用户名: 密码: 验证码:
咪唑啉类缓蚀剂及聚天冬氨酸阻垢剂的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色化学及其应用技术已经成为环境保护和防止污染的重要内容,应用绿色化学技术合成制备方法简单、高效、无毒的咪唑啉缓蚀剂及无毒、易生物降解的聚天冬氨酸阻垢剂已经成为工业冷却水、石油化工等领域的前沿课题。
     本论文在前人以脂肪酸(油酸、月桂酸)与多胺(羟乙基乙二胺、二乙烯三胺)为原料合成四种水溶性较好的咪唑啉缓蚀剂的基础上,以丙炔醇、丁炔二醇、十六烷基三甲基溴化铵为复配剂进行复配研究,以解决咪唑啉缓蚀剂单一作用效果不理想的问题,考察了不同复配剂对缓蚀剂性能的影响;以马来酸酐、氨水为原料,采用真空聚合法合成出了聚天冬氨酸阻垢剂;以咪唑啉缓蚀剂为主缓蚀剂、聚天冬氨酸为主阻垢剂合成出了兼具缓蚀、阻垢性能的缓蚀阻垢剂。
     采用IR分析法、静态失重法、SEM、极化曲线、EDTA滴定法、分光光度法等手段考察了咪唑啉中间体及聚合产物结构、复配对咪唑啉缓蚀剂缓蚀性能的影响及聚天冬氨酸的缓蚀阻垢性能。
     结果表明,丙炔醇复配在很大程度上提高了缓蚀率,丁炔二醇的复配效果次之,十六烷基三甲基溴化铵的复配效果不明显,丙炔醇复配后的咪唑啉类缓蚀剂在低浓度的缓蚀率可达到99%。咪唑啉类缓蚀剂是通过其在金属表面吸附形成一层有机保护膜来抑制腐蚀的发生,而通过丙炔复配后,缓蚀剂的吸附膜更加致密、均匀,从而使缓蚀剂在低浓度、长时间的腐蚀后仍具有较好的缓蚀作用。聚天冬氨酸阻垢剂在低钙离子浓度时的阻垢率可达到90%以上,可适用于较高钙离子、高温水系统中。聚天冬氨酸也具有较好的阻硫酸钙、分散氧化铁的能力以及一定的缓蚀能力。PASP是通过改变碳酸钙的晶型、络合增溶作用及凝聚分散作用来起到阻垢作用的。以咪唑啉类缓蚀剂和聚天冬氨酸阻垢剂成功合成的环境友好缓蚀阻垢剂在石化、冶金、发电等行业将会有广阔的应用前景。
Green chemistry and its application technology have become the important contents of environmental protection and preventing pollution. Synthesis of imidazoline-type inhibitior, which has a simple preparation, high efficiency and nontoxicity, polyaspartic acid(PASP), which has nontoxicity and biodegradability have become the frontier researches in the field of industrial cooling water and petrochemical engineer.
     Water soluble imidazoline inhibitor had been synthesized by a two-step vacuum dehydration method using fatty acid such as oleic acid and lauric acid and amine such as diethylene triamine and N-(2-hydroxyl-ethyl)-ethylenediamine by former investigator of our group. But its corrosion inhibition efficiency was low and the performance wasn't optimistic after long time. Propiolic alcohol, butynediol and hexadecyl trimethyl ammonium bromide(CTAB) were used to compound with imidazoline-type inhibitors. Polyaspartic acid(PASP) was synthsised by vacuum polymerization method using maleic anhydride and ammonia water as precursors. Enviromental friendly corrosion and scale inhibitor was prepared successfully using imidazoline inhibitor and polyaspartic acid.
     The structures of imidazoline intermediates and polysuccinimide, corrosion inhibition performance of imidazoline-type inhibitors, scale inhibition performance of polyaspartic acid were characterized by infrared spectrum analysis, Tafel polarization curve, SEM, energy spectrum analysis, static weight-lossing method, EDTA chelatometry and spectrophotometry.
     The results show that the compounding of propiolic alcohol improves the corrosion inhibition efficiency and reduces the corrosion rate in large degree, effect of butynediol is the second and CTAB hardly improves the inhibition performance. Inhibition efficiency of imidazoline can achieve above 99% under low concentration after compounding with propiolic alcohol. The imidazoline-type inhibitors compounding with propiolic alcohol inhibit corrosion by forming a much more compact and uniform adsorbed inhibitor film on the metal surface, which still have high inhibition efficency at lower concentration after a longer time. Polyaspartic acid adapts to high concentration of calcium ion and high temperature water systerm. It inhibites not only calcium carbonate scale but also calcium sulfate scale. It also has decentralization against ferric iron oxide and a certain corrosion inhibition performace. The addition of PASP can change the crystal type of calcium carbonate and has obvious inhibition efficiency on calcite. The corrosion and scale inhibitor, which is synthesized successfully by imadaz-oline inhibitor and polyaspartic acid, will have a extensive application prospect in petrochemical engineering, metallurgy and generate electricity industry.
引文
[1] 郑家燊.金属电化学和缓蚀剂保护技术.上海:上海科学技术出版社,1984
    [2] 景晓燕,易华,梁志刚等.缓独.阻垢剂的现状与发展.化学工程师.2003,96(3):34-35
    [3] 王睿,张岐,丁洁等.阻垢剂作用机理研究进展.化学工业与工程.2001,18(2):79-86
    [4] 曹展梅.绿色阻垢剂的研究现状与进展.扬州教育学院学报.2002,20(3):39-42
    [5] 周晓东,王卫,王凤英等.工业缓蚀阻垢剂的应用研究进展.腐蚀与防护.2004,25(4):152-156
    [6] 雷良才,肖恺,沈愚等.咪唑啉缓蚀剂的合成与缓蚀性能研究.腐蚀与防护.2001,22(10):420-423
    [7] 郭睿,李明.咪唑啉缓蚀剂的合成与缓蚀性能的研究.宁夏石油化工.2003,(4):16-18
    [8] 张贵才,马涛,葛际江等.咪唑啉缓蚀剂合成过程中成环程度与其性能的关系.西安石油大学学报.2005,20(2):55-57
    [9] 王大喜,刘丽霞.IMC-1新型缓蚀剂的复配测试结果及评价.材料保护.2001,34(6):87-88
    [10] 王建华,舒福昌,岳前声等.咪唑啉衍生物缓蚀剂的研制及其性能评价.精细石油化工进展.2004,5(6):22-24
    [11] 芦艾,钟传蓉,王建华等.几种炔醇的合成及缓蚀效果.精细化工.2001,18(9):551-552
    [12] 许淳淳,何海平.钨酸钠与十二烷基苯磺酸钠协同缓蚀作用研究.表面技术.2005,34(3):33-35
    [13] 李广超,路长青.硫脲及其衍生物的缓蚀行为研究进展.腐蚀科学与防护技术.2001,13(3):169-171
    [14] 谷宁,李春梅.表面活性剂与缓蚀剂协同效应的研究.河北省科学院学报.2001,18(4):231-233
    [15] 张学锋.高效低毒的复配油井缓蚀剂GC-02.油田化学.2004,21(02):162-164
    [16] 黄峰,金名惠.咪唑啉类缓蚀剂与水合肼协同效应研究.第十届全国缓蚀剂学术研讨会论文集.华中理工大学,中国腐蚀与防护学会缓蚀剂专业委员会,1997,307-310
    [17] 赵景茂,刘鹤霞,狄伟等.咪唑啉衍生物与硫脲之间的缓蚀协同效应研究.电化学.2004,10(4):440-445
    [18] 俞敦义.缓蚀剂及其应用.武汉:华中科技大学出版社,1987
    [19] 刘建平,苗永霞.复配咪唑啉类酸洗缓蚀剂的缓蚀性能研究.材料保护.2005,38(8):21-23
    [20] 邵彤,徐家业.咪唑啉类化合物在盐酸中对Q235钢的缓蚀性能.油田化学.1997,14(4):317-319
    [21] 钱军民,李旭祥,黄海燕等.国内聚合物阻垢剂的研究.精细石油化工进展.2001,(1):25-29
    [22] 郑邦乾,朱清泉.高分子阻垢剂及其阻垢机理.油田化学.1984,(2):181-183
    [23] 姚广致,成荣钊.阻垢剂对CaCO_3垢的抑制能力.工业水处理.1986,6(4):36-39
    [24] 李裕芳.阻垢剂分散剂控制沉积机理探讨.工业水处理.1984,4(3):6-10
    [25] 孙波,魏荣宝,安钢等.类蛋白质阻垢剂聚天门冬氨酸的合成研究.南开大学学报(自然科学).2002,35(2):90-96
    [26] Wood, Louis L. Preparation of salt of polyaspartic acid by high temperature reaction U. S. Pat. No. 5288783, Feb. 22, 1994
    [27] Harada, et al. Thermal polycondensation of free amino acids with polyphosphoric acid. with polyphosphoric acid. Origins Prebiol.systerm Their Mol Matrices, Proc. Conf., Wakulla Springs, Fla. 289, 1963
    [28] Sidney W. Fox, Kaour Harada. Thermal polymerization of amino acid mixtures containing aspartic acid or a thermal precursor of asparticacid U. S. Pat. No. 3052655, Sep. 4, 1962
    [29] Koskan; Larry P. Process for the manufacture of anhydro polyamino acids and polyamino acids. U. S. Pat. No. 5057597, Oct. 15, 1991
    [30] Harada; Kaoru; Shimoyama; Akira; Mizumoto; Hiroji Method of manufacturing polyamino acid with microwaves U. S. Pat. No. 4696981, Sep. 29, 1987
    [31] 刘振法,吴运娟,寇建朝等.环保型阻垢剂聚天冬氮酸的研制.河北省科学院学报.2002,19(3)
    [32] 杨红建,王兰芝,赵新强等.绿色水处理剂聚天冬氨酸的合成与性能.水处理技术.2005,31(6):51-53
    [33] 熊蓉春,董雪玲,魏刚.绿色生物高分子聚天冬氨酸的合成及其阻垢性能研究.工业水处理.2001,21(1):17-19
    [34] Kroner, Matthias; Schornick, Gunnar; Baur, Richard; Potthoff-Karl, Birgit. Polycondensates of aspartic acid with good biodegradability and their uses. Germany. No. 4427287, Feb. 8, 1996
    [35] Larry P, Koskan A R Y. Production of High Molecular Weight Polysuccinimide and High Molecular Weight Polyaspartic Acid FormMaleic Anhydrideand Ammonia. U. S. Pat. No. 5219952. 1993
    [36] Yorsten G, Winfried J, Nikolaus M. Process for Preparing Polyaspartic Acid. U. S. Pat. No. 5714558, 1998
    [37] Gary J. Calton L L. Copolymers of Polyaspartic Acid. U. S. Pat. No. 5357004, 1994
    [38] Masaharu M D, Shinzo Y. Polyaspartic Acid. U. S. Pat. No. 6380350 B1
    [39] 丁春黎,王聪,刘雪燕等.聚天冬氨酸型阻垢剂的合成.长春工业大学学报.2003,24(4):16-18
    [40] 霍宇凝,刘珊,陆柱.聚天冬氨酸对碳酸钙阻垢性能的研究.水处理技术.200l,27(1):26-28
    [41] 韶晖,冷一欣.以马来酸为原料合成的聚天冬氨酸的阻垢性能.江苏石油化工学院学报.2002,13(1):18-21
    [42] 李燕,陆柱.钨酸盐与聚天冬氨酸对碳钢协同缓蚀作用的研究.腐蚀与防护.2001,22(9):371-374
    [43] 黄远星,雷中方.聚天门冬氨酸类阻垢剂的生物降解性评定方法.复旦学报(自然科学版).2003,42(6):1053-1056
    [44] 刘三威,李向群,刘成海等.缓蚀阻垢剂HZ-X2的合成、性质及应用.油田化学.2003,20(1):17-19
    [45] 王新事,刘庆昌.KS一98缓蚀阻垢剂的研制与应用.油田化学.2001,18(2):139-140
    [46] 周云,付朝阳,郑家燊.耐高温固体缓蚀阻垢剂的研制.材料保护.2004,37(6):14-16
    [47] 周晓蔚,范洪波.聚天冬氨酸对铜、碳钢缓蚀性能的影响.材料保护.2005,38(3):59-61
    [48] 霍宇凝,蔡张理,赵岩等.聚天冬氨酸及其与锌盐的复配物对碳钢缓蚀性能的影响.华东理工大学学报.2001,27(6):669-672
    [49] A. J. SZYPROWSKI. Relationship between chemical structure of imidazoline inhibitors and their effectiveness against hydrogen sulphide corrosion of steels. British Corrosion Jurnal. 2000, 2(35): 155-160
    [50] Y. Chen, T. Hong, M. Gopal, W. P. Jepson. EIS studies of a corrosion inhibitor behavior under multiphase flow conditions. Corrosion Science. 2000 (42): 979-990
    [51] Daxi Wang, et al. Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives. Corrosion Science. 1999, 41 (10): 1911-1919
    [52] 陆建民,胡洪,黄燕.冷却水处理剂分散氧化铁沉积能力的评定.工业水处理.1991,11(6):10-12
    [53] 杨红健,王芳,侯凯湖.聚天冬氨酸的结构及其阻垢性能研究.工业水处理.2005,7(25):26-28
    [54] 王永丽,黄少斌.聚琥珀酰亚胺的水解动力学过程.应用化学.2005,8(34):517-518

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700