis polymer with positive charge after forming [Zn(OH)_4]~(2-). The analysis results indicated that the excellent flocculation capabilities were determined by its special structure of molecule, which was the results of charge neutralization in cooperation with adsorption bridge and net-sweeping.
     (3)Based on the research of inorganic-organic composite flocculants, the inorganic-organic hybrid flocculant: ionic hybrid of Zn(OH)_2–polyacrilamide (H-ZnPAM) was synthesized by in-situ polymerization.
     The hybrid flocculant was characterized with IR spectrum, viscosity, conductivity, TEM and TGA. The results showed that the flocculant H-ZnPAM could be the hybrid with ion bond between inorganic particles and polyacrylamide, i.e., PAM with negative chain end (-SO_4~(2-)) bonding to the positive particle of Zn(OH)_2 in H-ZnPAM. The influences of particle radius and dosage of Zn(OH)_2, etc., were investigated systematically and it was found that dilute solution viscosity of H-ZnPAM increased at first and then declined with the increase of Zn(OH)_2 particle radius and Zn(OH)_2 dosage.
     Dilute solution viscosity behaviors of the hybrid flocculant were studied by viscosity method. The experiments proved that the viscosity behaviors of H-ZnPAM were deviated from Huggins equation in dilute solution, which was different from pure PAM. That is, the reduced viscosity (η_(sp)/C)~concentration (C) curve of the H-ZnPAM had a downturn at low concentration region. The effects of molecular weight, particle radius of inorganics and content on the deviation of dilute solution viscosity behaviours were researched. The results displayed that the concentration (C_η) correspond to the moment when the curve ofη_(sp)/C~C started to downturn, increased with enhancing the inorganics particle radius and content, but reduced with increasing the hybrid molecular weight. This phenomenon is accounted for assuming ionization of the ionic hybrid PAM. Studies on ionization behavior of H-ZnPAM in dilute solution by conductivity method were illuminated that the curve of K~C displayed non-linear behaviours. If C_K was defined the concentration when the curve of K~C began to downturn, the influence rules of molecular weight of H-ZnPAM, radius of inorganics particles and dosage on C_K were analogous with that on C_η.
     The cluster theory of polymer solution was applied to explain the mechanism of polymer flocculation. The formation of polymer chain cluster in dilute solution is the necessary condition to cause the optimal flocculation. The structure of hybrid flocculant H-ZnPAM can be not only in favour of exerting charge neutralization and adsorption for inorganic flocculants as well as bridge for organic flocculants, but also can help to produce chain cluster for polymer. The investigation showed that the optimal dosage (C_(od)) of polymer flocculants was linearer to the dynamic contact concentration (CS) of polymer flocculants and the suspension solid concentration (C_(SS)) in diatomite suspensions, i.e., C_(od)=5.8×10~(-2)·(CS·C_(SS))~(0.5) - 4.1. The result illuminated the interrelation between the congregation state of polymer molecular chain in dilute solution and flocculation effect. Furthermore, it is important to form the polymer clusters in dilute solutions for reaching the optimal flocculation.
     (4)Zinc flocculants were applied in oily wastewater and oily sludge.
     The new type of zinc flocculants had better flocculation efficiency than conventional flocculants such as poly-aluminum chloride (PAC) and poly-ferric sulfate (PFS), and the hybrid flocculant showed the best flocculation performance, less shear sensitivity and more dense flocs than other flocculants. The results of oily sludge dewatering experiments indicated that the hybrid flocculant and PZSS had the best dewatering efficiency, the heat value was increased to 40 times of the primary after treated. The densed sludge was easy to mold and peel off, and could be incinerated with low cost and less pollution. Accordingly, the zinc flocculants are promising in wastewater treatment.
引文
[1]Diaz M.P., Boyd K.G., Grigson S.J., et al.. Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD–M, immobilized onto polypropylene fibers. Biotechnol Bioeng, 2002,79 (2):45~53
    [2]Ji G.D. , Sun T.H., Chang S.J.. Super heavy oil-produced water treatment by surface flow constructed wetland. Environ Sci., 2001b,22 (4): 83~87
    [3]Andrew K., Graeme G., Jeff G., et al.. Flocculation and coalescence of oil-in-water poly(dimethlysiloxane)and emulsion. Colloid Interf. Sci., 2000,227:390~397
    [4]Gryta M., Karakulski K., Morawski A.W.. Purification of oily wastewater by Hybrid UF/MK. Wat Res. 2001,35:3665~9
    [5]Song Y, Luan Z. The studies on characteristics of polyaluminum-silicon complex flocculants. Environ Chem., 1997,16:541~545
    [6]牛丽娜,周文斌.无机有机复合絮凝剂.水资源与水工程学报, 2004,15 (1): 59~63
    [7]汤心虎,黄秀微,刘佩璇等.无机有机复合絮凝剂对印染废水的脱色性能.水处理技术, 2001,27(5):267~270
    [8]Borisov O V, Zhulina E.B.. Effect of ionic strength and charge annealing in star-branched polyelectrolytes. Eur. Phys. J., 1998, B 4:205~217
    [9]Stevens M J, Plimpton S J. The effect of added salt on polyelectrolyte structure. The European Physical Journal B, 1998, 2:341~345
    [10]Sastry N V, Dave P N, Valand M K. Dilute solution behavior of polyacrylamide in aqueous media. European Polymer Journal, 1999, 35:517~525
    [11]Al-Mutairi N.Z., Hamoda M.F., Al-Ghusain I.. Coagulant selection and sludge conditioning in a slaughterhouse wastewater treatment plant. Bioresour. Tech., 2004,95(2): 115~119
    [12]Kevin M., Kenneth C., Dean G.. Floc morphology and cyclic shearing recovery: comparison of alum and polyaluminum chloride coagulants. Water Res., 2004,38: 486~494
    [13]Zhao Y.Q.. Correlations between floc physical properties and optimum polymer dosage in alum sludge conditioning and dewatering. Chem. Eng. J., 2003,92: 227~235
    [14]Shi Y.H., Fan M.H., Robert C. Brown, et al.. Comparison of corrosivity of polymeric sulfate ferric and ferric chloride as coagulants in water treatment. ChemicalEngineering and Processing, 2004,43:955~964
    [15]Ndabigengesere A., Narasiah K.S.. Quality of water treated by coagulation using Moringa oleifera seeds. Wat. Res., 1998,32 (3): 2775~2782
    [16]李和平,袁宗宣,郑怀礼等.活性硅酸聚合硫酸铁的研究.重庆建筑大学学报, 2000,22(1):39~42
    [17] Takao Hasegawa et al.Water Nagoya’89, ASPCIWSA. 1989,31S-05-152A
    [18]Gao B.Y., Han H.H., Hoffmann. E. Evaluation of aluminum silicate polymer composite as a flocculant for watertreatment. Water Research, 2002,36:3573~3581
    [19]Wang Q.Y.. Coagulants containing composite polyaluminum silicate for water treatment. CN 1174177,1998
    [20]刘和清,汪凤珍.聚硅酸锌絮凝剂的电镜特征和絮凝效果.环境化学, 2001,20 (2):179~184
    [21]高立新,陈权,张大全.聚硅酸锌的絮凝作用研究.工业水处理, 2006,26(7):50~53
    [22]杜杰,张诚,王婷等.新型絮凝剂含硼聚硅酸硫酸铁锌的制备及性能研究.上海化工, 2006,31(2):18~21
    [23]范文玉,仇兴华,赵树发等.聚硅酸铝锌絮凝剂的制备及应用研究.沈阳化工学院学报, 2006,20(1):16~19
    [24]袁大佑,刘和清,谭承德.聚硅酸盐絮凝剂对甘蔗混合汁清净效率的研究.甘蔗糖业, 2000, 1:33~37
    [25]EЛ.巴宾科夫.论水的混凝.北京:中国建筑工业出版社
    [26]徐国想,阮复昌.铁系和铝系无机絮凝剂的性能分析.重庆环境科学, 2001,23(3): 52~55
    [27]Mikami Y. and Takei I.. Iron polysulfate solution [p]. JP:49-53195, 1974
    [28]Chang Q., Wang H.Y.. Preparation of PFS coagulant by sectionalized reactor. Journal of Environmental Science,2002,14(3):345~350
    [29]Kimberly A. Gray. Polymerization may be produced in aqueous solution by slow base addition, at elevated temperatures, or by slow acid dissolution of metal ores. J. AWWA., 1995, 87141:136~146
    [30]Kimberly A.Gray, Chonghua Yao, Charles R.O'Melia. Inorganic metal polymers: preparation and characterization. Journal AWWA, 1995, 87(4):136~146
    [31]席美云.无机高分子絮凝剂的开发和研究进展.环境科学与技术, 1999, (4): 4~7
    [32]孙剑辉,徐毅.聚硅酸盐类絮凝剂的研究进展.工业水处理, 2000, 20 (3): 4~6
    [33]胡翔,周定.聚硅酸系列混凝剂混凝过程的动力学和机理研究.水处理技术, 1999,25 (2):114~117
    [34]张莉,李本高.水处理絮凝剂的研究进展.工业用水与废水, 2001, 32 (3): 5~7
    [35]Nacheva P. M., Bustillos L T, Camperos E R, et al.. Characterization and coagulation-flocculation treatability of Mexico City wastewater applying ferric chloride and polymers. Water Science and Technology, 1996,34(3):235~247
    [36]Ractor.Ludufg. Lignin Cosiposttion Process for its Preparation.US 3912706,1975-12-14
    [37]Wong Shing. Hydrophilic Dispersion Polymers of Diallyldimethyl Ammonium chloride and Acrylamide for the Clarification of Drinking Process Waters [P]. US, 6019904. 2000-02-01
    [38]潘碌亭,肖锦,赵建夫等.天然高分子改性阳离子絮凝剂的合成及对工业废水的处理.环境污染与防治, 2002,24(3):159~161
    [39]Cai J. Y., Axelos M. Method for Manufacturing Grafted Polyacrylamide Flocculant of Cationic/ Ampholytic. US, 5990216. 1999-11-23
    [40]冯亚非.天然高分子絮凝剂壳聚糖及其衍生物在水质净化工艺中的应用.甘肃高等学报, 2001,6(5):61~64
    [41]Hasegawa T, et al. Characteristics of metal-polysilicate coagulant. Water Sci. Tech., 1991,25(1):13-17
    [42]Hease D, et al. Polymeric hasic aluminium silicate-sulphate [P]. US 4981675,1998
    [43]刘星.用于污水处理的复合絮凝剂[P]. CN 1318522A,2001
    [44]Kweno M. R., Sosulski F W, Bhirud P R. Preparation of amhoteri starches during aqueous alcohol cat ionization. Starch, 1997,49 (10):119~124
    [45]程金平.微生物絮凝剂产生菌的筛选及产絮凝剂的周期研究.环境科学与技术, 2001, 2: 12~15
    [46]Nishihara H. Flocculation of cell walls of Brewer' s Yeast and effects of metal ions, protein-denaturants and enzyme treatments. Arch. Microbiol, 1982, 131:112~115
    [47]Kurane R. Screening and characteristics of microbial flocculants. Agric Biol Chem,1986,50(9):2301~2307
    [48]Ovenden C, Xiao H. Flocculation behaviour and mechanisms of cationic inorganic microparticle/polymer systems. Colloids and Surfaces A, 2002, 197: 225~234
    [49]栾兆坤.微絮凝-深床过滤理论与应用研究.环境化学, 1997,16(6):590
    [50]杨智宽.污染控制化学.武汉:武汉大学出版社, 1998
    [51]Amirtharajah A, Asce M, Tuusler S. L. Destabilization of particles by Turbulent Mixing. J.Envir Engeg Div-ASCE, 1986, 112:1085
    [52]AWWA Coagulation Committee Report: Coagulation as An Integrated Water Treatment Process. J. Am Water Works Assoc, 1989,81(10):72
    [53]Katz L E, Hayes K. F. Surface Complexation. Modeling. J. Colloid Interface Sci., 1995, 170:477
    [54]O'Melia C. R. Coagulation in Wastewater Treatment. In the Scientific Basis of Flocculation. NATO ASI Series. Ives K J. Ed. Sijthoff and Noordhoff. Aalphenaan den Rin. etherlands,1978
    [55]Hahn H. H., Stumm W. Kinetics of Coagulation with Hydrolyzed Aluminum. J. Colloid and Inter Sci,1968,28:133
    [56]James R. O., Healy T. W. Adsorption of Hydrolysable Metal Ions at the Oxide-Water Interface(I,II). J. Colloid and Inter Sci,1972,40:42~53
    [57]Ruehrwein R. A., Ward D. W. Mechanism of Clay Aggregation by Polyelectrolytes. Soil Sci, 1952,73:485~492
    [58]Michcals A. S. Aggregation of Suspensions by Polyelectrolytes. Ind Eng Chem, 1954,46:1485~1490
    [59]Lamer V. K., Healy T. W. Adsorption-Flocculation Reactions of Macromolecules at the Solid-Liquid Interface. Rev Pure App Chem,1963,13:112~132
    [60]Packham R. F. Some Studies of the Coagulation of Dispersed Clays with Hydrolyzing Sa1ts. J. Colloid Sci,1965,20:81~92
    [61]许保玖,龙腾锐.当代给水与废水处理原理(第二版).北京:高等教育出版社, 2000
    [62]赫俊国.微涡旋混凝低脉动沉淀技术处理低温低浊水.中国给水排水, 1999, 15(4):17~20
    [63]王绍文.惯性效应在絮凝中的动力学作用.中国给水排水, 1998,14(2):13~16
    [64]武道吉.混合动力学机理及控制指标研究.中国给水排水, 2000,16(1):54~57
    [65]Smith R. W. Nonequilibrium systems in natural water chemistry. ACS, Advance in chem.. series, 1971, 106:250
    [66]Akitt J. W, Greenwood W.N etal. 27Al NMR studies of acidic solutious of aluminum salt. Chem. soc, 1969:803
    [67]袁宗宣,郑怀礼,舒型武.絮凝科学与技术的进展.重庆大学学报,2001,(2):143~147
    [68]Jiang J. Q., Graham N.J.D. Observations of The Comparative Hydrolysis/Precipitation Behaviour of Polyferric Sulphate and Ferric Sulphate. Wat. Res, 1998,32(3):93
    [69]王东升.激光光散射在混凝研究中的应用评述.环境科学进展, 1997,5(5):36~39
    [70]Akitt J. W., Farthing A. Aluminum-27 NMR Studies of the Hydrolysis Aluminum(13), Part 2-5, J.C.S. Dalton. Trans., 1981,1606
    [71]Qian R. Progress in Polymer Physics-Symposium of 99'International Workshop on Polymer Physics, Shanghai, China, August,1999,1~12
    [72]Cragg L. H. The terminology of intrinsic viscosity and related functions. J. Colloid Sci, 1946,1:261~269
    [73]Huggins M. L. The viscosity of dilute solutions of long-chain molecules. IV: Dependence on concentration. JAm Chem Soc.,1942, 64:2716~2720
    [74]Cragg L. H., Bigelow C C. The viscosity slope constant kH-ternary systems: polymer-polymer-solvent. J. Polymer Sci, 1955,16:177~91
    [75]Qian J. W., Zhou G. H., Zheng Q., et al., Influence of solvent and polymer sort on anomalous rheological behavior of polymer solution at high dilution. J Zhejiang Univ(Sci), 2001, 2(3):265~270
    [76]Cheng R. S., Yang Y., Yan X., et al.. The wall effect on viscosity measurement of dilute aqueous solutions of polyethylene glycol and polyvinyl alcohol using a paraffin -coated capillary viscometer. Polymer, 1999, 40:3773~3779
    [77]Qian J. W., Li J., Yang Y. S., et al., Association of Ethylene Vinyl Acetate Copolymer in Dilute Solutions III. Critical Association Concentration. Chinese J Polym Sci,1998, 16:327~331
    [78]Qian J. W., Li J., Qi G. R., et al., Association of Ethylene Vinyl Acetate Copolymer in Dilute Solutions IV Solvent Mixture and Additive effect of CA. Chinese J Polym Sci, 1999,17:323~328
    [79]Zhu P., Yang H., Wang S. Viscosity behavior of poly -e-caprolactone (PCC)/polyvinyl chloride (PVC)blends in various solvents. Eur Polym J, 1998, 34(1): 91~94
    [80]Dondos A., Tsitsilianis C. Viscometric study of extremely dilute macromolecular solutions: critical concentration C** and the Huggins constant. Polymer International, 1992,28:151~156
    [81]Liu M., Cheng R., Wu C. Viscometric investigation of intramolecular hydrogen bonding cohesional entanglement in extremely dilute aqueous solution of poly vinyl alcohol. J. Polym Sci, Polym. Phys Ed, 1997, 35:2421~2427
    [82]钱人元,曹锑,陈尚贤等.用分子间激基缔合物荧光研究聚苯乙烯良溶剂溶液-从稀区到亚浓区和浓区的转变.中国科学(B辑), 1983, 2: 1080~1090
    [83]de Gennes P. G.. Scaling Concepts in Polymer Physics, Chap 3., Ithaca, New York: Cornell University Press, 1979
    [84]Wu C. Light-scattering evidence of a "critical" concentration for polymer coil shrinking in dilute solution. J Polym Sci, Polym Phys, 1994, 32:1503~1509
    [85]Cheng R. S. On the concentration regimes of a flexible-chain polymer solution. Macromol Symp,1997, 124:27~34
    [86]Pan Y., Cheng R. S. A novel interpretation of concentration dependence of viscosity of dilute polymer solution. Chinese J Polym Sci, 2000,18,57~67
    [87]王东升,王新娟,陈有军等.聚合铝混凝过程中pH值的计算与调控.环境化学, 2001,20(6):544~549
    [88]中华人民共和国石油天然气行业标准.油藏分类, SY/T6169-1995
    [89]Charles. Efects of oil field brines. Proceedings of the 18th annual conference, Southeastern Association of Game and Commissioners,Octl8-21,1964
    [90]Collins. Geochemistry of Oilfield Water.New York: Elsevier Scientific,1975
    [91]Gulley. A statistical model to predict toxicity of saline produced waters to fresh water oganisms. Environ.Sci.Res.,1992,46 (Produced Water):89~96
    [92]Hudgins. Chemical treatments and usage in offshore oil and gas production systems. 23 th Annual SPE et al .Offshore Technology Conference (Houston,5 /6-7/91)Proce ss 1991,V 1:265~274
    [93]中华人民共和国石油天然气行业标准. SY/T 0097-2000
    [94]高宝玉,王燕,岳钦艳等.聚合铝基复合絮凝剂的电荷特性及絮凝作用团.环境科学, 2003,24(1): 103~107
    [95]国家环境保护局等编.水和废水检测分析方法(第四版).北京:中国环境科学出版社,2002
    [96]王冬田,王郁萍,陈忠林等.特性聚硅酸聚合反应条件的研究.哈尔滨建筑大学学报, 2001,10 (5): 49~52.
    [97]卢建杭.无机絮凝剂制备技术的进展.中国给水排水, 1999,15(4):28~30
    [98]刘小军,田宜灵.硼的引入对聚硅酸稳定性的影响.化学工业与工程, 2001,18 (6):345~348
    [99]刘小军,田宜灵,马晓鸥等.含硼聚硅酸硫酸铁混凝剂成分间的相互作用.华东理工大学学报, 2001,27 (6):661~665
    [100]Hunter R. J.. Zeta potential in colloid science principles and applications, 2nd ed. London: Academic Press, 1988
    [101]Pinotti A., Zaritzky N.. Effect of Aluminium Sulfate and cationic polyelectrolytes on the destabilization of emulsified wastes. Waste Manage, 2001,21:535~542
    [102]Ozkan A. and Yekeler M.. Coagulation and floccutation characteristics of celesite with different inorganic salts and polymers. Chemical Engineering and Processing, 2004,43: 873~879
    [103]Hogg R.. 18th International Mineral Processing Congress, Vol. 5, The Australasian Institute of Mining and Metallurgy, Sydney, Australia, 1993, p. 1315
    [104]Solberg D., W?gberg L.. Adsorption and flocculation behavior of cationic polyacrylamide and colloidal silica. Colloids Surf. A 2003,219:161~172
    [105]常青.水处理絮凝学.北京:化工出版社, 2003
    [106]石宝友,汤鸿霄.聚合氯化铝与有机高分子复合絮凝剂的电荷特性及其絮凝作用.环境化学, 1999,18(4):302~308
    [107]王东升,汤鸿霄.三类氧化硅的形态分布及其转化规律团.环境化学, 1997, 16 (6): 516~521
    [108]许韵华.乙酸对硅酸聚合胶凝及形态分布的影响团.环境化学, 2005,24(1): 51~54
    [109]Tang H. X., Luan Z. K. Features and mechanism for coagulation-flocculation processes of polyaluminum chloride. Journa1 of Environmental Science, 1995, 7(2):204~211
    [110]Benschoten J. E. V., Edzawald K. Chemical Aspects of Coagulation Using Aluminum Salts. Water Resch.1990,24(12):15~19
    [111]王红宇,陈福泰,王亚宜等.聚合氯化铁与三氯化铁吸附电中和特征的比较研究.中国给水排水, 2006,22(5):60~63
    [112]吴瑾光,许振华,李琼瑶.近代付里叶变换红外光谱图技术及应用.北京:科学技术文献出版社,1994,639
    [113]杨南如,岳文海.无机非金属材料图谱手册.武汉:武汉工业大学出版社, 1984,278~316
    [114]卢涌泉,邓振华.实用红外光谱解析.北京:电子工业出版社, 1989, 244
    [115]张明.细乳液聚合方法制备无机-有机杂化粒子及其表征[D].长春:吉林大学,2005
    [116]Iler R.K.. The Chemistry of Silia.Solubilty, Polymerization. Colloid and Surface Properties and Biochemistry. NewYork:John Wiley & Sons Inc,1979;303~304
    [117]谢晶曦.红外光谱在有机化学和药物化学中的应用.北京:科学出版社,1987,361
    [118]季明德.硅酸聚合中的盐效应:1-1价盐对硅酸聚合速度的影响.江西大学学报(自然科学版), 1982 (4):13~19
    [119]季明德,程琦.多价离子对硅酸聚合速度的影响.江西大学学报(自然科学版), 1985,(4):71~76
    [120]Yokoyama T, Takahashi Y, Tarutani T. Retarding and Accelerting Effects of Aluminum on the Polysilic Acid Particle. J. Collo. and Inter. Sci., 1991,141(2):559
    [121]杜灿敏,冯平,周海刚等.钻井液用大阳离子中阳离子度的测定方法初探.石油工业技术监督, 2000, 16 (4):27~30
    [122]Georg H., Dietmar B. Production of cationic starch ethers using an improved dry process. Starch/ Starke,1992,44(2):69~74
    [123]潘碌亭,肖锦.天然高分子改性药剂FIQ-C的絮凝性能及作用机理研究.水处理技术, 2001,27(2):84~86
    [124]涂方祥,蒋展鹏.无机混凝剂的形态对混凝的影响.中国给水排水, 1996,12(4):4~6
    [125]常青.絮凝科学的研究进展.环境科学, 1994,15(1):69~72
    [126]汤鸿霄.无机高分子絮凝剂的基础研究.环境化学, 1990,9(3):1~10
    [127]Kagan C., Mitzi D.B., Dimitrakopoulos C.D.. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 1999, 286:945~947
    [128]马洪洋,王静媛,于晓强等.溶胶-凝胶法合成聚(甲基丙烯酸乙酯-甲基丙烯酸环氧丙酯/SiO2杂化材料.高分子学报, 2000,4: 402~406
    [129]Matsuura Y, Matsukawa K, et al. Synthesis of polysilane-acrylamide copolymers by photopolymerization and their application to polysilane-silica hybrid thin films. Polymer, 2002, 43, 1549~1553
    [130]童昕,唐涛,朱宁等.凝胶乳液聚合法制备纳米杂化物PMMA/SiO2.高等学校化学学报, 2002,23(2):306~309
    [131]杨鹜远,钱锦文,沈之荃等.氢氧化铝-聚丙烯酰胺杂化复合絮凝剂的合成与表征.高分子材料科学与工程, 2004,20(1):68~71
    [132]Tripathy T, Pandey S. R., Karmakar N. C., et al., Novel flocculating agent based on sodium alginate and acrylamide. Eur. Polym. J., 1999, 35:2057~2072.
    [133]Bockris J. O'M., Devanathan M. A. V, and Miller K. Proc. Roy Soc. (London), 274(1963), 55
    [134]郑忠.胶体科学导论.第一版,北京:高等教育出版社, 1989, 269
    [135]Conley R. T., Mallo R., in Conley R. T., ed. Thermal Stability of Polymers,Vol.1, Marcel Dekker, Inc.,NewYork, 1970:254
    [136]Reich L. Approximate estimation of activation energy from DTA and TGA Traces. J. Polym. Sci.:Lett. Ed., 1966, 4:423~426
    [137]Yang M. H. The Two-Stage Thermal Degradation of Polyacrylamide. Polymer Testing 1998, 17:191~198
    [138]Hanna A. A., Basta Altaf H and EI-Saied H, et al. Thermal properties of cellulose acetate and its complexes with some transition metals. Polymer Degradation and Stability, 1999, 63:293~296
    [139]Narh K. A., Keller A. Precipitation effects in polyelectrolytes on addition of salts. J. Polym. Sci. Polym. Phys, 1993,31:231~234
    [140]Reinhardt S, Steinert V and Werner K. Investigations on the dissociation behaviour of hydrolyzed alternating copolymers of malefic anhydride and propene-I. Potentiometric titrations. Eur. Polym. J., 1996, 32, 935~938
    [141]Hansen C. M., in Birdi K. S., ed. Hand book of Surface and Colloid Chemistry. CRC Press,1997:435
    [142]Wanes W. E.. Role of flocculant molecular weights in the coagulation of suspensions. J. Colloid & Interface Sci., 1968, 27:797~803
    [143]张立德,牟其美.纳米材料和纳米结构.第一版,北京:科学出版社, 2001,96~99
    [144]Cragg L. H., Bigelow C. C. The viscosity slope constant kH-ternary systems: polymer-polymer-solvent. J Polymer Sci, 1955,16:177~191
    [145]Qian J. W., Li J., Yang Y. S., et al.. Association of Ethylene Vinyl Acetate Copolymer in Dilute Solutions III. Critical Association Concentration. Chinese J Polym Sci, 1998, 16:327~331
    [146]Qian J. W., Li J., Qi G. R., et al., Association of Ethylene Vinyl Acetate Copolymer in Dilute Solutions IV Solvent Mixture and Additive effect of CA. Chinese J PolymSci, 1999,17:323~328
    [147]Pierri E, Dondos A. Vicometric determination of the two critical concentrations of polymers in solution. Eur Polym J, 1987, 23(5): 347~351
    [148]Staikos q, Antonopoulou P and Christou E. A new viscometric approach to the interpolymer complexes. Polymer Bulletin, 1989, 21: 209~215
    [149]藏庆达,李卓美.新型阳离子聚丙烯酰胺离解行为研究.物理化学学报, 1993,19(5): 679~683
    [150]邓永红,王晓工.溶液pH值对光相应性偶氮聚电解质H-聚集的影响.高分子学报, 2003,5: 709~713
    [151]Van Krevelen D. W., Properties of Polymers. Elsevier Amsterdam, 1990, 251
    [152]Qian J. W., Wang M., Han D. L., et al., A Novel Method for Estimating Unperturbed Dimension [η]θof a Polymer from the Measurement of its [η]θin a Non- theta Solvent. Eur Polym. J.,2001,37:1403~1407
    [153]Hou W. G., Cai X. W. Adsorption of partial hydrolyzed polyacrylamide on aluminum- magnesium hydroxide. Acta Polymerica Sinica, 1998, 2:172~176
    [154]Tuijnman C. A. F., Hermans J. J. Precision viscometry of polyvinyl acetate in toluene. J Polym. Sci., 1957, 25:385~401
    [155]Dondos A, Tsitsilianis C. Viscometric study of extremely dilute macromolecular solutions: critical concentration C** and the Huggins constant. Polymer International, 1992, 28: 151~156
    [156]邓慧敏,张珍英. MALDI-TOFMS测定高聚合度葡聚糖及不同基体在测定中的作用比较.高等学校化学学报, 2003,24 (6):996~999
    [157]Muller G, Lame J. P., Fenyo J. C. High-molecular-weight hydrolyzed polyacrylamides. I. Characterization. Effect of salts on the conformational properties. J. Polym. Sci., 1979,17:659~672
    [158]中华人民共和国国家标准: GB/T 14417-93
    [159]Pascoe R. D, Doherty E. Shear flocculation and flotation of hematite using sodium oleate. Int. J. Miner. Process, 1997, 51:269~282
    [160]复旦大学等,物理化学实验.北京:高等教育出版社, 1993: 177~182
    [161]Roberts G.A.F., Domszy J.G.. Determination of the viscometric constants for chitosan. Int. J.Biol.Macromol., 1982,4( 6):374~377
    [162]唐受印,戴友芝.水处理工程师手册.北京:化学工业出版社, 2000: 451~453
    [163][英国〕W.M .刘易斯著,张亚杰等译.国外水处理新技术.上海:上海科学技术出版社, 1989: 396~399
    [164]高廷耀,顾国维.水污染控制工程(下册).北京:高等教育出版社, 1999: 297~298
    [165]Vasconcellos S.R.. Method for sludge dewatering. US 5720887,1998
    [166]Stendahi K., Jokinen S.. Treatment method for wastewater sludge. US 5720082,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700