用户名: 密码: 验证码:
原位聚合聚苯胺层层自组装膜的制备及其敏感性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层层自组装(LBL-SA)技术是制备敏感薄膜的一种有效手段,该技术成膜物质丰富,可在任何形状和大小的基片上成膜,而且还能精确控制薄膜的厚度与单层膜的结构。本文针对聚苯胺(PANI)难溶难融、聚苯胺敏感膜响应时间长和敏感下限高等缺陷,从苯胺单体(AN)出发,通过原位聚合及现场掺杂,并主要基于静电力、氢键作用LBL-SA制备了具有纳米结构的聚苯胺自组装膜,探讨了该自组装膜的成膜机理,考察了该自组装膜对NH_3的敏感性能;进而调节聚苯胺自组装膜的结构,考察了不同掺杂结构的聚苯胺自组装膜的抗湿性能和对化学战剂模拟剂的敏感性能。
     跟踪了原位聚合的具有纳米结构的聚苯胺多层自组装膜的成膜过程,提出了该自组装膜的成膜机理:聚合反应初始阶段的苯胺阳离子或苯胺阳离子自由基通过静电作用快速吸附到带负电荷的基片表面,形成均匀的聚合中心,然后以垂直于基片的方式进行链增长生成PANI;PANI在酸性条件下经现场掺杂后带正电荷,再通过静电作用吸附带负电荷的聚电解质如聚苯乙烯磺酸钠(PSS),或通过氢键作用吸附聚合物如聚乙烯醇(PVA),这样循环LBL-SA即得到(PSS/PANI)_n或(PVA/PANI)_n等原位聚合聚苯胺自组装膜。
     在探讨成膜机理的基础上,成功制备了结构与性能可调、稳定、多孔、无定型的(PSS/PANI)_n纳米自组装膜。确定了膜厚为30~100 nm的单个双层PSS/PANI自组装膜的较优制备工艺条件:PSS溶液的浓度为0.001 mol·L~(-1)~0.02 mol·L~(-1)、沉积时间不少于10 min、氧化剂过硫酸铵(APS)以分段滴加的方式加入AN活性溶液中、APS与AN的物质的量之比(n_(APS):n_(An))为0.8~1.2。在此工艺基础上,进一步调节AN浓度,制备了逐层均匀增长、性能较优的多层(PSS/PANI)_n自组装膜。
     基于(PSS/PANI)_n自组装膜对NH_3的化学吸附而使膜电阻增大的原理,考察了该自组装膜对氨气的敏感性能,结果表明:该自组装膜对NH_3响应迅速、检测下限低、敏感度高、选择性好。当NH_3的检测浓度为0.1 mg/m~3时,该膜的相对灵敏度可达63.47%,而响应时间仅为39s。这一研究为制备灵敏度高、选择性好的聚苯胺氨气传感器奠定了坚实的理论基础和实验基础。
     利用聚苯胺的掺杂特性对PSS/PANI自组装膜进行了结构调节,提高了该膜的抗湿性能。首次考察了不同掺杂/脱掺杂结构的PSS/PANI自组装膜对化学战剂模拟剂DMMP和CEES的敏感性能,研究表明,掺杂酸对离子的尺寸大小对PSS/PANI自组装膜的气敏性有很大影响,较大的对离子尺寸有利于提高自组装膜的气敏性;并且发现采用与DMMP结构类似的沙林酸对EB-PSS/PANI自组装膜进行再掺杂-脱掺杂,能显著提高PSS/PANI自组装膜对DMMP的敏感性能。
     拓展了聚苯胺LBL自组装膜的界面构建、新型膜的固定等基础性问题研究。基于氢键作用,通过原位聚合的聚苯胺LBL-SA制备了(PVA/PANI)_n多层自组装膜;从邻甲基苯胺单体(OT)出发原位聚合,再通过静电作用LBL-SA制备了(PSS/POT)_n多层自组装膜。研究表明,可以依据实际需要构建含有PANI、PSS、PVA或POT等多组分的、组装顺序可变的LBL自组装膜,为寻求具有多途径可调结构的聚苯胺自组装膜以提高对化学战剂的敏感性能奠定了基础。
Layer-by-layer self-assembly (LBL-SA) technique is a simple, rapid and effective method to prepare ultra-thin sensitive films. The fabricated films comprise a variety of materials in accordance to the requirement and can be constructed on any shape and size of substrates by different processing parameters. The average thickness and surface function of each monolayer can be accurately controlled and tuned. Polyaniline (PANI) is one of the most potential conductive polymers, but the further applications of polyaniline are restricted by the low solubility and high melting temperature of polyaniline, and long response time and high threshold detection limit of polyaniline films. In this dissertation, we focus on the investigation of polyaniline films that were fabricated from aniline (AN) monomers by in situ polymerization, self-acid-doping and layer-by-layer self-assembly through the electrostatic force or hydrogen bonding. Formation mechanism of the PANI self-assembled films was proposed. The detection of NH3 using as prepared PANI films was also studied. Furthermore, the structure of the PANI films was tuned by acid doping or dedoping. The humidity resistance and the sensitivity to chemical warfare agents (CWAs) simulants of the tuned films were also investigated.
     Self-assembled LBL polyaniline films were prepared from aniline monomers by in situ polymerization and the mechanism of film formation was discussed. It was proposed that the self-assembly of polyaniline occurred through the quick absorption of aniline monomer cations or aniline monomer cation radicals on the glass surfaces by electrostatic attractions to form homogeneous polymerization centers, then increased gradually by the way of upright to the glass supports for extensity, leading to the polyaniline chain growth. The polyaniline was doped under acidic condition to absorb anionic polyelectrolyte, such as sodium polystyrene sulfonate (PSS) based on the electrostatic force, or to adsorb polymer based on hydrogen-bonding interactions, for example Polyvinyl Alcohol (PVA), and then recycled to fabricate (PSS/PANI)_n or (PVA/PANI)_n self-assembled multilayer films.
     Based on the formation mechanism of the film, stable, porous, and amorphous nano-structured (PSS/PANI)_n multilayer films with adjustable structure and properties were prepared. The deposition conditions for the fabrication of 30 - 100 nm PSS / PANI films were optimized. The optimum deposition conditions are: the concentration of PSS solution is 0.001 - 0.02 mol·L~(-1), the molar ratio of oxidant to aniline (n_(ASPS) : n_(An)) is 0.8 -1.2, the oxidant APS is added into the aniline solution at different polymerization stages, and the deposition time should be at least 10 min. Under this optimum deposition conditions, (PSS/PANI)_n multilayer films with equal thickness of each layer and good conductivity were prepared by adjusting the concentration of aniline solution and the in situ polymerization time.
     Based on the principle that resistance of (PSS/PANI)_n self-assembled films increases due to the chemical absorption of NH_3, its sensitivity to NH_3 was investigated. Results show that these films exhibit quick response, low detecting limit, high sensitivity, and good selectivity. When the concentration of NH_3 is 0.1 mg/m~3 , the relative sensitivity of this film is 63.47 % and the response time is only 39 s. This established foundations for the preparation of polyaniline NH_3 sensor with high sensitivity and good selectivity.
     The humidity resistance of PSS/PANI self-assembled film was improved by adjusting its structure through redoping. Sensing ability of PSS/PANI self-assembled film with different doping/dedoping structure to DMMP and CEES was investigated. Results demonstrate that the gas sensitivity of PSS/PANI self-assembled film is affected by the size of dopant counterions. Gas sensitivity of self-assembled film increases with increasing size of dopant counterions. It is found that sensing ability of PSS/PANI self-assembled film to DMMP increases significantly by redoping/dedoping EB-PSS/PANI film with sarin acid that has similar structure with DMMP.
     Interface construction and preparation of new in situ polymerized polyaniline layer-by-layer self assembled films were also investigated. (PANI/PVA)_n films were prepared from aniline monomers by in situ polymerization, and layer-by-layer self-assembly through the hydrogen bond; (PSS/POT)_n films were prepared from o-methylaniline monomers by in situ polymerization, and layer-by-layer self-assembly through the electronstatic bond. All results suggested that uniform thin composite film containing PANI, PSS, PVA, or POT could be fabricated using this simple process and the order of these polymers could be changed as required. Consequently, it is possible to increase the sensitivity of polyaniline self-assembled film to CWAs through adjusting the structure of the films.
引文
[1]陈章良.生物技术.上海科学技术出版社,1995.
    [2]刘镇清.化学传感器.1992,4:13-18.
    [3]Trojanowicz M.Application of conducting polymers in chemical.Analysis.Microchimica Acta.2003,143:75-91.
    [4]Bai H,Shi GQ.Gas sensors based on conducting polymers.Sensors,2007,7:267-307
    [5]Lucklum R,Henning B,Hauptmann P,et al.Quartz microbalance sensors for gas detection.Sensors and Actuators A,1991,25-27:705-710.
    [6]Katrizky AR,Savage GP,Pilarska M.The response of some organic microsensor coatings to a variety of vapors.Talanta,1991,38:201-204.
    [7]Abraham MH,Hamertom I,Rose JB,et al.Hydrogen-bonding Part 18,Gas-liquid chromatographic measurements for the design and selection of some hydrogen bond acidic phases suitable for use as coatings on piezoelectric sorption detectors.Journal of Chemical Society Perkin Transaction Ⅱ,1991,9:1417-1423.
    [8] Grate JW, Abraham MH. Solubility, interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sensors and Actuators B, 1991, 3: 85-111.
    
    [9] 清山哲郎.化学传感器.化学工业出版社, 1990.
    
    [10] Blodgett KB. Monomolecular films of fatty acids on glass. Journal of American Chemical Society, 1934,56:495-495.
    
    [11] Blodgett KB, Langmuir I. Built-up Films of barium stearate and their optical properties. Phys Rev, 1937: 964-982.
    
    [12] Netzer L, Sagiv J. A new approach to construction of artificial monolayer assemblies. Journal of American Chemical Society 1983,105: 674-676.
    
    [13] Decher G, Hong JD. Buildup of ultrathin multilayer films by a self-assembly process, I.consecutive adsorption of anionic and cationic bipolar amphiphiles. Macromol Chem Macromol Symp, 1991,46: 321-327.
    
    [14] Decher G, Hong JD. Buildup of ultrathin multilayer films by a self-assembly process, II.Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrotes on charged surfaces. Ber Bunsen-Ges Physical Chemistry, 1991, 95: 1430-1434.
    
    [15] Decher G, Hong JD, Schmitt, JB. Buildup of ultrathin multilayer films by a self-assembly process, III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 1992, 210-211: 831-835.
    
    [16] Decher G Fuzzy Nanoassemblies, Toward Layered Polymeric Multieomposites. Science,1997,277:1232-1237.
    
    [17] Keller SW, Kim HN, Mallouk TE. Layer-by-Layer Assembly of Intercalation Compounds and Heterostructures on Surfaces, Toward Molecular "Beaker" Epitaxy. Journal of America Chemical Society, 1994, 116:8817-8818.
    
    [18] Nabok AV, Hassan AK, Ray AK. Optical and electrical characterization of polyelectrolyte self-assembled thin films. Materials Science and Enginieering C, 1999, 8-9: 505-508.
    
    [19] Shiratori SS, ItoT, Yamada T, et al. Automatic film formation system for ultra-thin organic/inorganic hetero-structure by mass-controlled layer-by-layer sequential adsorption method with 'nm' scale accuracy. Colloids and Surfaces A, 2002, 198-200: 415-423.
    
    [20] Ulman A. An Introduction to Ultrathin Organic Films, From Langmuir-Blodgett to Self-assembly Boston, Academic Press, 1991.
    
    [21] Jaber JA, Schlenoff JB. Recent developments in the properties and applications of polyelectrolyte multilayers. Current Opinion in Colloid & Interface Science, 2006, 11: 324-329.
    
    [22] Ariga K, Hill JP, Ji QM. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemical Physics, 2007, 9:2319-2340.
    
    [23] Letheby HO. The production of a blue substance by the electrolysis of sulphate of aniline.Journal of Chemical Society, 1862, 15: 161-163.
    
    [24] Willstatter R. Moore CW. Chemical Ber, 1907, 40: 2665-2689.
    
    [25] Green AQ, Woodhead AE. Aniline-black and allied compounds, part I. Journal of Chemical Society Transaction, 1910, 97: 2388-2391.
    
    [26] Jozefowicz M, Yu LT, Perichon J, et al. Recently discovered properties of semiconducting polymers. Journal of Polymer Science C, 1967, 22: 1187-1192.
    
    [27] MacDiannid AG, Chiang JC, Halpern M, et al. Aqueous polymerization of poiyacetylene and polyaniline,application to rechargeable batteries.Polymer Prepration,1984,25:248-249.
    [28]小川雅男.Nikkei Electronics,1987,436:193-195.
    [29]MacDiarmid AG,Chiang JC,Richter AF.Polyaniline,A New Concept in Conducting Polymer Synthetic Metals,1987,18:285-290.
    [30]Salaneck WR,Lund SI,Hjertberg T,et al.Electronic structure of some polyanilines.Synthetic Metals,1987,18:291-296.
    [31]王利祥,王佛松.导电聚合物-聚苯胺的研究进展Ⅰ.合成、链结构和凝聚态结构.应用化学,1990,7:1-10.
    [32]MacDiannid AG,Epstein AJ.The concept of secondary doping as applied to polyaniline.Synthetic Metals,1994,65:103-106.
    [33]马永梅,陈春英.聚苯胺导电复合物的二次掺杂现象.科学通报,1997,42:707-709.
    [34]Akheel AS,Maravattickal KD.Review,Polyaniline-A novel polymeric material.Talanta,1991,38:815-837.
    [35]Genies EM,Boyle A,Lapkowski M,et al.Polyaniline,A historical survey.Synthetic Metals,1990,36:139-182.
    [36]Manohar SK,MacDiarmid AG,Cromack KR,et al.N-subsitued derivatives of polyaniline.Synthetic Metals,1989,29:349-356.
    [37]Zeng XR,Ko TM.Structures and properties of chemically reduced polyanilines.Polymer,1998,39:1187-1195.
    [38]MacDiarmid AG,Chiang JC,Halpern M,et al.Polyaniline,Interconversion of Metallic and Insulating Forms.Molecular Crystals and Liquid Crystals,1985,121:173-180.
    [39]Kohlman RS,Tanner DB,Ihas GG,et al.Inhomogeneous insulator-metal transition in conducting polymers.Synthetic Metals,1997,84:709-714.
    [40]Phang SW,Hino T,Abdullah MH,et al.Applications of polyaniline doubly doped with p-toluene sulphonic acid and dichloroacetic acid as microwave absorbing and shielding materials.Materials Chemistry and Physics,2007,104:327-335.
    [41]封伟,吴洪才.可溶导电聚苯胺的合成及其性能研究.功能高分子学报,1998,11:237-240
    [42]Liu MJ,Tzou K,Gregory RV.Investigations on the effect of 5-sulfosalicylic acid on the properties of polyaniline.Synthetic Metals,1993,58:309-324.
    [43]陆抿,吴益华,姜海夏.高电导率聚苯胺.功能材料,1998,29:483-485.
    [44]Martins CR,Scandiucci P,De F,et al.Physical and conductive properties of the blend of polyaniline/dodecylbenzenesulphonic acid with PSS.Polymer Bulletin,2003,49:379-386.
    [45]郑裕东,李吉波.聚苯胺热掺杂十二烷基苯磺酸的反应过程及其结构.高等学校化学学报,1997,18:495-497.
    [46]de Souza Jr FG,Soares BG.Methodology for determination of Pani DBSA content in conductive blends by using UV-Vis spectrometry.Polymer Testing,2006,25:512-517.
    [47]Zhang L,The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of β-naphthalenesuifonic acid.Electrochimica Acta,2007,52:6969-6975.
    [48]Saravanan S,Joseph Mathai C,Anantharaman MR,et al.Investigations on the electrical and structural properties of polyaniline doped with camphor sulphonic acid.Journal of Physics and Chemistry of Solids,2006,67:1496-1501.
    [49]刘少琼,黄河.樟脑磺酸掺杂聚苯胺的性能研究.功能材料,2001,32:512-513.
    [50]Zhang L,Dong ShJ.The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid.Journal of Electroanalytical Chemistry,2004,56:189-194.
    [51]Lapkowski M,Barth M,Lefrant S,et al.Changes in catalytic properties of substituted and unsubstituted heteropolyacids in conductive polymer matrix.Synthetic Metals,1995,6:127-128.
    [52]Ma XF,Wang M,Li G,et al.Preparation,physico-chemical characterization,analytical applications and electrical conductivity measurement studies of an 'organic-inorganic' composite cation-exchanger,Polyaniline Sn(Ⅳ) phosphate.Reactive and Functional Polymers,2006,66:1649-1663.
    [53]Chiang JC,Macdiarmid AG."Polyaniline",Protonic acid doping of the emeraldine form to the metallic regime.Synthetic Metals,1986,13:193-205.
    [54]MacDiarmid AG,Chiang JC,Richter AF.Polyaniline,a new concept in conducting polymer.Synthetic Metals,1987,18:285-290.
    [55]景遐斌,唐劲松,王佛松.掺杂态聚苯胺链结构的研究.中国科学(B辑).1990,1:15-20.
    [56]Wang LX,Jing XB,Wang FS.Synthetic Metals,1989,29:363-365.
    [57]江明,府寿宽.高分子科学的近代论题.上海,复旦大学出版社,1998.
    [58]何天白,胡汉杰.功能高分子与新技术.化学工业出版社,2001.
    [59]Kang ET,Neoh KG,Tan KL.Polyaniline,A polymer with many interesting intrinsic redox states.Progress in Polymer Science,1998,23:277-324.
    [60]Ayad MM,Sheneshin MA.Effect of acids on in situ polyaniline film formation.Polymer International,2004,53:1180-1184.
    [61]Zuo F,Angelopoulos M.Conductivity of emeraldine polymer.Physical Review B,1989,39:3570-3578.
    [62]MacDiarmid AG.Synthetic metals a novel role for organic polymers.Synthetic Metals,2002,125:11-22.
    [63]王利祥,王佛松.导电聚合物聚苯胺的研究进展Ⅱ.电现象、导电机理、性质及应用.应用化学,1990,7:1-8.
    [64]王佛松,王利祥,景遐斌.聚苯胺的掺杂反应.武汉大学学报(自然科学版),1993,39:65-73.
    [65]Neoh KG,Pun MY,Kang ET,et al.Polyaniline treated with organic acids,doping charact eristics and stability.Synthetic Metals,1995,73:209-215.
    [66]Pouget JP,Hsu CH,MacDiarmid AG,et al.Structural investigation of metallic PAN-CSA and some of its derivatives.Synthetic Metals,1995,69:119-120
    [67]Zheng W,Min Y,MacDiarmid AG,et al.Aggregation and molecular conformation of doped polyaniline in chloroform solution.Synthetic Metals,1997,84:109-110.
    [68]McAndrew TP.Corrosion prevention with electrically conductive polymers.Trends in Polymers,1997,5:7-12.
    [69]Chen SA,Lin LC.Polyaniline doped the new class of dopant,ionic salt,structure and properties.Macromolecules,1995,28:1239-1245.
    [70]Wan MX,Li SZ.Photo-induced doped polyaniline by the vinylidene chloride and methyl acrylate copolymer as photo acid gernerator.Journal of Polymer Science,1997,15:108-110.
    [71]Job AE,Giacometti JA,et al.A doping method for polyaniline.Applied Physical Letters,1998,72:3297-3281.
    [72]刘承美,邱进俊.聚苯胺的微波掺杂反应.高分子材料科学与工程.2004,20:191-194.
    [73]唐劲松,詹瑞云,倪少儒.聚苯胺导电机理的探讨化学物理学报,1989,2:140-145.
    [74]Mohilner DM,Adams RN.Journal of American Chemical Society,1962,84:3168-3175.
    [75]Wan MX.Influence of polymerization method and temperature on the absorption spectra and morphology of polyaniline.Synthetic Metals,1989,31:51-59.
    [76]Stafstrom S.Polaron lattice in highly conducting polyaniline,theoretical and optical studies,Physical Review Letter,1987,59:1464-1467.
    [77]Xia Y,Wiesinger JM,MacDiarmid AG,et al.Camphorsulfonic acid fully doped polyaniline emeraldine salt,conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method.Chemical Materials,1995,7:443-445.
    [78]Neoh KG,Pun MY,Kang ET,et al.Polyaniline treated with organic acids,doping characteristics and stability.Synthetic Metals,1995,73:209-215.
    [79]Wan MX,Yang J,Mechanism of proton doping in polyaniline.Journal of Applied Polymer Science,1995,5:399-405.
    [80]Wan MX,Li M,Li JC,et al.Structure and electrical properties of the oriented polyaniline fil ms.Journal of Applied Polymer Science,1994,53:131-139.
    [81]Feng J,MacDiarmid AG,Epstein AJ.Conformation of polyaniline,Effect of mechanical shaking and spin casting.Synthetic Metals,1997,84:131-132.
    [82]Manoj KR,Manuela A,Marco S.Comparative studies on Langmuir Schaefer films of polyanilines.Synthetic Metals,1999,100:249-259.
    [83]Cao Y,Smith P,Heeger AJ.Counterion induced processibility of conducting polyaniline.Synthetic Metals.1993,57:3514-3519.
    [84]Rid AJr,Mattoso LHC,Telles GD,et al.Characterization of Langmuir-Blodgett films of parent polyaniline.Thin Solid Films,1996,284-285:177-180.
    [85]Porter TL,Thompson MB.Scanning probe microscope study of Langmuir-Blodgett polyaniline thin films.Thin Solid Films,1996,288:268-281.
    [86]Granholm P,Paloheimo J,Stubb H.Langmuir-Blodgett films of polyaniline,Fabrication and transport studies.Physical Review B,1997,55:13658-13663.
    [87]Chen ChW,Yeh JH,Liu TJ.Stable Langmuir-Blodgett film deposition of polyaniline and arachidic acid.Thin Solid Films,2007,515:7299-7306.
    [88]Cheung JH,Fou AF,RubnerMF.Molecular self-assembly of conducting polymers.Thin Solid Films.1994,244:985-992.
    [89]Ferreira M,Rubner MF.Molecular-level processing of conjugated polymers.1.layer-by-layer manipulation of conjugated polyions,Mucromolecules 1995,28:7107-7114.
    [90]Fou AC,Rubner MF.Molecular-level processing of conjugated polymers.2.layer-by-layer manipulation of In-situ polymerized p-type doped conducting polymers.Macromolecules.Macromolecules.1995,28:7115-7120.
    [91]Cheung JH,Stockton WB,Rubner M F.Molecular-Level Processing of Conjugated Polymers 3.Layer-by-Layer Manipulation of Polyaniline via Electrostatic Interactions.Macromolecules 1997,30:2712-2716.
    [92]Li D,Jiang YD,Li C,et al.Self-assembly of polyaniline/polyacrylic acid films via acid-base reaction induced deposition.Polymer,1999,40:7065-7070.
    [93]Li D,Jiang YD,Wu ZM,et al.Self-assembly of polyaniline ultrathin films based on doping-induced deposition effect and applications for chemical sensors.Sensors and Actuators B.2000,66:125-127.
    [94]Oliveira ON Jr,Zucolotto V,Ferreira M,et al.Nanoscale processing of polyaniline and phthalocyanines for sensing applications.Sensors and Actuators B,2006,113:809-815.
    [95]Advincula R.Supramolecular strategies using the layer-by-layer sequential assembly technique,Applications for PLED and LC display devices and biosensors IEICE.Transactions on Electronics on Electronics,2000,83:1104-1110.
    [96]Zhao W,Xu JJ,Shi CG,et al.Multilayer membranes via layer-by-layer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing.Langmuir,2005,21:9630-9634.
    [97]Recksiedler CL,Deore BA,Freund MS.A novel layer-by-layer approach for the fabrication of conducting polymer/RNA multilayer films for controlled release.Langmuir,2006,22:2811-2815.
    [98]Nohria R,Khillan RK,Su Y,et al.Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly.Sensors and Actuators B,2006,114:218-222.
    [99]Liu JY,Tian SJ,Knoll W.In neutral solution and their application for stable low-potential detection of reduced beta-nicotinamide adenine dinucleotide.Langmuir,2005,21:5596-5599.
    [100]Takashima W,MacDiarmid AG,Kaneko M,et al.The electrochemical actuator using electrochemically-deposited poly-aniline film.Synthetic Metals,1995,71:2265-2266.
    [101]Tzou K,Gregory RV.A method to prepare soluble polyaniline salt solutions-in situ doping of PANI base with organic dopants in polar solvents.Synthetic Metals,1993,53:365-377.
    [102]Ghan R,Shutava T,Patel A,et al.Enzyme-catalyzed polymerization of phenols within polyelectrolyte microcapsules.Macromolecules,2004,37:4519-4524.
    [103]蒋亚东.电子聚合物气、湿敏特性及机理研究[博士学位论文].电子科技大学.2001.4.
    [104]Krutovertsev SA,Sorokin SI,Zorin AV,et al.Polymer film-based sensors for ammonia detection.Sensors sand Actuators B,1992,7:492-494.
    [105]Haijdu F.Behaviour of electrocoductive polyaniline films used in highly sensitive ammonia sensors.IEEE Polytronic 2002 Conference.2002,216-220.
    [106]Matsuguchi M,Okamoto A,Sakai Y.Effect of humidity on NH_3 gas sensitivity of polyaniline blend films.Sensors and Actuators B,2003,94:46-52.
    [107]Hu H,Trejo M,Nicho ME,et al.Adsorption kinetics of optochemical NH_3 gas sensing with semiconductor polyaniline films.Sensors and Actuators B,2002,82:14-23.
    [108]Prasada GK,Radhakrishnan TP.Ammonia sensing characteristics of thin film based on polyelectrolyte templated polyaniline.Sensors and Actuators B,2005,106:626-631.
    [109]Asijatil E,Kuswandi B,Arifah NF.Non-invasive optical chemical sensor based on polyaniline Films for detection of ammonia and acetic acid solutions.2005 ASLAN Conference on Sensors and the International Conference on New Technologes in Pharmaceutical and Biomedical Research Prdceedings.2005,111-114.
    [110]Quintol E,Sevilla F.Optical sensor for ammonia based on polyaniline.2005 Aslan Conference on Sensors and the International Conference on New Technologes in Pharmaceutical and Biomedical Research Prodceedings.2005,115-117.
    [111]太惠玲,蒋亚东,谢光忠,等.聚苯胺/二氧化钛复合薄膜的制备及其气敏性能.物理化学学报,2007,1:1-9.
    [112]左言军,余建华,黄启斌,等.沙林酸印迹聚邻苯二胺纳米膜制备及结构表征.物理化 学学报,2003,19:528-532.
    [113]Wang W,He ShT,Li Shzh,et al.Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator.Sensors and Actuators B,2007,125:422-427.
    [114]Liu Y,Arthur GE,Cui TH.Acetylcholine biosensors based on layer-by-layer self-assembled polymer/nanoparticle ion-sensitive field-effect transistors.Sensors and Actuators A,2007,136:540-545.
    [115]Ficicioglu F,Kadirgan F.Electrooxidation of ethylene glycol on a platinum doped polyaniline electrode.Journal of Electroanalytical Chemistry,1998,451:95-99.
    [116]Pielichowski K,Hasik M.Thermal properties of new catalysts based on heteropolyanion -doped Polyaniline.Synthetic Metals,1997,89:199-202.
    [117]董绍俊,车广礼,谢远武.化学修饰电极(修订版).北京,科学出版社,2003
    [118]Lilia VL,Arkady AK.The improvement of polyaniline glucose biosensor stability using enzyme immobilization from water-organic mixtures with a high content of organic solvent.Sensors and Actuators B,1997,44:356-360.
    [119]Li ZF,Kang ET,Neoh KG,Tan KL.Covalent immobilization of glucose oxidase on the surface of Polyaniline films graft copolymerized with acrylic acid Biomaterials,1998,19:45-53.
    [120]DeBerry DW.Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating.Journal of Electrochemical Society,1985,132:1022-1026.
    [121]Fahlman M,Jasty S,Epstein AJ.Corrosion protection of iron/steel by emeraldine base polyaniline,an X-ray photoelectron spectroscopy study.Synthetic Metals,1997,85:1323-1326.
    [122]Mirmohseni A,Oladegaragoze A.Anti-corrosive properties of polyaniline coating on iron.Synthetic Metals,2000,114:105-108.
    [123]Armes SP,Gottesfeld S,Beery JG,et al.Conducting polymer colloidal silica composites.Polymer,1991,32:2325-2330.
    [124]Kim E,Jung S.Layer-by-layer assembled electrochromic films for all-solid-state electro chromic devices.Chemical Materials,2005,17:6381-6387.
    [125]Kim E,Kim Y.Layer-by-layer assembled electrochromic film based on an alkylsulfonated polyaniline.Molecular Crystals and Liquid Crystals,2006,447:491-497.
    [126]De Longchamp,DM,Hammond,PT.Electrochromic polyaniline films from layer-by-layer assembly.Acs Sym Ser,2005,888:18-33.
    [127]Lowack K,Helm CA.Molecular mechanisms controlling the self-assembly process of polyelectrolyte multilayers.Macromolecules,1998,31:823-833.
    [128]Dubas ST,Schlenoff JB.Factors controlling the growth of polyelectrolyte multilayers Macromolecules,1999,32:8153-8160.
    [129]Bertrand P,Jonas A,Laschewsky A,et al.Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces,suitable materials,structure and properties.Macromol Rapid Commun,2000,21:319-348.
    [130]Raposo M,Oliveira ONJr.Adsorption of poly(o-methoxyaniline) in layer-by-layer films.Langmuir,2002,18:6866-6874.
    [131]沈家骢.超分子层状结构-组装与功能.科学出版社,2004.
    [132]Zhang X,Shen JC.Self-assembled ultrathin films,from layered nanoarchitectures to functional assemblies.Advanced Materials,1999,11:1139-1143.
    [133]吴涛,张希.自组装超薄膜—从纳米层状构筑到功能组装.高等学校化学学报,2001,22:1057-1065.
    [134]Elbert DL,Herbert CB,Hubbell JA.Polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces.Langmuir,1999,15:5355-5362.
    [135]Picart C,Lavalle P,Hubert P.et al,Buildup mechanism for poly(L-lysine)/hyaluronic acid films onto a solid surface.Langmuir,2001,17:7414-7424.
    [136]Boulmedais F,Ball V,Schwinte P,et al.Buildup of exponentially growing multilayer polypeptide films with internal secondary structure.Langmuir,2003,19:440-445.
    [137]Ruths J,Bssler F,Decker G,et al.Polyelectrolytes Ⅰ,polyanion/polycation multilayers at the air/monolayer/water interface as elements for quantitative polymer adsorption studies and preparation of hetero-superlattices on solid surfaces.Langmuir,2000,16:8871-8878.
    [138]Stockton WB,Rubner M F.Molecular-level processing of conjugated polymers 4.layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions.Macromolecules,1997,30:2717-2725.
    [139]Wang LY,Wang ZQ,Zhang X,et al.A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding.macromol rapid communication,1997,18:509-514.
    [140]Shiratori SS,Rubner MF.PH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes.Macromolecules,2000,33:4213-4217.
    [141]Bharathi S,Nogami M,Ikeda S.Layer-by-layer self-assembly of thin films of metal hexacyanoferrate multilayers.Langmuir 2001,17:7468-7471.
    [142]Kim J,Wang H-C,Kumar J,et al.Layer-by-layer complexation technique and properties of the fabricated films,Chemical Materials,1999,11:2250-2256.
    [143]Xiong HM,Zhou Z,Wang ZQ et al.A new approach to fabrication of a self-organizing film of heterostructured polymer/CdS nanoparticles.Supramol Sciece,1998,5:623-626.
    [144]Shimazaki Y,Mitsuishi M,Ito S,et al.Preparation and characterization of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction in organic solvents.Langmuir,1998,14:2768-2773.
    [145]ShimazakiY,Ito S,Tsutsumi N.Adsorption-induced second harmonic generation from the layer-by-layer deposited ultrathin film based on the charge-transfer interaction.Langmuir,2000,16:9478-9482.
    [146]Shimazaki Y,Nakamura R,lto S,et al.Molecular weight dependence of alternate adsorption through charge-transfer interaction.Langmuir,2001,17:953-956.
    [147]Hoshi T,Akase S,Anzai J.Preparation of multilayer thin Films containing avidin through sugar-lectin interactions and their binding properties,Langmuir 2002,18:7024-7028.
    [148]Lvov Y,Decher G.Assembly of multilayer ordered films by alternating adsorption of oppositely charged macromolecules.Cryslallograp Reports,1994,39:628-649.
    [149]Sun J,Wang LY,Yu X,et al.Alternating deposition multilayer films of dendrimers/poly(4-vin ylpyridine) based on hydrogen bonding.Chinese Science Bulletin,2005,50:374-376.
    [150]Lutkenhaus JL,Hrabak KD,McEnnis K,et al.Elastomeric flexible free-standing hydrogen-bonded nanoscale assemblies.Journal of American Chemical Society,2005,127:17228-17234.
    [151]Kharlampieva E,Sukhishvili SA.Hydrogen-bonded layer-by-layer polymer films.Polymer Reviews, 2006, 46: 377-395.
    
    [152] Buscher K, Graf K, Ahrens H, et al. Influence of adsorption conditions on the structure of polyelectrole multilayers. Langmuir, 2002, 18: 3585-3591.
    
    [153] Kohli P, Blanchard GJ. Applying polymer chemistry to interfaces, laver-by-layer and spontaneous growth of covalently bond multilayers. Langmuir 2000, 16: 4655-4661.
    
    [154] Major JS, Blanchard GJ. Strategies for covalent multilayer growth 2. interlayer linking chemistry. Chemical Materials, 2002,14: 2574-2581.
    
    [155] Wang J, Jia X, Zhong H,et al. Self-assembled multilayer films based on dendrimers with covalent interlayer linkage. Chemical Materials, 2002,14: 2854-2858.
    
    [156] Cao T, Wei F, Yang Y, et al. Microtribologic properties of a covalently attached nanostructured self-Assembly film fabricated from fullerene carboxylic acid and diazoresin.Langmuir, 2002,18: 5186-5189.
    
    [157] Vuillaume PY, Jonas AM, Laschewsky A. Ordered polyelectrolyte "Multilayers" 5 photo-cross-linking of hybrid films containing an unsaturated and hydrophobized poly(diallylammonium) salt and exfoliated clay. Macromolecules, 2002, 35: 5004-5012.
    
    [158] Harris J J, DeRose P M, Bruening, M L. Synthesis of passivating, nylon-like coatings through cross-linking of ultrathin polyelectrolyte films. Journal of American Chemical Society, 1999,121: 1978-1979.
    
    [159] Weissbuch 1, Lahav M, Leiserowitz L. Toward stereochentical control, monitoring, and understanding of crystal nucleation. Crystal Growth & Design, 2003, 3: 125-150.
    
    [160] Hammond PT. Form and function in multilayer assembly, New applications at the nanoscale.Advanced Materials, 2004,16: 1271-1293.
    
    [161] Jiang CY, Tsukruk VV. Freestanding nanostructures via layer-by-layer assembly. Advanced Materials, 2006, 18:829-840.
    
    [162] Decker G. In templating, self-assembly and self-organization. V619 of Comprehensive Supramolecular Chemistry, Sauvage JP, Hosseini, MW, Eds, Pergamon, Oxford, 1996: 507-528.
    
    [163] Zhang X, Sun YP, Gao ML, et al. Effects of pH on the supramolecular structure of polymeric molecular deposition films. Macromol Chemical Physical, 1996, 197: 509-515.
    
    [164] Sukhorukov GB, Schmitt J, Decher G. Reversible swelling of polyanion/polycation multilayers films in solutions of different ionic strength. Ber Bunsen-Ges Phys Chem,1996, 100:948-953.
    
    [165] McAloney RA, Sinyor M, Dudnik V, et al. Atomic force microscopy studies of salt effects on polyelectrolyte multilayer film morphology. Langmuir, 2001, 17: 6655-6663.
    
    [166] Schmitt J, Decher G Metal nanoparticle/polymer superlattice films, fabrication and control of layer structure. Advanced Materials, 1997, 9: 61-65.
    
    [167] Schoeler B, Kumaraswamy G, Caruso F. Investigation of the influence of polyelectrolyte charge density on the growth of multilayer thin films prepared by the layer-by-layer technique.Macromolecules, 2002,35: 889-897.
    
    [168] Shen JC,Zhang X, Sun YP. Molecular deposition films. Progress in Natural Science, 1996, 6,651-656.
    
    [169] Jung SY, Kim HJ, Han MJ, et al. Layer-by-layer assembly of poly(aniline-N-butylsulfonate)s and their electrochromic properties in an all solid state window. Materials Science and Engineering C,2004, 24: 57-60.
    [170] Kim JH, Kim SH, Shiratori S. Fabrication of nanoporous and hetero structure thin film via a layer-by-layer self assembly method for a gas sensor. Sensors and Actuators B, 2004,102: 241-247.
    
    [171] Yang XM, Dai TY, Wei M, et al. Polymerization of pyrrole on a polyelectrolyte hollow-capsule microreactor. Polymer, 2006, 47: 4596-4602.
    
    [171] Khillan RK, Su Y, Lvov YM, et al. Layer-by-layer nanoarchitecture of ultrathin films of PEDOT-PSS and PPy to act as hole transport layer in polymer light emitting diodes and polymer transistors. IEEE Transactions on Components and Packaging Technologies 2005, 28: 748-753.
    
    [172] Man KYK, Wong HL, Chan WK, et al. Use of a ruthenium-containing conjugated polymer as a photosensitizer in photovoltaic devices fabricated by a layer-by-layer deposition process.Langmuir, 2006, 22: 3368-3375.
    [1]Gustafsson G,Cao Y,Treacy GM,et al.Flexible light-emitting organic electronluminescent diods made from solube conducting polymer.Nature,1992,357:477-480.
    [2]Fusalba F,Gouerec P,Villers D,Belanger,D.Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors.Journal of Electrochemical Society,2001,148:1-6.
    [3]Tan S;Viau V,Cugnod D;Beleange D.Chemical modification of a sulfonated membrane with cationic polyaniline layer to improve its permiselectivity.Electrochemical.Solid State Letter.2002,5:55-58.
    [4]Huang JX.,Virji S.Weiller BH,et al.Polyaniline nanofibers:facile synthesis and chemical sensors.Journal of American Chemical Society,2003,125:314-315.
    [5]邓梅根,杨邦朝,胡永达,等.基于碳纳米管-聚苯胺纳米复合物的超级电容器研究.化学学报,2005,63:1127-1130.
    [6]Decher G,Hong J.Buildup of ultrathin multilayer films by a se lf-assembly process,consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces.Macromol.Chem.Macromol.Symp.1991,46:321-327.
    [7]Decher G.Fuzzy nanoassemblies:toward layered polymeric muiticomposites.Science,1997,277:1232-1237.
    [8]Zhang X,Shen JC.Self-assembled ultrathn film:From layered ar chitectures to functional assemblies.Advanced Materials,1999,11:1139-1143.
    [9]Kang EH,Liu XK,Sun JQ,et al.Robust ion-permselective multilayer films prepared by photolysis of polyelectrolyte multilayers containing photo-cross-linkable and photolabile groups.Langmuir,2006,22:7894-7901.
    [10]沈家骢,孙俊奇.中国科学院院刊.超分子科学研究进展,2004,19:420-424.
    [11]沈家骢.超分子层状结构-组装与功能.科学出版社,2004
    [12]Wang MF,Qiu DL,Zou BR.Stabilizing bolaform amphiphile interfacial assemblies by introducing mesogenic groups.Chemical European Journal,2003,9:1876-1880.
    [13]何琳,林贤福,陈志春,等.α-淀粉酶在阴离子化PET表面的自组装膜及其AFM研究.化 学学报,2002,60:377-381.
    [14]Sun JQ,Wu T,Liu F,et al.Covalently attached multilayer assemblies by sequential adsorption of polycationic diazo-resins and polyanionic poly(acrylic acid).Langmuir,2000,16:4620-4624.
    [15]Cheung JH,Fou AF,RubnerMF.Molecular self-assembly of conducting polymers.Thin Solid Films,1994,244:985-992.
    [16]Cheung JH,Stockton WB,Rubner MF.Molecular-level processing of conjugated polymers.3.layer-by-layer manipulation of polyaniline via electrostatic interactions.Macromolecules,1997,30:2712-2716.
    [17]Sun JQ,Sun YP,Zou S,et al.Layer-by-layer assemblies of polycation bearing Os complex with electroactive and electroinactive polyanions and their electrocatalytic reduction of nitrite.Macromol Chem Phys,1999,200:840-844.
    [18]Sun JQ,Cheng L,Liu F,et al.ovalently attached multilayer assemblies containing photoreactive diazo-resins and conducting polyaniline.Colloids and surfaces A,2000,169:209-217.
    [19]Li D,Jiang YD,Li C,et al.Self-assembly of polyaniline/polyacrylic acid films via acid-base reaction induced deposition.Polymer,1999,40,7065-7069.
    [20]Xie D,Jiang YD,Pan W,et al.Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology.Sensors and Actuators B,2002,81:158-164.
    [21]Nohria R,Khillan RK,Su Y,et al.Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly.Sensors and Actuators B,2006,114:218-222.
    [22]Recksiedler CL,Deore BA,Freund MS.A novel layer-by-layer approach for the fabrication of conducting polymer/RNA multilayer films for controlled release.Langmuir,2006,22:2811-2815.
    [23]Kim E,Kim Y.Layer-by-layer assembled electrochromic film based on an alkylsulfonated polyaniline.Molecular Crystals and Liquid Crystals,2006,447:491-497.
    [24]Farhat TR,Hammond PT.Engineering ionic and electronic conductivity in polymer catalytic electrodes using the layer-by-layer technique.Chemical Materials,2006,18:41-49.
    [25]Qu FL,Yang MH,Jiang JH,et al.Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film.Analytical Biochemistry,2005,344:108-114.
    [26]Fou AC,Rubner MF.Molecular-level processing of conjugated polymers.2.layer-by-layer manipulation of in-situ polymerized p-type doped conducting polymers.Macromolecules,1995,28:7115-7120.
    [27]李丹.聚苯胺自组装膜的制备及性能[博士学位论文].成都:电子科技大学.1999
    [28]Decher G.In Templating,Self-assembly and self-organization of Comprehensive Supramolecular Chemistry,Sauvage JP.,Hosseini,M.W.,Eds,Pergamon:Oxford,1996: 507-528.
    [29]Bai H,Shi GQ.Gas sensors based on conducting polymers.Sensors,2007,7:267-307.
    [30]孙鑫.高聚物中的孤子和极化子.四川教育出版社,1987.
    [31]Joo J,Chung YC,Song HG,et al.Charge transport studies of doped polyanilines with various dopants and their mixtures.Synthetic Metals,1997,84:739-740.
    [32]Ferreira M,Rubner MF.Molecular-level processing of conjugated polymers.1.layer-by-layer manipulation of conjugated polyions.Mucromolecules,1995,28:7107-7114.
    [33]邓芹英,刘岚,邓慧敏.波谱分析教程.北京:科学出版社,2003:76-79.
    [34]吴刚.材料结构表征及应用.化学工业出版社,2002.
    [35]孙以材,范兆书,孙新宇,等.电阻率两种测试方法间几何效应修正的相关性.半导体测试技术,2000,25:38-41.
    [36]庞志成,胡玉春,罗震宁.功能高分子膜导电性测试方法的研究.中国测试技术,2003,4,1-3.
    [37]杨辉,卢文庆,应用电化学.科学出版社,2004.
    [38]曹楚南,张鉴清.电化学阻抗谱导论.北京,科学出版社,2002.
    [39]Decher EL.Physics of contact angle measurement.Colloids and surfaces,1999,156:177-180
    [1]李丹,聚苯胺自组装膜的制备及性能[博士学位论文].成都:电子科技大学.1999.
    [2]Sapurina I,Riede A,Stejskal J.In-situ polymerized polyaniline films 3.Film formation.Synthetic Metals.2001,123:503-507.
    [3]Stejskal J,Kratochvil P,Jenkins AD.The formation of polyaniline and the nature of its structures.Polymer,1996,37:367-369.
    [4]Sulimenko T,Stejskal J,Kravka I,et al.Conductivity of colloidal polyaniline dispersions.Journal of European Polymer.2001,37:219-226.
    [5]Gruger A,Novak A,Regis A.Infrared and Raman study of polyaniline Part Ⅱ:Influence of ortho substituents on hydrogen bonding and UV-Vis-near-IR electron charge transfer.Journal of.Macromolecules Structrure.1994,328:153-167.
    [6]Xia Y,Macdiarmid AG.Camphorsulfonic Acid Fully Doped Polyaniline Emeraldine Salt:Conformations in Different Solvents Studied by an UltravioletNisiblel Near-Infrared Spectroscopic Method.Chemical Materials.1995,7:443-445.
    [7]de Souza Jr FG,Soares B G.Methodology for determination of Pani.DBSA content in conductive blends by using UV-Vis spectrometry.Polymer Testing.2006,25:512-517.
    [8]Macdiarmid AG,Epstein AJ.The concept of secondary doping as applied to polyaniline.Synthetic Metals.1994,65:103-108.
    [9]Ho KS.Effect of phenolic based polymeric secondary dopants on polyaniline.Synthetic Metals.2002,126:151-157.
    [10]Stockton WB,Rubner MF.Molecular-level processing of conjugated polymers,4.Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions.Macromolecules,1997,30:2717-2725.
    [11]Cheung JH,Stockton WB,Rubner MF.Molecular-level processing of conjugated Polymers.3.Layer-by-layer manipulation of polyaniline via electrostatic interactions.Macromolecules.1997,30:2712-2716.
    [1]Saxena V,Malhotra BD,Prospects of conducting polymers in molecular electronics,Current Applied Physics,2003,3:293-305.
    [2]Argun AA,Aubert PH,Thompson BC,et al.Multicolored electrochromism polymers:Structures and devices.Chemical Materials,2004,16:4401-4412.
    [3]徐任信,陈文,王钧,聚苯胺改性O-3型PZT/聚氨酯复合材料的极化与电性能.复合材料学报,2006,23:15-18.
    [4]Park MK,Onishi K,Locklin J,et al.Self-assembly and characterization of polyaniline and sulfonated polystyrene multilayer-coated colloidal particles and hollow shells.Langmuir,2003,19:8550-8554.
    [5]Beissenhirtz MK,Scheller FW,Lisdat FA.superoxide sensor based on a multilayer cytochromec electrode.Anal Chem,2004,76:4665-4671.
    [6]Delongchamp,DM,Hammond,PT.Elctrochromic Polyaniline films from layer-by-layer assembly. Acs sym ser 2005, 888: 18-22.
    [7] Zucolotto V, Ferreira M, Cordeiro MR, et al. Nanoscale processing of polyaniline and phthalocyanines for sensing applications. Sensors and Actuators B, 2006, 113: 809-815.
    [8] Acevedo DF, Balach J, Rivarada CR et al, Functionalised conjugated materials as building blocks of electronic nanostructures. Faraday. Discuss. 2006, 131:235-252.
    [9] Ram MK, Salerno M, Adami M, et al. Physiscal Properties of Polyaniline Films:Assembled by the layer-by-layer technique. Langmuir, 1999, 15: 1252-1259.
    [10] Sukhorukov GB, Schmitt J, Decher G. Reversible swelling of polyanion/polyca- tion multilayers films in solutions of different ionic strength, Ber Bunsen-Ges. Physical Chemistry. 1996, 100:948-953.
    [11] Schmitt J, Decher G. Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure, Advanced Materials. 1997, 9: 61-65.
    [12] Neoh KG, Pun MY, Kang ET, et al. Polyaniline treated with organic acids: doping characteristics and stability. Synthetic Metals, 1995, 73:209-215.
    [13] Wan MX, Yang J, Mechanism of proton doping in polyaniline. Journal of Applied Polymer Science, 1995, 5: 399-405.
    [14] Wan MX, Li M, Li JC, et al. Structure and electrical properties of the oriented polyaniline films.Journal of Applied Polymer Science, 1994, 53: 131-139.
    [15] Tang J, Jing X, Wang B, et al. Infrared spectra of soluble polyaniline. Synthetic Metals, 1988,24:231-238.
    [16] Zhang H, Li HX, Cheng HM. Water-Soluble Multiwalled Carbon Nanotubes Functionalized with Sulfonated Polyaniline. Journal of Physical Chemistry B. 2006, 110: 9095- 9099.
    [ 17] Zhang F, Kang E. T, Neoh KG, Synthesis and characterization of poly(ethylene glycol)-grafted polyaniline. Chemical Materials, 2001, 13: 581-589.
    [18] Tan S, Tieu JH, Be'langer D. Chemical polymerization of aniline on a poly(styrene sulfonic acid) membrane: controlling the polymerization site using different oxidants. Journal of Physical Chemistry B. 2005, 109: 14085-14092.
    [19] Tan S, Laforgue A, Belanger D. Characterization of a cation-exchange/polyaniline composite membrane. Langmuir, 2003, 19: 744-751.
    [20] Zhao LP, Neoh KG, Kang ET. The redox active material may be in the form of a film or it can be immobilized on the surface of a substrate. Chemical Materials. 2002, 14: 1098-1105.
    [21] Pouget JP, Jozefowicz ME, Epstein AG, et al. X-ray structure of polyaniline. Macromolecules,1991,24:779-789.
    [22] Yang Y, Wan MX. Chiral nanotubes of polyaniline synthesized by a template-free method.Materials Chemistry, 2002, 12: 897-901.
    [23] Fusalba F, Gouerec P, Villers D, et al. Electrochemical charaterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors.Journal of Electrochemical Society.2001,148:1-6.
    [24]Tan S,Viau V,Cugnod D,et al.Chemical modification of a sulfonated membrane with cationic polyaniline layer to improve its permselectivity.Electrochem Solid State Letter.2002,5:55-58.
    [25]杨辉,卢文庆.应用电化学.科学出版社,2004.
    [26]Shannon K,Fernandez JE.Preparation and properties of water-soluble poly(styrenesulfonic acid)-doped polyaniline.Journal of Chemical Society.1994,5:643-644.
    [27]刘学习,曾幸荣.聚苯乙烯磺酸掺杂聚苯胺的性能.功能高分子学报.2003,16:309-312.
    [28]Chu CC,Wang YW,Wang LY,et al.Synthesis and characterization of novel conductive star polymers containing PSS/PANI arms.Synthetic Metals,2005,153:321-324.
    [29]Kim BJ,Oh SG,Han MG,et al.Preparation of PANI-coated poly(styrene-co-styrene sulfonate)nanoparticles.Polymer,2002,43:111-116.
    [30]曹楚南,张鉴清.电化学阻抗谱导论,北京:科学出版社.2002.
    [31]Kinlen PJ,Silverman DC,Jeffrey CR.Corrosion protection using polyanujne coating formulations.Synthetic Metals,1997,85:1327-1332.
    [1]彭军.传感器与检测技术.西安电子科技大学出版社,2003.
    [2]Wyers GP,Otjes RP,Slamina J.A continuous-flow denuder for the measurement of ambient concentrations and surface-exchange fluxes of ammonia.Atmospheric Environ,1993,27A:2085-2090.
    [3]孔祥霞,孙良彦,平田光寿.高选择性常温NH_3传感器.传感器技术,2003,22:78-80.
    [4]Ma X F,Wang M,Li G,et al.Preparation of polyaniline-TiO_2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature.Mater.Chem.and Phy,2006,98:241-247.
    [5]Matsuguchi M.,Okamoto A.,Sakai Y.Effect of humidity on NH3 gas sensitivity of polyaniline blend films.Sensors and Actuators B,2003,94:46-52.
    [6]Wang JZ,Matsubara I,Murayama N,et.al.The preparation of polyaniline intercalated MoO3thin film and its sensitivity to volatile organic compounds.Thin Solid Films,2006,514:329-333.
    [7]Krutovertsev SA,Sorokin SI,Zorin AV,et al.Polymer film-based sensors for ammonia detection.Sensors sand Actuators B,1992,7:492-494.
    [8]童基均,陈裕泉,共轭导电聚合物及其在传感器中的应用.传感技术学报,2003,9:335-340.
    [9]Agbor NE,Petty MC,Monkman AP,Polyaniline thin films for gas sensing.Sensors And Actuators B,1995,28:173-179.
    [10]Ghita M,Gheorghe M,Visinoiu A.Microelectronic Manufacturing of a Microsensor Based on Polyaniline for Ammonia Gas Sensing.Proc.22nd International Conference on Microelectronics.Nis,Serbia,2000,2:14-17.
    [11]Jin Z,Su YX,Duan YX,Development of a polyaniline-based optical ammonia sensor.Sensors and Actuators B,2001,72:75-79
    [12]谢丹,蒋亚东,李丹,等.聚苯胺基LB膜的制备及气敏特性的研究.高分子学报,2001,2:224-227.
    [13]Haijdu F.Behaviour of electrocoductive polyaniline films used in highly sensitive ammonia sensors.IEEE Polytronic 2002 Conference,2002:216-220
    [14]Hu H,Trejo M,Nicho ME,et al.Adsorption kinetics of optochemical NH3 gas sensing with semiconductor polyaniline films,Sensors and Actuators B,2002,82:14-23.
    [15]Nicolas-Debarnot D.,Poncin-Epaillard F.Polyaniline as a new sensitive layer for gas sensors.Anal.Chim.Acta,2003,475:1-15.
    [16]Wang SG,Qing Zh.,Yang DJ,et al.Multi-walled carbon nanotube-based gas sensors for NH_3detection.Diamond and Related Materials,2004,13:1327-1332.
    [17]Virji S,Huang J,Kaner RB,et al.,Polyaniline Nanofiber Gas Sensors:Examination of Response Mechanisms.Nano Letters,2004,4:491-496.
    [18]Liu H,Kameoka J,Czaplewski DA,et al.Polymeric Nanowire Chemical Sensor.Nano Letter,2004,4:671-675.
    [19]Asijatil E,Kuswandi B,Arifah NF.Non-invasive optical chemical sensor based on polyaniline films for detection of ammonia and acetic acid solutions. 2005 ASLAN Conference on Sensors and the International Conference on New Technologes in Pharmaceutical and Biomedical Research Prdceedings, 2005: 111-114.
    [20] Quintol E, Sevilla F. Optical sensor for ammonia based on polyaniline. 2005 ASLAN Conference on Sensors and the International Conference on New Technologes in Pharmaceutical and Biomedical Research Prodceedings, 2005: 115-117.
    [21] Shen CY, Hou CL, Wang DL. 7th. Int. Conf: on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, Euro Sim E, 2006: 1-3.
    [22] Decher G, Hong J. Buildup of ultrathin multilayer films by a self-assembly process,consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces.Makromol. Chem. Macromol. Symp, 1991, 6: 321-327.
    [23] Decher G. Science. Fuzzy Nanoassemblies: Toward layered polymeric multicom posites, 1997,277:1232-1237.
    [24] Zhang X,Shen JC. Self-assembled ultrathn film:From layered ar chitectures to functional assemblies. Advanced Materials, 1999, 11: 1139-1143.
    [25] Ram MK, Yavuz O, Lahsangah V, et al. CO gas sensing from ultrathin nano-composite conducting polymer film. Sensors and Actuators B, 2005, 106: 750-757.
    [26] Ram MK, Yavuz O, Aldissi M, NO_2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite. Synthetic Metals, 2005, 51: 77-84.
    [27] Nohria R, Khillan, RK, Su Y, et al. Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sensors and Actuators B, 2006, 114: 218-222.
    [28] Virji S, Kaner RB, Weiller BH. Hydrogen sensors based on conductivity changes in polyaniline nanofibers. Journal of Physical Chemistry B. 2006,110: 22266-22270.
    [29] Li D, Jiang YD, Wu ZM, et al. Self-assembly of polyaniline ultrathin films based on doping-induced deposition effect and applications for chemical sensors. Sensors and Actuators B, 2000, 66: 125-127.
    [30] Xie D, Jiang YD, Pan W. Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film techonology. Sensors and Actuators B, 2002, 81: 158-164.
    [31] Prasada GK, Radhakrishnan TP. Ammonia sensing characteristics of thin film based on polyelectrolyte templated polyaniline. Sensors and Actuators B, 2005, 106: 626-631.
    [32] Oliveira ON Jr, Zucolotto V, Ferreira M, et al. Nanoscale processing of polyaniline and phthalocyanines for sensing applications. Sensors and Actuators B, 2006, 113: 809-815.
    [33] Matsuguchi M, Io J, Sugiyama G, et al. Effect of NH3 gas on the electrical conductivity of polyaniline blend films. Synthic Metters, 2002,128:15-19.
    [34]时钧,袁权.膜科学技术手册.化学工业出版社,2001:491-499
    [35]Gardner JW,Iskandarani MZ.Effect of electrode geometry on gas sensitivity of lead phthalocyanine thin films.Sensors and Actuators B,1992,9:133-142.
    [36]Passard M,Maleysson C,Pauly A,et al.Gas sensitivity of phthalocyanine thin films.Sensors and Actuators B,1994,18-19:489-492.
    [37]Liu CJ,Hsieh JC,Ju YH.Response characteristics of lead phthalocyanine gas sensor:Effect of operating temperature and postdeposition annealing.J.Vac.Sci.Technol,1996,14:753-756.
    [38]Ambily S,Menon CS,The effect growth parameters on the electrical,optical and structural properties of copper pthalocyanine thin films.Thin Solid Films,1999,374:284-288.
    [39]Archer PBM,Chadwick AV,Miasik JJ.Kinetic factors in the response of organometallic semiconductor gas sensors.Sensors and Actuators,1989,16:379-392.
    [40]丁占来,王建强,安寸然,等.SnO_2纳米颗粒多孔膜气敏传感器对CO气体的敏感性.传感技术学报,2006,19:78-86.
    [1]Szinicz L.History of chemical and biological warfare agents.Toxicology,2005,214:167-181.
    [2]Shen ZH,Sandhu G,Li D,et al.Solubility of chemical warfare agent simulants in supercritical carbon dioxide:experiments and modeling.Journal of Supercritical Fluids,2004,30:273-280.
    [3]Degenhardt-Langelaan CE,Kientz CE.Capillary gas chromatographic analysis of nerve agents using large volume injections.Journal of Chromatogr A,1996,723:210-214.
    [4]Munson CA,De Lucia Jr FC.,Piehler T,et al.Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants.Spectrochimica Acta Part B,2005,60:1217-1224.
    [5]Simonian AL,Grimsley JK,Flounders AW,et al.Enzyme-based biosensor for the direct detection of fluorine-containing organophosphates.Analytica Chimica Acta,2001,442:15-23.
    [6]Kanua AB,Haigh PE,Hill HH.Surface detection of chemical warfare agent simulants and degradation products.Analytica Chimica Acta,2005,553:148-159.
    [7]Simoniana A.L.,T.A.Goodb,SS.Wangc,1,J.R.Wildc Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides.Analytica Chimica Acta,2005,534:69-77.
    [8]Kendler S,Zifman A,Gratziany N,et al.A new method and apparatus for on-site detection of trace levels of chemical warfare agents.Analytica Chimica Acta,2005,548:58-65.
    [9]Wen W,He ST,Li SZ,.Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator.Sensors and Actuators B,2007,125:422-427.
    [10]Zimmermann C,Mazein P,Rebiere D,et al.Detection of GB and DMMP vapors by love wave acoustic sensors using strong acidic fluoride polymers.IEEE Sensors Journal,2004,4:479-488.
    [11]Gupta DC,Saxena C,Dubey V,Polyethylene maleate copolyesters as coating materials for piezoelectric quartz crystal-based chemical sensors.Defence Science Journal,2005,55:505-514.
    [12]Yang KL,Cadwell K,Abbott NL Use of self-assembled monolayers,metal ions and smectic liquid crystals to detect organophosphonates.Sensors and Actuators B,2005,104:50-56.
    [13]邹小红.导电有机膜沙林气敏传感器的研究.硕士研究论文,2001.
    [14]左言军,余建华,黄启斌,等.沙林酸印迹聚邻苯二胺纳米膜制备及结构表征.物理化学学报,2003,19:528-532.
    [15]MacDiarmid AG,Jones Jr WE,Norris ID.et al.Electrostatically-generated nanofibers of electronic polymers Synthic Metter,2001,119:27-3 0
    [16]Zeng XR,Ko TM.Structures and properties of chemically reduced polyanilines.Polymer.Polymer,1998,39:1187-1195.
    [17]Jiang L,Wang R,Yang B,et al.Binary cooperative complementary nanoscale interfacial materials..Pure Applied Chemistry.2000,72:73-81
    [18]丁杭军,朱长进,周智明,等.微/纳米结构的聚苯胺及其浸润性研究.高分子学报,2007,3:282-288.
    [19]李书宏,冯琳,李欢军,等.柱状结构阵列碳纳米管膜的超疏水性研究高等学校化学学报,2003,24:340-342.
    [20]Nakajim AA,Fujishim AA,Hashimoto K,et al.Advanced Materials,1999,11:1365-1368.
    [21]Feng L,Song YL,Zhai J.et al Creation of a superhydrophobic surface from an amphiphilic polymer.Angewandte Chemic International Edition,2003,42:800-802.
    [22]Li H J,Wang XB,Song YL,et al.Super-"amphiphobic" aligned carbon nanotube films Angewandte Chemic International Edition,2001,40:1743-1746.
    [23]Luk YY,Abbott NL.Surface-Driven Switching of Liquid Crystals Using Redox-Active Groups on Electrodes.Science,2003,301:623-626.
    [24]Jiang L,Wang R,Yang B,et al.Binary cooperative complementary nanoscale interracial materials.Pure Applied Chemistry,2000,72:73-81.
    [25]李书宏,冯琳,李欢军,等,柱状结构阵列碳纳米管膜的超疏水性研究高等学校化学学报,2003,24:340-342.
    [26]Nakajim AA,Fujishim AA,Hashimoto K,et al.Advanced Materials,1999,11:1365-1368.
    [27]Feng L,Song YL,Zhai J,et al.Creation of a superhydrophobic surface from an amphiphilic polymer.Angewandte Chemic International Edition,2003,42:800-802
    [28]Li H J,Wang XB,Song YL.et al.Super-"amphiphobic" aligned carbon nanotube films.Angewandte Chemic International Edition,2001,40:1743-1746.
    [29]Luk YY,Abbott NL.Surface-driven switching of liquid crystals using redox-active groups on electrodes.Science,2003,301:623-626.
    [1]Johnston APR,Read ES,Caruso F.DNA multilayer films on planar and colloidal supports:.Sequential assembly of like-charged polyelectrolytes.Nano Letter,2005,5:953-956.
    [2]Yang SY,Rubner MF.Micropatterning of polymer thin films with pH-sensitive and cross-linkable hydrogen-bonded polyelectrolyte multilayers.Journal American Chemical Society,2002,124:2100-2101.
    [3]Kozlovskaya V,Ok S,Sousa A,et al.Hydrogen-Bonded Capsules Formed by Layer-by-Layer Self-Assembly.Macromolecules,2003,36:8590.
    [4]Decher G,Schlenoff JB.Multilayer Thin Film- Sequential Assembly of Nanocomposite Materials,Weinheim:Wiley-VCH,2003.
    [5]Wang LY,Wang ZQ,Zhang X,et al.A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol Rapid Communication,1997,18:509-514.
    [6]Stockton WB,Rubner MF.Molecular-level processing of conjugated polymers,4.Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions.Macromolecules,1997,30:2717-2725.
    [7]Sukhishvili SA,Granick S.Layered,erasable,ultrathin polymer films.Journal American Chemical Society,2000,122:9550-9551.
    [8]Cho J,Caruso F.Polymeric multilayer films comprising deconstructible hydrogen-bonded stacks confined between electrostatically assembled layers,Macromolecules,2003,36:2845-2851.
    [9]Zhai L,Cebeci FC,Cohen RE,et al.Stable superhydrophobic coatings from polyelectrolyte multilayers.Nano Letter,2004,4:1349-1353.
    [10]Fu Y,Bai SL,Cui SX,et al.Hydrogen-bonding-directed layer-by-layer multilayer assembly:reconformation yielding microporous films,Macromolecules,2002,35:9451-9458.
    [11]Zhang HY,Fu Y,Wang D,et al.Hydrogen-bonding-directed layer-by-layer assembly of dendrimer and poly(4-vinylpyridine ) and micropore formation by post-base treatment.Langmuir,2003,19:8497-8502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700