用户名: 密码: 验证码:
多通道波速指向高分辨SAR和动目标成像技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(SAR)具有全天候、全天时和远距离成像的特点,能有效提高雷达的信息获取能力,在土地监测、农田测绘、海洋观测、海冰监视和地面形变观测等民事领域以及战场侦察、军队动向监视等军事领域都有重要的应用。随着SAR技术的发展和应用需求的推动,波束指向更灵活、分辨率更高、场景覆盖面更大对于清晰地掌握地表信息和宏观把握地面运动目标信息来说具有特殊意义,也因此成为SAR对地观测领域的趋势性需求。
     SAR系统为了实现灵活性这一特性,采用了波束指向(BS, Beam steering,)这种形式,波束指向的形式对应了工作模式,如正侧视、斜视、聚束、滑动聚束、扫描和TOPS (TerrainObservation by Progressive Scans)等等(本文将这些模式统称为波束指向SAR(BS-SAR))。而且为了满足高分辨和宽覆盖的要求,多通道技术又与波束指向技术进行了结合。多通道波束指向SAR极大地提高了传统单通道SAR的观测能力,而且从理论上讲,在通道自由度较多的情况下,多通道波束指向SAR还可以实现动目标检测的功能。
     随着分辨率的逐渐提高,J. C. Curlander等人提出的星载SAR信号模型,即“一步一停”假设成立的2米门限已经突破,这促使我们重新认识宽带合成孔径的成像模型;SAR在工作过程中的波束指向变得灵活,从而构成了多种新的成像模式,如大斜视、滑动聚束和TOPS等,需要我们配合模式的发展研究新的成像算法;从软硬件处理器的研制和处理系统简单化上看,不同的单/多通道成像模式都需要研制各自的处理器,这都将花费时间和经济成本,从而推动了我们进行统一处理算法和通用处理器的研究;多通道与波束指向在SAR动目标检测和成像上,可以提供传统动目标系统无法达到的性能,而位置参数动目标的良好聚焦是动目标良好检测的首要条件,这促使我们研究新的成像方法,用于克服动目标频谱折叠和徙动带来的散焦。
     以满足高分宽幅发展的趋势性需求为目的,针对单/多通道波束指向高分辨率SAR成像中的关键问题和难点,围绕国家自然科学基金“多维度微波成像信息处理研究”、博士点基金“天基高分辨率合成孔径雷达成像技术”以及973项目“稀疏微波成像信号处理方法研究”等项目的研究任务,从宽带合成孔径的成像模型、波束指向SAR(BS-SAR)成像、多通道BS-SAR预处理和成像、多通道BS-SAR动目标成像等方面展开研究,论文的主要工作如下:
     1.提出了宽带合成孔径的成像模型,为成像算法的研究提供了理论依据。由于高分辨成像的需求,雷达的信号带宽越来越宽,信号时宽越来越长,这使得传统“一步一停”假设中被忽略的两类运动:脉冲收发间的运动和脉冲收发时的运动不能再被忽略了。在考虑到这两类运动的情况下,我们重新分析了雷达信号回波模型,并给出了新的两维频谱表达式,为成像算法的研究提供了理论支撑。为了分清传统成像模型和该模型的界线,我们对新模型进行退化分析,给出了传统模型不再适用的边界条件,并根据雷达发展的状况和趋势,分析了几种需要采用新模型的情况。
     2.提出了两种斜视SAR成像处理算法,提高了SAR成像的灵活性。斜视工作模式是SAR灵活性发展需求的一个必然趋势。基于斜视SAR两维频谱特性,将斜视成像方法分为两类:基于倾斜谱的成像处理和基于正交谱的成像处理。在倾斜谱处理中,我们提出对非线性变标算法进行高阶扩展,消除高阶项的空变性,从而完成聚焦;在正交谱处理中,我们先对原始信号频谱进行正交化处理,然后采用修正的距离线性调频变标的算法完成距离脉压和徙动校正,最后针对方位信号的空变性,提出采用方位非线性变标的方法对空变的方位信号进行聚焦处理。
     3.提出了两种可同时处理滑动聚束和TOPS SAR这两种模式的方法,为统一BS-SAR成像的研究提供了有效支撑。第一种方法是基于聚束SAR“两步”处理中的方位预处理卷积操作,对方位解混叠操作进行修改,使它可以很好应用到这两种新的SAR体制上,在恢复两维频谱后再采用方位多普勒域的算法校正信号的徙动,最后提出采用一个方位去斜变标的聚焦算法,将信号聚焦在方位频域。第二种方法是基于方位变标的PFA或称为广义PFA,广义PFA吸收了传统PFA算法对信号处理的高效性和“两步”方法中方位变标避开方位模糊地有效性,它可以通过参考函数的选取,同时处理滑动聚束和TOPSSAR数据。
     4.提出了一种统一聚焦算法(unified focusing algorithm,UFA),为BS-SAR通用软硬件处理器研制提供了依据。在对前面几部分研究过的和当前研究的热点SAR成像模式,也就是条带SAR(正侧视和斜视)、聚束SAR、滑动聚束SAR和TOPS SAR进行了分析和总结,首先引入一个旋转中心距离的量,通过概念将这四种成像模式进行了统一,提出了“波束指向SAR(Beam steering SAR,BS-SAR)”的概念,认为上述的四种成像模式都是BS-SAR在一定条件下的特例。接着提出了一种处理这四种模式的UFA,细致分析了该算法处理流程中参考函数的构造和成像参数的选取。
     5.提出了一种统一的全孔径多通道BS-SAR方位预处理方法,并给出了一种统一的多通道BS-SAR成像处理流程,为多通道BS-SAR通用软硬件处理器研制提供了依据。由于多通道BS-SAR信号通常存在两重混叠:方位带宽大于瞬时带宽的混叠和瞬时带宽大于方位采样率的混叠。这两重混叠出现的本质是不同的,因此解这两重混叠时应该用不同的方法。为了分析BS-SAR信号特性,我们引入了四个平面的概念。通过分析BS-SAR信号在四个平面中的信号分布,提出了波束压缩和带宽压缩的方法,它有效降低BS-SAR信号混叠程度的同时可以不改变信号在角度-多普勒平面或空时平面的信号特性,因此使得空时频解模糊的方法可以得到应用。解混叠后的信号并不能直接用于成像,因此我们又分析了这种解混叠方法与传统成像算法的结合。该算法还可以与UFA算法进行结合,从而得到一个处理多通道BS-SAR的统一的成像处理算法流程。
     6.提出了一种基于方位去斜Keystone处理(Deramp-Keystone processing, DKP)的瞬时距离多普勒算法(instantaneous range Doppler algorithm, IRDA),为多通道的动目标应用提供了理论依据。多通道SAR不仅可以进行方位解模糊,当通道自由度较多时,多通道SAR还可以进行动目标的检测和成像。沿着这一思路,针对SAR数据中动目标信号频谱略小于方位采样率,以及目标运动参数未知等情况,导致方位频谱折叠和目标距离徙动较大等问题,我们提出了一种基于DKP的IRDA。该方法中借用了前面波束和带宽压缩的思想,通过方位去斜处理极大降低动目标方位信号带宽,同时这种处理并不改变杂波信号在角度-多普勒平面或空时平面的信号特性。在采用传统杂波抑制的处理后,可以对未知运动参数的目标信号进行聚焦,提高目标信号的信噪比。这种方法有望扩展到多通道BS-SAR-GMTI处理。
As an active sensor, SAR is able to work day and night under all weatherconditions, which improve the capability of radar in information acquisition. SAR iswidely used in civil application, such as monitoring of urban areas, marine andterrestrial surveillance, sea ice monitoring and deforming observing, and also in militaryapplication, such as battlefield reconnaissance and monitoring of military motion. Withthe development of SAR technology and SAR application, the beam steering, highresolution and wide range swath become more and more important for SAR observing.
     To obtain the flexibility, the technique of beam steering (BS) is incorporated inSAR (BS-SAR). The BS corrpesonds to different SAR modes, such as sidelook SAR,squinted SAR, spotlight SAR, sliding spotlight SAR, Scan SAR, TOPS SAR and so on.To obtain high resolution and wide range swath, the muti-channel and BS-SAR arecombined. The muti-channel BS-SAR can improve the imaging ability of traditionalSAR. If the freedom degree of muti-channel is enough big, the muti-channel BS-SARcan also be used for moving target imaging (GMTIm).
     With the improvement of imaging resolution, the available threshold of traditionalmodel proposed by J. C. Curlander will not hold any more. In this case, the imagingmodel should be reknown. The BS-SAR corresponds to different SAR modes, such ashighly squinted SAR, sliding spotlight and TOPS SAR. The imaging algorithm shouldbe studied. Different SAR modes with or without muti-channle configure need relateddata processor. To simplify the processor development of different SAR modes with orwithout muti-channle configure and low the cost, we need to study a serial of generalprocess algorithm. In addition, to indicate and image moving target by multi-channelBS-SAR, we need to study suitable moving target imaging algorithm.
     To satisfy the tread requirement of observing with high resolution and wide rangeswath, and to solve the key problems in BS-SAR imaging, we expand the work fromsignal model, BS-SAR imaging, muti-channel BS-SAR imaging and moving targetimaging. The relevant work is supported by the National Science Foundation of China(No.60890072), the "973" Program (No.2010CB731903) and the Doctoral Foundation(No.200807010002). The main content of this dissertation is summarized as follows.
     1. A new signal model for a wideband synthetic aperture imaging sensor wasproposed. The model is more accurate than the traditional one based on “go-stop-go”assumpation. Due to the requirement of imaging with high resolution, the bandwidth becomes wider and pulse duration becomes longer. In this case, the “go-stop-go”assumpation doses not hold any more because two kinds of motion have been ignored inthis assumpation: the sensor motion during the signal receiving and transmitting, thesensor motion between the signal receiving and signal transmitting. With this newmodel, we obtain the signal model and then the2D spectrum expression. Then, theboundary where the traditional model holds is deduced.
     2. Two imaging algorithms are proposed for squinted SAR. According to the signalproperty of the2D spectrum, we divided the imaging algorithms into two categories:methods based on skew spectrum and on orthogonal spectrum. For the first category,the range-variant higher order terms are analyzed. Then, an extended NCS algorithm isproposed to deal with the range-variant of third and higher order terms. In this method,the range-variant can be weakened. For the second category, we proposed a “squintminimized” method. With the sheared orthogonal spectrum, we proposed an modifiedCS algorithm based on the azimuth NCS. This method is suitable for the case of highsquint angle and may be usefull for the spaceborne SAR with orbital trajectory.
     3. For the newly emergying SAR mode, such as sliding spotlight SAR and TOPSSAR, two focusing methods are proposed. The first method is based on the idea of“Two-Step” approach in spotlight SAR imaging. Traditional algorithm is utilized tocorrect RCM. And a scaling deramping method is proposed to focus azimuth signal.The second method is a general PFA based on azimuth scaling. The azimuth derampingfunction is modified in the sliding spotlight SAR and TOPS SAR to avoid azimuthaliasing. Then, the well-known2D interpolation is performed and signal is well rangecompressed. In the azimuth focusing module, a scaling operation is introduced.
     4. For the commonly studied SAR modes, such as strip SAR, spotlight SAR,sliding spotlight SAR and TOPS SAR, a unified analysis is performed by introducingthe rotation center range. Then, we proposed the conception, beam steering SAR ingeneral, and these four SAR modes are specific form of BS-SAR. By using the unifiedanalysis, a unified focusing algorithm is proposed. The algorithm flow and parametersselection are analyzed. The relationship between classical imaging algorithms and UFAis detailed.
     5. A full-aperture pre-processing method is preposed to resolve azimuth aliasingfor multi-channel BS-SAR (MC-BS-SAR) and then a unified imaging flow is obtainedfor multi-channel BS-SAR. In the MC-BS-SAR, two kinds of aliasing exist. The firstone is that the azimuth bandwidth is greater than equvilent PRF. The second one is thatthe instantaneous bandwidth of one channel is greater than PRF. These two aliasings is leaded for two different reasons. To introduce new method, we introduced theconception of “four planes”. Then, to change the distribution of signal in these planes,the beam and bandwidth compressions method is proposed to weaken the signal aliasingand multi-channel signals is utilized to resolve the azimuth aliasing.
     6. Multi-channel could also be utilized to detect and image moving target. For thetarget with spectrum not entirely in a PRF band and unknown motion parameters, anazimuth deramping Keystone processing based instantaneous range-Doppler algorithmis proposed to deal with resulting spectrum folding and large RCM. The method candecrease the azimuth bandwidth by azimuth deramping operation but does not changethe signal distribution in angle-Doppler plane. After clutter suppression, the target couldbe focused and its SNR could be improved.
引文
[1] C. A. Wiley. Synthetic aperture radar [J]. IEEE Trans. on AES,1985,21(3):440-443.
    [2] C. A. Wiley. Pioneer Award acceptance remarks [J]. IEEE Trans. on AES,1986,21(3):433-433.
    [3] C. W. Sherwin, J.E.Ruina, R.D.Rawcliffe. Some early developments in syntheticaperture radar Systems [J]. IRE Trans.On military electronics,1962,6(2):111-115.
    [4]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [5] C. C. John and M. Robort. Synthetic Aperture Radar: System and Signal Processing[M]. Boston: John Wiley&Sons, Inc.1996.
    [6] Shahen A. Hovanessian. Introduction to Synthetic Array and Imaging Radar [M].Norwood, MA: Artech House,1980.
    [7] J. C. Curlander and R. N. McDonough. Synthetic Aperture Radar: System andSignal Processing [M]. Boston: Jone Wiley&Sons, INC,1991.
    [8] G. Franceschetti, R. Lanari. Synthetic Aperture Radar Processing [M].Boca Raton,FL: CRC Press.1993.
    [9] I. G. Cumming, F. H. Wong. Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation [M]. Norwood, MA: Artech House,2005.
    [10]W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic ApertureRadar: Signal Processing Algorithm [M]. Boston, MA: Artech House,1995.
    [11]M. Soumekh. Synthetic Aperture Radar Signal Processing with MATLABAlgorithms [M]. Boston: John Wiley&Sons, Inc.1999.
    [12]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社,2004.
    [13]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001.
    [14]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社,2003.
    [15]R Horn. E-SAR--The experimental airborne L/C band SAR system of DLR[C].Proc. of IGARSS'88,1988:1025-1026.
    [16]http://www.dlr.de/hr/en/desktopdefault.aspx/tabid-2326/3776_read-5691/
    [17]S N Maden, E L Christensen, et al. The Danish SAR System: Design and InitialTests[J]. IEEE Trans on GRS,1991,29(3), pp:417-426.
    [18]A D Sweet, D F Dubbert, A W Doerry, G R Sloan, V Dee Gutierrez. A portfolio offine resolution Ku-band miniSAR Images: part II[J]. Proc. of SPIE.1999,62(10),1132-1138.
    [19]W H Hensley, A W Doerry, B C Walker. Lynx: A High-resolution SyntheticAperture Radar[J]. SPIE Aerosense,1999,3704-3708.
    [20]Ender J H G, and Brenner A R. PAMIR-a wideband phased array SAR_MTIsystem[J]. IEE Proc. Radar Sonar Navig.,2003,150(3):165-172.
    [21]Sheen D R, Lewis T B. The P-3UWB-SAR[J]. SPIE, Vol.2747,1996, pp.20-24.
    [22]Franssoni J M, Walterii F and Ulanderiii L. Estimation of forest parameters usingCARABAS-II VHF SAR data[J], IEEE Trans. on GRS,38(2),2000:720-727.
    [23]A. Reigber, M. J ger, J. Fischer, R. Horn, R. Scheiber, P. Prats and A. Nottensteiner.Performance of the L-and P-band Subsystems of the F-SAR Airborne SARInstrument[C]. EUSAR2012:286-289.
    [24]Martin Kirscht, Klaus Hoffmann, Joachim Boukamp, Kosmas Weidmann andRudolf Zahn. The SmartRadar Pod System[C]. EUSAR2012:275-278.
    [25]http://en.wikipedia.org/wiki/SEASAT
    [26]J. C. Curlander. Utilization of Spaceborne SAR Data for Mapping [J]. IEEE Trans.on GRS.1984,22(2):106-112.
    [27]J. Cimino, C. Elachi, and M. Settle. SIR-B-The Second Shuttle Imaging RadarExperiment [J]. IEEE Trans. on GRS.1986,24(4):445-452.
    [28]http://en.wikipedia.org/wiki/Lacrosse
    [29]R. L. Jordan, B. L. Huneycutt, M. Werner. The SIR-C/X-SAR Synthetic ApertureRadar system [J]. IEEE Trans. on GRS.1995,33(4):829-839.
    [30]http://www.esa.int/esa-cgi
    [31]R. K. Raney, A. P. Luscombe and et al. Radarsat (SAR imaging)[C]. Proc of IEEE,1991,79(6):839-849.
    [32]Ury Naftaly and Ronit Levy-Nathansohn. Overview of the TECSAR SatelliteHardware and Mosaic Mode [J]. IEEE GRSL.2008,5(3):423-426.
    [33]Hans Martin Braun and Stefan Kicherer. External calibration for CRS-1andSAR-Lupe. EUSAR2006.
    [34]Marco Chini, Simone Atzori, Elisa Trasatti, Christian Bignami, ChristodoulosKyriakopoulos, Cristiano Tolomei, and Salvatore Stramondo. The May12,2008,(Mw7.9) Sichuan Earthquake (China): Multiframe ALOS-PALSAR DInSARAnalysis of Coseismic Deformation [J]. IEEE GRSL.2010,7(2):266-270.
    [35]D. Reale, D. O. Nitti, D. Peduto, R. Nutricato, F. Bovenga, and G. Fornaro.Postseismic Deformation Monitoring With the COSMO/SKYMED Constellation[J]. IEEE GRSL.2011,8(4):696-700.
    [36]G. Krieger, N. Gebert, and A. Moreira. Multidimensional waveform encoding: anew digital beamforming technique for synthetic aperture radar remote sensing [J].IEEE Trans. on GRS.,2008,46(1):31-46.
    [37]Nicolas Gebert and Gerhard Krieger. Ultra-Wide Swath SAR Imaging withContinuous PRF Variation[C]. EUSAR2010:966-969.
    [38]Marwan Younis, Anton Patyuchenko, Sigurd Huber, Gerhard Krieger, and AlbertoMoreira. A Concept for a High Performance Reflector-Based X-Band SAR[C].EUSAR2010:974-977.
    [39]A. R. Brenner, H. Essen1, U. Stilla,Representation of stationary vehicles inultra-high resolution SAR and turntable ISAR images[C]. EUSAR2012:147-150.
    [40]H. Oriot, C.Coulombeix, O. Ruault, Analysis of parked vehicles on very highresolution interferometric images[C]. EUSAR2012:143-146.
    [41]A. Popescu, M. Datcu. High Resolution SAR Classification using Rényi EntropyConstrained Spectrum Estimates[C]. EUSAR2012:247-250.
    [42]K. Eldhuset and D. J. Weydahl. Geolocation and Stereo Height Estimation UsingTerraSAR-X Spotlight Image Data[J]. IEEE Trans. on GRS.,2011,49(10):3574-3581.
    [43]X. Zhu and R. Bamler.Very high resolution spaceborne SAR tomography in urbanenvironment[J]. IEEE Trans. on GRS.,2010,48(12):4296–4308.
    [44]X. Zhu and R. Bamler.Tomographic SAR inversion by L1normregularization—The compressive sensing approach[J]. IEEE Trans. on GRS.,2010,48(10):3839–3846.
    [45]G. Krieger, N. Gebert, and A. Moreira. Unambiguous SAR signal reconstructionfrom nonuniform displaced phase center sampling[J]. IEEE GRSL.,2004,1(4):260–264.
    [46]M. D. Xing, Z. F. Li, Z. Bao, and G. S. Liao. Doppler ambiguity resolving indistributed micosatellites radar imaging[C]. IEEE Aerospace ConferenceProceedings,2004:1936-1945.
    [47]Stacy N J S, Burgess M P, Muller M R and Smith R. Ingara: An Integrated AirborneImaging Radar System[C], IEEE International Conference on Geo. and RemoteSensing Symp.,2001:1618-1621.
    [48]Ender J. Experimental results achieved with the airborne multi-channel SARsystem AER-II[C], European SAR Conference,1998(5):315-318.
    [49]Ender J H G, and Brenner A R. PAMIR-a wideband phased array SAR_MTIsystem[J]. IEE Proc. Radar Sonar Navig.,2003,150(3):165-172.
    [50]Wei M, Ender J. A3D imaging radar for small unmanned airplanes–ARTINO[C],IEEE International Conference on Geo. and Remote Sensing Symp.,2006(4),623-626.
    [51]N. A. Goodman, S. C. Lin, D. Rajakrishna, and J. M. Stiles. Processing ofmultiple-receiver spaceborne arrays for wide-area SAR[J]. IEEE Trans. on GRS.,2002,40(4):841-852.
    [52]G. Krieger, M. Younis, N. Gebert, S. Huber, F. Bordoni, A. Patyuchenko, and A.Moreira. Advanced Concepts for High-Resolution Wide-Swath SAR Imaging[C]. inProc. EUSAR,2010:524–527.
    [53]N. Gebert, F. Q. Almeida, and G. Krieger. Airborne demonstration of multichannelSAR imaging[J]. IEEE GRSL.,2011,8(5):963-967.
    [54]L. J. Cantafio. Space-Based Radar Handbook[M]. Boston, MA: Artech House,1989:127–132.
    [55]K. Tomiyasu. Image processing of synthetic aperture radar range ambiguoussignals[J]. IEEE Trans. on GRS.,1994,32(5):1114–1117.
    [56]A. Meta, J. Mittermayer, P. Prats, R. Scheiber, and U. Steinbrecher.TOPS ImagingWith TerraSAR-X: Mode Design and Performance Analysis[J]. IEEE Trans.onGRS.,2010,48(2):759–769.
    [57]P. Prats, R. Scheiber, J. Mittermayer, A. Meta, and A. Moreira. Processing of slidingspotlight and TOPS SAR data using baseband azimuth scaling[J]. IEEE Trans. onGRS.,2010,48(2):770–780.
    [58]G. Nicolas, K. Gerhard, and M. Alberto.Multichannel azimuth processing inScanSAR and TOPS mode operation[J]. IEEE Trans. on GRS.,2010,48(7):2994-3008.
    [59]J L Walker. Range-Doppler Imaging of Rotating Objects[J]. IEEE Trans on AES,16(1):23-52.
    [60]D L Mensa, S Halevy, G Wade. Coherent Doppler Tomography for MicrowaveImaging[C]. Proceedings of the IEEE,1983,71(2):254.
    [61]Smith A M. A New Approach to Range-doppler SAR Processing[J]. Int J RemoteSensing,1991,12(1):235-251.
    [62]F Rocca, C Cafforio, C Prati. Synthetic Aperture Radar: A New Application forWave Equation Techniques[J]. Geophysical prospecting,1989,37:809-830.
    [63]C Cafforio, C Prati, F Rocca. SAR Data Focusing Using Seismic MigrationTechniques[J]. IEEE Trans on AES,1991,27(2):194-206.
    [64]R H Stolt. Migration by Fourier Transform[J]. Geophysics.1978,43(1):23-48.
    [65]R K Raney, H Runge, R Bamler, I G Cumming, F H Wong. Precision SARProcessing Using Chirp Scaling[J]. IEEE Trans on GRS,1994,32(4):786-799.
    [66]J Mittermayer, A Moreira, O Loffeld. Spotlight SAR Data Processing Using TheFrequency Scaling Algorithm[J]. IEEE Trans. on GRS.,1999,37(5):2198-2214.
    [67]Alberto Moreira, Josef Mittermayer, Rolf Scheiber. Extended chirp scalingalgorithm for air-and spaceborne SAR data processing in stripmap and ScanSARimaging modes[J]. IEEE Trans. on GRS.,1996,34(5):1123-1136.
    [68]A Moreira, Y Huang. Airborne SAR Processing of Highly Squinted Data Using aChirp Scaling Approach with Integrated Motion Compensation[J]. IEEE Trans onGRS,1994,32(5):1029-1039.
    [69]D. Zhu, M. Shen, and Z. Zhu. Some aspects of improving the frequency scalingalgorithm for dechirped SAR data processing[J]. IEEE Trans. on GRS.,2008,46(6):1579-1588.
    [70]A. S. Amein and J. J. Soraghan. Azimuth fractional transformation of the fractionalchirp scaling algorithm (FrCSA)[J]. IEEE Trans. on GRS.,2006,44(10):2871-2879.
    [71]A. S. Amein and J. J. Soraghan. A new chirp scaling algorithm based on thefractional Fourier transform[J]. IEEE SP. Lett.,2005,12(10):705-708.
    [72]A. S. Amein and J. J. Soraghan. Fractional chirp scaling algorithm: mathematicalmodel[J]. IEEE Trans.on SP.,2007,55(8):4162-4172.
    [73]G. W. Davidson, I. G. Cumming, and M. R. Ito. A chirp scaling approach forprocessing squint mode SAR data[J]. IEEE Trans. on AES.,1996,32(1):121-133.
    [74]Guangcai Sun, Mengdao Xing, Yan Liu, Zheng Bao, Yirong Wu. Extended NCSBased On Method of Series Reversion for Imaging of Highly Squinted SAR. IEEEGRSL.,2011,8(3):446–450.
    [75]R Lanari, M Tesauro, E Sansosti, G Fornaro. Spotlight SAR Data Focusing Basedon a Two-Step Processing Approch[J]. IEEE Trans on GRS,2001,39(9):1993-2004.
    [76]W G Carrara, R S Goodman, M A Ricoy. New algorithms for widefield SAR imageformation[C]. IEEE Radar Conference,2004:38-43.
    [77]F. D. Zan and A. M. Guarnieri. TOPSAR: terrain observation by progressivescans[J]. IEEE Trans. on GRS,2006,44(9):2352–2360.
    [78]J. Mittermayer, R. Lord, and E. Borner.Sliding spotlight SAR processing forTerraSAR-X using a new formulation of the extended chirp scaling algorithm[C]. inProc. IEEE International,2003:1462-1464.
    [79]R. Lanari, S. Zoffoli, E. Sansosti, G. Fornaro, and F. Serafino. New approach forhybrid strip-map/spotlight SAR data focusing[J].IET RSN.,2011,148:363-372.
    [80]G. Engen and Y. Larsen. Efficient full aperture processing of tops mode data usingthe moving band chirp z-transform[J]. IEEE Trans. on GRS, in press.
    [81]W. Xu, P. Huang, Y. Deng, J. Sun, and X. Shang. An efficient approach with scalingfactors for TOPS-mode SAR data focusing[J]. IEEE GRSL,2011,8(5):929-933.
    [82]李世强,杨汝良.单相位中心多波束合成孔径雷达方位信号处理研究[J].电子与信息学报,2005,27(7):1073-1076.
    [83]李世强,杨汝良.单相位中心多波束合成孔径雷达的方位模糊分析[J].电子与信息学报,2005,27(10):1569-1572.
    [84]G.D.Callaghan and I.D.Longstaff, Wide swath spaceborne SAR using a quadelement array[C]. IEE Proceedings—RSN.,139,2(1992),122-135.
    [85]王小青,郭琨毅,朱敏慧,孺新庆.距离向多孔径接收宽测绘带SAR成像方法的研究[J].电子与信息学报,2004,26(5):739-745.
    [86]郭琨毅,王小青,盛新庆.距离向多孔径接收宽测绘带SAR三种成像算法的比较[J].电波科学学报,2005,20(1):119-l24.
    [87]郭琨毅,盛新庆.一种基于SCFT算法的距离向多孔径SAR成像算法[J].电子与信息学报,2006,28(5):927-931.
    [88]吴顺华,向家彬,胡国旗.方位多相位中心SAR空时不等效的影响分析与仿真[C].第九届全国雷达学术年会论文集.591-595
    [89]李世强,杨汝良.天线相位中心偏移方位多波束合成孔径雷达的误差分析[J].电子学报,2004,32(9):1436-1440.
    [90]马晓岩,吴顺华,向家彬,速度与PRF失配对MPCSAR成像的影响及补偿方法研究[J],电子学报,Vol.33No.12Dec.2005.
    [91]马晓岩,杨军,多相位中心SAR虚假目标成对回波定位与强度研究[J],电子学报,Vol.34No.3Mar.2006.
    [92]Tong Wang, Zheng Bao. Improving the Image Quality of SpaceborneMultiple-Aperture SAR Under minimization of Sidelobe Clutter and Noise[J].IEEE GRSL,2006,3(3):297-301
    [93]梁维斌,李春升,周荫清.基于多通道天线高分辨率星载SAR实现方法研究[J].北京航空航天大学学报,2004,30(9):826-830.
    [94]赵伟,宋红军. PRF可变的星载方位向多相位中心多波束SAR[J].电子与信息学报,2005,27(6):936-938.
    [95]赵伟.一种高分辨率连续宽测绘带星载SAR性能分析和算法研究[D].北京:中科院电子研究所,2004.
    [96]秦好强.多波束高分辨率星载合成孔径雷达仿真[D].北京:中科院电子研究所,2005.
    [97]王鹏波,周荫清,陈杰,李春升.高分辨率多通道天线星载SAR的MCCS成像算法[J].北京航空航天大学学报,2006,32(4):440-444.
    [98]王鹏波,周荫清,陈杰,李春升.方位向非均匀采样对多通道天线星载SAR成像性能的影响[J].遥测遥控,27(5):8-14.
    [99]Zhenfang Li, Zheng Bao, Hongyang Wang, and Guisheng Liao. Performanceimprovement for constellation SAR using signal processing techniques[J]. IEEETrans on AES,42,2(2006),436-452.
    [100]李真芳,邢孟道,王彤,等.分布式小卫星SAR实现全孔径分辨率的信号处理.电子学报,2003,31(12):1800-1803
    [101]邢孟道,李真芳,保铮,等.小卫星分布式雷达空时频综合成像.宇航学报,2005,26(10):70-82.
    [102] Xing Mengdao, LI Zhenfang, BAO Zheng, et al. Doppler Ambiguity Resolvingin Distributed Micosatellites Radar Imaging[C]. IEEE Aerospace Conference,2004.
    [103] Mengdao, Xing Zhengfang, Li; Zheng, Bao; et al. Doppler AmbiguityResolving in Distributed Micosatellites Radar Imaging[J]. Chinese Journal ofElectronics,2005,14(4):721-726
    [104] Wei Jing, Mengdao Xing, Cheng Wei Qiu, et al. Unambiguous Reconstructionand High-Resolution Imaging for Multiple-Channel SAR and Airborne ExperimentResults[J]. IEEE GRSL,2009,6(1):102-106
    [1] Eriksson J, Rorsmann N. and Zirath H. Microwave Silicon Carbide SchottkyDiodes[J]. Electronics letters,2001,37(4):250-252.
    [2] Roskerl M. Preliminary Results from Phase Ⅱ Of the wide BandgapSemiconductor for RF Applications (WBG-RF) Program[C]. In ProceedingManufacture Conference on Compound semiconductor,2006:41-43.
    [3] Bao Z., Xing M. and Wang T. Radar Imaging Technique[M]. Publishing House ofElectronics Industry, Beijing.2004.
    [4] Cumming I. G. and Wong F. H. Digital Processing of Synthetic Aperture RadarData: Algorithms and Implementation[M] Artech House, Norwood.2005.
    [5] Barber B. C. Theory of Digital Imaging from Orbital Synthetic Aperture Radar.International Journal of Remote Sensing[J].1985,6(7):1009–1057.
    [6] Curlander J. C. and Mcdonough R. N. Synthetic Aperture Radar: System and SignalProcessing[M]. John Wiley and Sons Incorporation, California.1991.
    [7] Breit H., Fritz T., Balss U. Lachaise M., Niedermeier A. and Vonavka M.TerraSAR-X SAR Processing and Products[J].. IEEE Trans. on GRS.,2010,48(2):727-740.
    [8] Berens P. SAR with Ultra-High Range Resolution Using Synthetic Bandwidth[C].In Proceeding IEEE IGRSS,1999:1752-1754.
    [9] Xing M., Wu R. and Bao Z. High resolution ISAR imaging of high speed movingtargets[J].IET-RSN,2005,152(2):58-67.
    [10]Chen J., Zeng D. and Long T. High Precision Radar Echo Modelling andSimulation Method[C]. In Proceeding ICR,2008:469-473.
    [11]Wang R., Loffeld O., Nies H., Knedlik S., H gelen M. and Essen H. Focus FMCWSAR Data Using the Wavenumber Domain Algorithm[J]. IEEE Trans. on GRS.,2010,48(4):2107-2118.
    [12]Carrara W. G., Goodman R. S., and Majewski R. M. Spotlight synthetic apertureradar: signal processing algorithm[M]. Artech House, Boston.1995.
    [13]Davidson G. W., Cumming I. G. and ITO M. R. A chirp scaling approach forprocessing squint mode SAR data[J]. IEEE Trans. on AES.,1996,32(1):121-133.
    [14]Meta, A. and Hoogeboom P. Development of signal processing algorithms for highresolution airborne millimeter wave FMCW SAR[J]. In Proceeding IEEEInternational Radar Conference,2005:326-331.
    [15]Steven M. Beck, Joseph R. Buck, Walter F. Buell, Richard P. Dickinson, David A.Kozlowski, Nicholas J. Marechal, and Timothy J. Wright. Synthetic-apertureimaging laser radar: laboratory demonstration and signal processing[J]. AppliedOptics,2005,44(35):7621-7629.
    [16]Thomas J. Green, Jr., Stephen Marcus, and Barry D. Colella.Synthetic-aperture-radar imaging with a solid-state laser[J]. Applied Optics,1995,34(30):6941-6949.
    [17]Hebert T. J., and Gopal S. S. An improved filtered back-projection algorithm usingpre-processing[C]. In Proceeding IEEE Conference Nuclear Science Symposiumand Medical Imaging,1991:2068-2072.
    [1] A. M. Smith.A new approach to range-Doppler SAR processing[J]. Int. J. RemoteSensing,1991,12:235-251.
    [2] R. Keith Raney, H. Runge, Richard Bamler, Ian G. Cumming, and Frank H. Wong.Precision SAR Processing Using Chirp Scaling[J]. IEEE Trans. on GRS.,1994,32(4):786-799.
    [3] C. Cafforio, C. Prati, and F. Rocca. SAR data focusing using seismic migrationtechniques[J]. IEEE Trans.on AES.,1991,27:199-207.
    [4] M. Y. Jin and C. Wu. A SAR correlation algorithm which accommodates largerange migration[J]. IEEE Trans. on GRS.,1984,GE-22:592-597.
    [5] A. R. Schimidt. Secondary Range Compression for Improved Range DopplerProcessing of SAR Data with High Squint[D]. Master’s thesis, The University ofBritish Columbia,2008.
    [6] Davide D'Aria and Andrea Monti Guarnieri. High-Resolution Spaceborne SARFocusing by SVD-Stolt[J]. IEEE GRSL.,2007,4(4):639-643.
    [7] Alberto Moreira, Josef Mittermayer, Rolf Scheiber. Extended chirp scalingalgorithm for air-and spaceborne SAR data processing in stripmap and ScanSARimaging modes[J]. IEEE Trans. on GRS.,1996,34(5):1123-1136.
    [8] G. W. Davidson, I. G. Cumming, and M. R. Ito. A chirp scaling approach forprocessing squint mode SAR data[J]. IEEE Trans.on AES.,1996,32(1):121-133.
    [9] Alberto Moreira and Yonghong Huan. Airborne SAR Processing of Highly SquintedData Using a Chirp Scaling Approach with Integrated Motion Compensation[J].IEEE Trans. on GRS.,1994,32(5):1029-1040.
    [10]Yew Lam Neo, Frank Wong, and Ian G. Cumming. A2D Spectrum for BistaticSAR Processing Using Series Reversion[J]. IEEE GRSL.,2007,4(1):93-96.
    [11]Frank H. Wong and Tat Soon Yeo. New Applications of nonlinear Chirp Scaling inSAR Data Processing[J]. IEEE Trans. on GRS.,2001,39(5):946-953.
    [12]G.W. Davidson, I. Cumming. Signal Properties of Spaceborne Squint-ModeSAR[J]. IEEE Trans. on GRS.,1997,35(3).
    [13]R. Bamler. A comparison of range-Doppler and wave-number domain SARfocusing algorithms[J]. IEEE Trans. on GRS.,1992,30(7):706-713.
    [14]F. H. Wong and I. G. Cumming.Error sensitivities of a secondary rangecompression algorithm for processing squinted satellite SAR data[C]. in Proc.IGARSS,1989:2584-2587.
    [15]BaoZheng, Xing Mengdao and Wang Tong. Radar imaging techniques[M].Publishing House of Electronics Industry, Beijing,2006.
    [16]W. G. Carrara, R. S. Goodman and R. M. Majewski. Spotlight Synthetic ApertureRadar-Signal Processing and Algorithms[M]. Artech House, Boston, MA,1995.
    [17]Fornaro G., Sansosti E., Lanari R. and Tesauro M. Role of Processing Geometryin SAR Raw Data Focusing[J]. IEEE Trans. on AES.,2002,38(2):441-454.
    [18]Mengdao Xing; Xiuwei Jiang; Renbiao Wu; Feng Zhou; Zheng Bao.MotionCompensation for UAV SAR Based on Raw Radar Data[J]. IEEE Trans. on GRS.,2009,47(8):2870-2883.
    [19]Zhou Feng,WAN Qi,XING Mengdao,BAO Zheng. A Novel Method of MotionCompensation for Airborne High Squint Synthetic Aperture Radar[J]. ACTA ELECTRONICA SINICA,2007,35(3):463-468.
    [1] Carrara, W.G., Goodman, R.S., and Majewski, R.M. Spotlight synthetic apertureradar: signal processing algorithm[M]. Boston, MA: Artech House,1995.
    [2] Pau Prats, Rolf Scheiber, Josef Mittermayer, Adriano Meta, and Alberto Moreira.Processing of Sliding Spotlight and TOPS SAR Data Using Baseband AzimuthScaling[J]. IEEE Trans.on GRS.,2010,48(2):770–780.
    [3] A. M. Smith. A new approach to range-Doppler SAR processing[J]. Int. J. RemoteSensing,1991,12:235-251.
    [4] R. Keith Raney, H. Runge, Richard Bamler, Ian G. Cumming, and Frank H. Wong.Precision SAR Processing Using Chirp Scaling[J]. IEEE Trans.on GRS.,1994,32(4):786-799.
    [5] C. Cafforio, C. Prati, and F. Rocca. SAR data focusing using seismic migrationtechniques[J]. IEEE Trans.on AES.,1991,27:199-207.
    [6] Alberto Moreira, Josef Mittermayer, Rolf Scheiber. Extended chirp scalingalgorithm for air-and spaceborne SAR data processing in stripmap and ScanSARimaging modes[J]. IEEE Trans. on GRS.,1996,34(5):1123-1136.
    [7] G. Franceschetti, G. Schirinzi. A SAR Processor Based on Two-Dimensional FFTCodes[J]. IEEE Trans. on AES.,1990,26:356-365.
    [8] R. Lanari. A new method for the compensation of the SAR range cell migrationbased on the chirp Z-transform[J]. IEEE Trans. on GRS.,1995,33:1296–1299.
    [9] J Mittermayer, A Moreira, O Loffeld. Spotlight SAR Data Processing Using TheFrequency Scaling Algorithm[J]. IEEE Trans. on GRS.,1999,37(5):2198-2214.
    [10]J. Mittermayer, R. Lord, and E. Borner.Sliding spotlight SAR processing forTerraSAR-X using a new formulation of the extended chirp scaling algorithm[C]. inProc. IEEE International,2003:1462-1464.
    [11]R. Lanari, P. Franceschetti, M. Tesauro, and E. Sansosti.Spotlight SAR imagegeneration based on strip mode focusing techniques[C]. in Proc. Int. Geoscience andRemote Sensing Symp.’99, Hamburg, Germany,1999.
    [12]R Lanari, M Tesauro, E Sansosti, G Fornaro. Spotlight SAR Data Focusing Basedon a Two-Step Processing Approch[J]. IEEE Trans on GRS,2001,39(9):1993-2004.
    [13]W G Carrara, R S Goodman, M A Ricoy. New algorithms for widefield SAR imageformation[C]. IEEE Radar Conference,2004:38-43.
    [14]R. Lanari, S. Zoffoli, E. Sansosti, G. Fornaro, and F. Serafino. New approach forhybrid strip-map/spotlight SAR data focusing[J].IET RSN.,2011,148:363-372.
    [15]W. Xu, P. Huang, Y. Deng, J. Sun, and X. Shang. An efficient approach with scalingfactors for TOPS-mode SAR data focusing[J]. IEEE GRSL,2011,8(5):929-933.
    [16]G. Engen and Y. Larsen. Efficient full aperture processing of tops mode data usingthe moving band chirp z-transform[J]. IEEE Trans. on GRS, in press.
    [17]M. Sack, M. R. Ito, and I. G. Cumming. Application of efficient linear FM matchedfiltering algorithms to synthetic aperture radar processing[J]. Proc. Inst. Elect. Eng.,pt. F,1985,132:45–57.
    [18]J. Curlander, and R. McDonough. Synthetic aperture radar: systems and signalprocessing[M]. John Wiley&Sons, New York,1991.
    [19]D. Zhu, M. Shen, and Z. Zhu. Some aspects of improving the frequency scalingalgorithm for dechirped SAR data processing[J]. IEEE Trans. on GRS.,2008,46(6):1579-1588.
    [20]J L Walker. Range-Doppler Imaging of Rotating Objects[J]. IEEE Trans on AES,16(1):23-52.
    [21]C. V. Jakowatz, Jr. D. E. Wahl, and P. A.Thompson. Space-variant filtering forcorrection of wavefront curature in spotlight mode SAR imagery formed via polarformatting[C]. in Proceedings of the SPIE,Orlando, FL, USA,1997:33-42.
    [22]C. V. Jakowatz, Jr. D. E. Wahl, and P. A. Thompson. General formulation forwavefront curvature correction in polar-formatted spotlight-mode SAR images usingspace-variant post-filtering[C]. Image Processing1997Proceedings, InternationalConference on Volume126-29Oct.1997:861-864.
    [23]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [1] I. G. Cumming, F. H. Wong. Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation [M]. Norwood, MA: Artech House,2005.
    [2] Smith A M. A New Approach to Range-doppler SAR Processing[J]. Int J RemoteSensing,1991,12(1):235-251.
    [3] F. H. Wong and I. G. Cumming.Error sensitivities of a secondary range compressionalgorithm for processing squinted satellite SAR data[C]. in Proc. IGARSS,1989:2584-2587.
    [4] A. R. Schimidt. Secondary Range Compression for Improved Range DopplerProcessing of SAR Data with High Squint[D]. Master’s thesis, The University ofBritish Columbia,2008.
    [5] R K Raney, H Runge, R Bamler, I G Cumming, F H Wong. Precision SARProcessing Using Chirp Scaling[J]. IEEE Trans on GRS,1994,32(4):786-799.
    [6] A. Moreira and Y. Huang. Airbome SAR processing of highly squinted data using achirp scaling approach with integrated motion compensation[J]. IEEE Trans. onGRS.,1994,32(5):1029-1040.
    [7] G. W. Davidson, I. G. Cumming, and M. R. Ito. A chirp scaling approach forprocessing squint mode SAR data[J]. IEEE Trans. on AES.,1996,32(1):121-133.
    [8] C. Cafforio, C. Prati, and F. Rocca. SAR data focussing using seismic migrationtechniques[J]. IEEE Trans.on AES.,1991,27:199-207.
    [9] Alberto Moreira, Josef Mittermayer, Rolf Scheiber. Extended chirp scalingalgorithm for air-and spaceborne SAR data processing in stripmap and ScanSARimaging modes[J]. IEEE Trans. on GRS.,1996,(34)5:1123-1136.
    [10]Davide D'Aria and Andrea Monti Guarnieri. High-Resolution Spaceborne SARFocusing by SVD-Stolt[J]. IEEE GRSL.,2007,4(4):639-643.
    [11]Fornaro G., Sansosti E., Lanari R. and Tesauro M. Role of Processing Geometryin SAR Raw Data Focusing[J]. IEEE Trans. on AES.,2002,38(2):441-454.
    [12]M. Vandewal, R. Speck, and S. Helmut. Efficient and precise processing forsquinted spotlight SAR through a modified stolt mapping[J]. EURASIP Journal onAdvances in Signal Processing,2007, pp.1-7.
    [13] R. Bamler. A comparison of range-Doppler and wave-number domain SARfocusing algorithms[J]. IEEE Trans. on GRS.,1992,30(7):706-713.
    [14]R. Lanari. A new method for the compensation of the SAR range cell migrationbased on the chirp Z-transform[J]. IEEE Trans. on GRS.,1995,33:1296–1299.
    [15]G. Franceschetti, G. Schirinzi. A SAR Processor Based on Two-Dimensional FFTCodes[J]. IEEE Trans. on AES.,1990,26:356-365.
    [16]O. Loffeld, A. Hein, and F. Scneider. SAR focusing: scaled inverse Fouriertransformation and chirp scaling[C]. In Proc. IEEE IGARSS,1998,2:630–632.
    [17]J Mittermayer, A Moreira, O Loffeld. Spotlight SAR Data Processing Using TheFrequency Scaling Algorithm[J]. IEEE Trans. on GRS.,1999,37(5):2198-2214.
    [18]D. Zhu, M. Shen, and Z. Zhu. Some aspects of improving the frequency scalingalgorithm for dechirped SAR data processing[J]. IEEE Trans. on GRS.,2008,46(6):1579-1588.
    [19]F. H. Wong, I. G. Cumming, and Y. L. Neo. Focusing Bistatic SAR data using thenonlinear chirp scaling algorithm[J]. IEEE Trans.on GRS.,2008,46(9).
    [20]X. Qiu, D. Hu, and C. Ding. An improved NLCS algorithm with capability analysisfor one-stationary BiSAR[J]. IEEE Trans.on GRS.,2008,46(10).
    [21]B. Liu, T. Wang, Q. Wu, and Z. Bao. Bistatic SAR data focusing using an omega-kalgorithm based on method of series reversion[J]. IEEE Trans.on GRS.,2009,47(8):2899-2916.
    [22]D. Zhu, S. Ye, and Z. Zhu. A polar format algorithm using chirp scaling forspotlight SAR image formation[J]. IEEE Trans.on AES. to be published.
    [23]D. Zhu and Z. Zhu. Range resampling in the polar format algorithm for spotlightSAR image formation using the chirp z-Transform[J]. IEEE Trans. On SP,2007,55(3):1011-1023.
    [24]Y. Tang, M. D. Xing, and Z. Bao. The polar format imaging algorithm based ondouble Chirp-Z transforms[J]. IEEE GRSL.,2008,5(4):610-614.
    [25]C. V. Jakowatz, Jr. D. E. Wahl, and P. A.Thompson. Space-variant filtering forcorrection of wavefront curature in spotlight mode SAR imagery formed via polarformatting[C]. in Proceedings of the SPIE,Orlando, FL, USA,1997:33-42.
    [26]C. V. Jakowatz, Jr. D. E. Wahl, and P. A. Thompson. General formulation forwavefront curvature correction in polar-formatted spotlight-mode SAR images usingspace-variant post-filtering[C]. Image Processing1997Proceedings, InternationalConference on Volume126-29Oct.1997:861-864.
    [27]R. Lanari, P. Franceschetti, M. Tesauro, and E. Sansosti.Spotlight SAR imagegeneration based on strip mode focusing techniques[C]. in Proc. Int. Geoscience andRemote Sensing Symp.’99, Hamburg, Germany,1999.
    [28]R. Lanari, M. Tesauro, E. Sansosti, and G. Fornaro,“Spotlight SAR data focusingbased on a two-step processing approach,” IEEE Trans.on GRS., vol.39, no.9, pp.1993–2004, Sep.2001.
    [29]W G Carrara, R S Goodman, M A Ricoy. New algorithms for widefield SAR imageformation[C]. IEEE Radar Conference,2004:38-43.
    [30]M. Sack, M. R. Ito, and I. G. Cumming. Application of efficient linear FM matchedfiltering algorithms to synthetic aperture radar processing[J]. Proc. Inst. Elect. Eng.,pt. F,1985,132:45–57.
    [31]F. D. Zan and A. M. Guarnieri. TOPSAR: terrain observation by progressivescans[J]. IEEE Trans. on GRS,2006,44(9):2352–2360.
    [32]M. Stangl, R. Werninghaus, B. Schweizer, C. Fischer, M. Brandfass, J. Mittermayer,and H. Breit. TerraSAR-X technologies and first results[J]. Proc. Inst. Elect.Eng.—Radar Sonar Navig.,2006,153(2):86–95.
    [33]A. Meta, P. Prats, U. Steinbrecher, J. Mittermayer, and R. Scheiber. TerraSAR-XTOPSAR and ScanSAR comparison[C]. In Proc. EUSAR,2008.
    [34]D. P. Belcher and C. J. Baker. High resolution processing of hybridstrip-map/spotlight mode SAR[J]. Proc. Inst. Elect. Eng.—Radar Sonar Navig.,1996,143(6):366–374.
    [35]J. Mittermayer, R. Lord, and E. Borner.Sliding spotlight SAR processing forTerraSAR-X using a new formulation of the extended chirp scaling algorithm[C]. inProc. IEEE International,2003:1462-1464.
    [36]P. Prats, R. Scheiber, J. Mittermayer, A. Meta, and A. Moreira. Processing of slidingspotlight and TOPS SAR data using baseband azimuth scaling[J]. IEEE Trans. onGRS.,2010,48(2):770–780.
    [37]R. Lanari, S. Zoffoli, E. Sansosti, G. Fornaro, and F. Serafino. New approach forhybrid strip-map/spotlight SAR data focusing[J].IET RSN.,2011,148:363-372.
    [38]W. Xu, P. Huang, Y. Deng, J. Sun, and X. Shang. An efficient approach with scalingfactors for TOPS-mode SAR data focusing[J]. IEEE GRSL,2011,8(5):929-933.
    [39]G. Engen and Y. Larsen. Efficient full aperture processing of tops mode data usingthe moving band chirp z-transform[J]. IEEE Trans. on GRS, in press.
    [40]G. Sun, M. Xing, Y. Wang, Y. Wu, Y. Wu, and Z. Bao. Sliding spotlight and topsSAR data processing without sub-aperture[J]. IEEE GRSL.,2011,8(6).
    [41]V. C. Chen and H. Ling, Time-frequency Transforms for Radar Imaging and SignalAnalysis[M]. Boston, Artech House,2002.
    [42]E. Sejdic, I. Djurovic, and L. Stankovic.Fractional Fourier transform as a signalprocessing tool: An overview of recent developments[J]. Signal Processing,2011,91(6):1351–1369.
    [43]V. Namias. The fractional Fourier transform and its application in quantummechanics[J]. J. Inst. Math. Its Appl.,1980,25:241-265.
    [44]A. C. McBride and F. H. Kerr. On Namias’ fractional Fourier transforms[J]. IMA. J.Appl. Math,1987,39:159-175.
    [45]X.-G. Xia. On band limited signals with fractional Fourier transform[J]. IEEE SPL,,1996,3:72-74.
    [46]A. S. Amein and J. J. Soraghan. Azimuth fractional transformation of the fractionalchirp scaling algorithm (FrCSA)[J]. IEEE Trans.on GRS.,2006,44(10):2871-2879.
    [47]A. S. Amein and J. J. Soraghan. A new chirp scaling algorithm based on thefractional Fourier transform[J]. IEEE SPL,2005,12(10):705-708.
    [48]A. S. Amein and J. J. Soraghan. Fractional chirp scaling algorithm: mathematicalmodel[J]. IEEE Trans. on SP.,2007,55(8):4162-4172.
    [49]W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic ApertureRadar: Signal Processing Algorithm [M]. Boston, MA: Artech House,1995.
    [50]I. G. Cumming, F. H. Wong. Digital Processing of Synthetic Aperture Radar Data:Algorithms and Implementation [M]. Norwood, MA: Artech House,2005.
    [51]M. Born and E. Wolf. Principles of Optics[M]. New York: Pergamon Press,1959,Appendix III.
    [52]H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi. Digital computation of thefractional Fourier transform[J]. IEEE Trans. on SP.,1996,44:2141-2150.
    [53]B. Liu, T. Wang, and Z. Bao. Slant-range velocity estimation based onsmall-FM-rate chirp[J]. Signal Processing,2008,88(10):2472-2482.
    [1] F. Li and W. T. K. Johnson. Ambiguities in spaceborne synthetic aperture radarsystems[J]. IEEE Trans.on AES., vol. AES-19, no.3, pp.389–397, May1983.
    [2] C. Elachi. Spaceborne Radar Remote Sensing: Applications and Techniques[M].New York: IEEE Press,1988.
    [3] J. Curlander, and R. McDonough. Synthetic aperture radar: systems and signalprocessing[M]. John Wiley&Sons, New York,1991.
    [4] A. Freeman, W. T. K. Johnson, B. Huneycutt, R. Jordan, S. Hensley, P. Siqueira, andJ. Curlander. The myth of the minimum SAR antenna area constraint[J]. IEEETrans.on GRS.,2000,38(1):320–324.
    [5] K. Tomiyasu. Conceptual performance of a satellite borne, wide swath syntheticaperture radar[J]. IEEE Trans.on GRS.,1981, GRS-19(2):108–116.
    [6] R. K. Moore, J. P. Claassen, and Y. H. Lin. Scanning spaceborne synthetic apertureradar with integrated radiometer[J]. IEEE Trans.on AES.,1981,AES-17(3):410–421.
    [7] D. Massonnet. Radar interferometry and its application to changes in the Earth’ssurface[J]. Rev. Geophys.,1998,36(4):441–499.
    [8] A. Ferretti, C. Prati, and F. Rocca. Nonlinear subsidence rate estimation usingpermanent scatterers in differential SAR interferometry[J]. IEEE Trans.on GRS.,2000,38(5):2202–2212.
    [9] A. Meta, J. Mittermayer, P. Prats, R. Scheiber, and U. Steinbrecher. TOPS ImagingWith TerraSAR-X: Mode Design and Performance Analysis[J]. IEEE Trans.onGRS.,2010,48(2):759–769.
    [10]W. Pitz and D. Miller. The TerraSAR-X Satellite[J]. IEEE Trans.on GRS.,2010,48(2):615–622.
    [11]S. Brusch, S. Lehner, T. Fritz, M. Soccorsi, A. Soloviev, and B. van Schie. Shipsurveillance with TerraSAR-X[J]. IEEE Trans.on GRS.,2011,49(3):1092–1103.
    [12]M. Li, S. Lehner, and T. Bruns. Ocean wave integral parameters measurementsusing Envisat ASAR wave mode data[J]. IEEE Trans. on GRS.,2011,49(1):155–174.
    [13]M. Eineder, C. Minet, P. Steigenberger, X. Y. Gong, and T. Fritz. Imaginggeodesy-toward centimeter-level ranging accuracy with TerraSAR-X[J]. IEEETrans.on GRS.,2011,49(2):661–671.
    [14]N. Longbotham, C. Chaapel, L. Bleiler, C. Padwick, W. J. Emery and F. Pacifici.Very High Resolution Multiangle Urban Classification Analysis[J]. IEEE Trans.onGRS.,2012,50(4):1155-1170.
    [15]F. S. Marzano, E. Picciotti, G. Vulpiani, and M. Montopoli. Synthetic Signatures ofVolcanic Ash Cloud Particles From X-Band Dual-Polarization Radar[J]. IEEETrans.on GRS.,2012,50(1):193-211.
    [16]F. S. Marzano, S. Marchiotto, C. Textor, and D. J. Schneider. Model-Based WeatherRadar Remote Sensing of Explosive Volcanic Ash Eruption[J]. IEEE Trans.on GRS.,2010,48(10):3591–3607.
    [17]M. Kseneman, D. Gleich, and Z. Cucej. Soil Moisture Estimation UsingHigh-Resolution Spotlight TerraSAR-X Data[J]. IEEE GRSL.,2011,8(4):686-690.
    [18]K. Eldhuset and D. J. Weydahl. Geolocation and Stereo Height Estimation UsingTerraSAR-X Spotlight Image Data[J]. IEEE Trans.on GRS.,2011,49(10):3574-3581.
    [19]X. Zhu and R. Bamler. Very high resolution spaceborne SAR tomography in urbanenvironment[J]. IEEE Trans.on GRS.,2010,48(12):4296–4308.
    [20]X. Zhu and R. Bamler. Tomographic SAR inversion by L1norm regularization-Thecompressive sensing approach[J]. IEEE Trans.on GRS.,2010,48(10):3839-3846.
    [21]L. C. Morena, K. V. James, and J. Beck. An introduction to the RADARSAT-2mission[J]. Can. J. Remote Sens.,2004,30(3):221–234.
    [22]L. Candela and F. Caltagrione. Cosmo-SkyMed: Mission definition, mainapplications and products[C]. in Proc. PolinSAR Workshop, ESA ESRIN, Frascati,Italy,2003.
    [23][Online]. Available:http://www.ohb-system.de/Satellites/Missions/sarlupe.html
    [24]G. Krieger, N. Gebert, and A. Moreira. Multidimensional waveform encoding: anew digital beamforming technique for synthetic aperture radar remote sensing [J].IEEE Trans. on GRS.,2008,46(1):31-46.
    [25]B. R. Jean and J. W. Rouse. A multiple beam synthetic aperture radar designconcept for geoscience applications[J]. IEEE Trans. on GRS.,1983,GRS-21(2):201–207.
    [26]A. Currie and M. A. Brown. Wide-swath SAR[J]. Proc. Inst. Electr. Eng. F-RadarSignal Process.,1992,139(2):122–135.
    [27]G. D. Callaghan and I. D. Longstaff. Wide-swath space-borne SAR using aquad-element array[J]. Proc. Inst. Electr. Eng.-RSN.,1999,146(3):159–165.
    [28]M. Suess, B. Grafmueller, and R. Zahn. A novel high resolution, wide swath SARsystem[C]. in Proc. IGRSS, Sydney, Australia,2001:1013–1015.
    [29]G. Krieger, M. Younis, N. Gebert, S. Huber, F. Bordoni, A. Patyuchenko, and A.Moreira. Advanced Concepts for High-Resolution Wide-Swath SAR Imaging[C]. inProc. EUSAR,2010:524–527.
    [30]G. Nicolas, K. Gerhard, and M. Alberto.Multichannel azimuth processing inScanSAR and TOPS mode operation[J]. IEEE Trans. on GRS.,2010,48(7):2994-3008.
    [31]N. A. Goodman, S. C. Lin, D. Rajakrishna, and J. M. Stiles. Processing ofmultiple-receiver spaceborne arrays for wide-area SAR[J]. IEEE Trans. on GRS.,2002,40(4):841-852.
    [32]A. Papoulis. Generalized sampling expansion[J]. IEEE Trans. Circuits Syst.,1977,CAS-24(11):652–654.
    [33]J. Brown. Multi-channel sampling of low-pass signals[J]. IEEE Trans. CircuitsSyst.,1981, CAS-28(2):101-106.
    [34]G. Krieger, N. Gebert, and A. Moreira. Unambiguous SAR signal reconstructionfrom nonuniform displaced phase center sampling[J]. IEEE GRSL.,2004,1(4):260–264.
    [35]M. D. Xing, Z. F. Li, Z. Bao, and G. S. Liao. Doppler ambiguity resolving indistributed micosatellites radar imaging[C]. IEEE Aerospace ConferenceProceedings,2004:1936-1945.
    [36]Z. F. Li, H. Y. Wang, T. Su, and Z. Bao. Generation of wide-swath andhigh-resolution SAR images from multichannel small spaceborne SAR systems[J].IEEE GRSL.,2005,2(1):82-86.
    [37]M. D. Xing, Z. F. Li, Z. Bao, and T. Wang. Study of distributed microsatellites radarspace-time-frequency imaging method[J]. Journal of Astronautics,2005,26(1):70-76.
    [38]N. Gebert, F. Q. Almeida, and G. Krieger. Airborne demonstration of multichannelSAR imaging[J]. IEEE GRSL.,2011,8(5):963-967.
    [39]Wei Jing, Mengdao Xing, Cheng Wei Qiu, et al. Unambiguous Reconstruction andHigh-Resolution Imaging for Multiple-Channel SAR and Airborne ExperimentResults[J]. IEEE GRSL,2009,6(1):102-106
    [40]J Mittermayer, A Moreira, O Loffeld. Spotlight SAR Data Processing Using TheFrequency Scaling Algorithm[J]. IEEE Trans. on GRS.,1999,37(5):2198-2214.
    [41]J. Mittermayer, R. Lord, and E. Borner.Sliding spotlight SAR processing forTerraSAR-X using a new formulation of the extended chirp scaling algorithm[C]. inProc. IEEE International,2003:1462-1464.
    [42]P. Prats, R. Scheiber, J. Mittermayer, A. Meta, and A. Moreira. Processing of slidingspotlight and TOPS SAR data using baseband azimuth scaling[J]. IEEE Trans. onGRS.,2010,48(2):770–780.
    [43]G. Sun, M. Xing, Y. Wang, Y. Wu, Y. Wu, and Z. Bao. Sliding spotlight and topsSAR data processing without sub-aperture[J]. IEEE GRSL.,2011,8(6).
    [44]G. Nicolas, Multi-Channel Azimuth Processing for High-Resolution Wide-SwathSAR Imaging[D]. PH. D. dissertation, the German Aerospace Center (DLR),Oberpfaffenhofen, Germany,2009.
    [45]R. Lanari, P. Franceschetti, M. Tesauro, and E. Sansosti.Spotlight SAR imagegeneration based on strip mode focusing techniques[C]. in Proc. Int. Geoscienceand Remote Sensing Symp.’99, Hamburg, Germany,1999.
    [46]R Lanari, M Tesauro, E Sansosti, G Fornaro. Spotlight SAR Data Focusing Basedon a Two-Step Processing Approch[J]. IEEE Trans on GRS,2001,39(9):1993-2004.
    [47]W G Carrara, R S Goodman, M A Ricoy. New algorithms for widefield SAR imageformation[C]. IEEE Radar Conference,2004:38-43.
    [48]R. Lanari, S. Zoffoli, E. Sansosti, G. Fornaro, and F. Serafino. New approach forhybrid strip-map/spotlight SAR data focusing[J].IET RSN.,2011,148:363-372.
    [49]G. Engen and Y. Larsen. Efficient full aperture processing of tops mode data usingthe moving band chirp z-transform[J]. IEEE Trans. on GRS, in press.
    [50]W. Xu, P. Huang, Y. Deng, J. Sun, and X. Shang. An efficient approach with scalingfactors for TOPS-mode SAR data focusing[J]. IEEE GRSL,2011,8(5):929-933.
    [51]Smith A M. A New Approach to Range-doppler SAR Processing[J]. Int J RemoteSensing,1991,12(1):235-251.
    [52]R K Raney, H Runge, R Bamler, I G Cumming, F H Wong. Precision SARProcessing Using Chirp Scaling[J]. IEEE Trans on GRS,1994,32(4):786-799.
    [53]C Cafforio, C Prati, F Rocca. SAR Data Focusing Using Seismic MigrationTechniques[J]. IEEE Trans on AES,1991,27(2):194-206.
    [54]Alberto Moreira, Josef Mittermayer, Rolf Scheiber. Extended chirp scalingalgorithm for air-and spaceborne SAR data processing in stripmap and ScanSARimaging modes[J]. IEEE Trans. on GRS.,1996,34(5):1123-1136.
    [55]G. Franceschetti, G. Schirinzi. A SAR Processor Based on Two-Dimensional FFTCodes[J]. IEEE Trans. on AES.,1990,26:356-365.
    [56]R. Lanari. A new method for the compensation of the SAR range cell migrationbased on the chirp Z-transform[J]. IEEE Trans. on GRS.,1995,33:1296–1299.
    [57]A. M. Guarnieri. Adaptive Removal of Azimuth Ambiguities in SAR Images[J].IEEE Trans.on GRS.,2005,43(3):625-633.
    [58]R. O. Harger. Synthetic Aperture Radar Systems: Theory and Design[M]. New York:Academic Press,1971.
    [59]B. Himed, Y. Zhang, A. Hajjari. STAP with angle-Doppler compensation for bistaticairborne radars[C]. in Proc. IEEE Radar Conf., USA,2002:311–317.
    [60]M. Sack, M. R. Ito, and I. G. Cumming. Application of efficient linear FM matchedfiltering algorithms to synthetic aperture radar processing[J]. Proc. Inst. Elect. Eng.,pt. F,1985,132:45–57.
    [61]S. U. Pillai, B. Himed, and K. Y. Li. Effect of Earth’s Rotation and Range Foldoveron Space-Based Radar Performance[J]. IEEE Trans.on AES.,2006,42(3):917-932.
    [62]H. Fiedler, E. Boerner, J. Mittermayer, and G. Krieger. Total Zero DopplerSteering[C]. in Proc. EUSAR, Ulm, Germany,2004:481-484.
    [63]H. Fiedler, E. Boerner, J. Mittermayer, and G. Krieger. Total zero Dopplersteering-A new method for minimizing the Doppler centroid[J]. IEEE GRSL.,2005,2(2):141–145.
    [64]I. G. Cumming and F. H. Wong, Digital Processing of Synthetic Aperture RadarData Algorithms and Implementation[M]. Norwood, MA: Artech House,2005.
    [1] R. Klemm. Introduction to space–time adaptive processing[J]. Electron. Commun.Eng. J.,1999,11(1):5–12.
    [2] C. D. Peckham, A. M. Haimovich, J. S. Goldstein, and I. S. Reed. Reduced-rankSTAP performance analysis[J]. IEEE Trans.on AES.,2000,36(2):664–676.
    [3] H. S. C. Wang. Mainlobe clutter cancellation by DPCA for spacebased radars[C].in Proc. IEEE Aerosp. Appl. Conf. Dig.,1991:1/1–1/28.
    [4] D. C. Maori, J. Klare, A. R. Brenner, and J. H. G. Ender. Widearea trafficmonitoring with the SAR/GMTI system PAMIR[J]. IEEE Trans.on GRS.,2008,46(10):3019–3030.
    [5] J. H. G. Ender, C. H. Gierull, and D. C. Maori. Improved spacebased moving targetindication via alternate transmission and receiver switching[J]. IEEE Trans.on GRS.,2008,46(2):3960–3974.
    [6] J. M. B. Dias and P. A. C. Marques. Multiple moving target detection and trajectoryestimation using a single SAR sensor[J]. IEEE Trans. on AES.,2003,39(2):604-624.
    [7] A. Freeeman and A. Currie. Synthetic aperture radar (SAR) images of movingtargets[J]. GEC J. Res.,1987,5(2):106–115.
    [8] M. Kirscht. Detection, velocity estimation and imaging of moving targets withsingle-channel SAR[C]. in Proc. EUSAR,1998:587–590.
    [9] R. Bamler. A comparison of range-Doppler and wave-number domain SARfocusing algorithms[J]. IEEE Trans. on GRS.,1992,30(7):706-713.
    [10]R K Raney, H Runge, R Bamler, I G Cumming, F H Wong. Precision SARProcessing Using Chirp Scaling[J]. IEEE Trans on GRS,1994,32(4):786-799.
    [11]S. Werness, W. Carrara, L. Joyce, and D. Franczak. Moving target imaging forSAR data[J]. IEEE Trans.on AES.,1990,26(1):57-66.
    [12]J. R. Fienup. Detecting moving targets in SAR imagery by focusing[J]. IEEETrans.on AES.,2001,37(3):794-809.
    [13]A. C. M. Paulo and M. B. D. Jose. Velocity estimation of fast moving targets usinga single SAR sensor[J]. IEEE Trans.on AES.,2005,41(1):75–89.
    [14]P. Marques and J. Dias. Moving targets velocity estimation using aliased SARraw-data from a single sensor[C]. in Proc.4th EUSAR,2002:389–392.
    [15]M. Rüegg, E. Meier, and D. Nüesch. Capabilities of dual-frequency millimeterwave SAR with monopulse processing for ground moving target indication[J].IEEE Trans.on GRS.,2007,45(3):539–553.
    [16]G. Wang, X.-G. Xia, and V. C. Chen. Radar imaging of moving targets in foliageusing multifrequency multiaperture polarimetric SAR[J]. IEEE Trans.on GRS.,2003,41(8):1755–1764.
    [17]G. Wang, X.-G. Xia, V. C. Chen, and R. L. Fiedler. Detection, location, andimaging of fast moving targets using multi-frequency antenna array SAR[J]. IEEETrans.on AES.,2004,40(1):345-355.
    [18]G. Li, J. Xu, Y. N. Peng, and X.-G. Xia. Location and imaging of moving targetsusing nonuniform linear antenna array SAR[J]. IEEE Trans.on AES.,2007,43(3):1214-1220.
    [19]P. Lombardo. Estimation of target motion parameters from dual-channel SARechoes via time-frequency analysis[C]. in Proc. Nat. Radar Conf.,1997:13–18.
    [20]G. Wang, X.-G. Xia, and V. C. Chen. Dual-speed SAR imaging of movingtargets[J]. IEEE Trans.on AES.,2006,42(1):368–379.
    [21]J. Xu, G. Li, Y. N. Peng, X.-G. Xia, and Y. L. Wang. Parametric Velocity SyntheticAperture Radar: Multilook Processing and Its Applications[J]. IEEE Trans.on GRS.,2008,46(11):3488-3502.
    [22]J. Xu, G. Li, Y. N. Peng, X.-G. Xia, and Y. L. Wang. Parametric Velocity SyntheticAperture Radar: Signal Modeling and Optimal Methods[J]. IEEE Trans.on GRS.,2008,46(9):2463-2480.
    [23]G. Li, X.-G. Xia, J. Xu, and Y. N. Peng. A velocity estimation algorithm of movingtargets using single antenna SAR[J]. IEEE Trans.on AES.,2009,45(3):1052-1062.
    [24]J. Xu, J. Yu, Y. N. Peng, and X.-G. Xia. Radon-Fourier transform for radar targetdetection, I: generalized Doppler filter bank[J]. IEEE Trans.on AES.,2011,47(2):1186-1202.
    [25]S. Young, N. Nasrabadi, and M. Soumekh. SAR moving target detection andidentification using stochastic gradient techniques[C]. in Proc. ICASSP,1995:2145–2148.
    [26]J. K. Jao. Theory of synthetic aperture radar imaging of a moving target[J]. IEEETrans.on GRS.,2001,39(9):1984–1992.
    [27]R. P. Perry, R. C. Dipietro, and R. L. Fante. SAR imaging of moving targets[J].IEEE Trans.on AES.,1999,35(1):188–200.
    [28]D. Y. Zhu, Y. Li, and Z. D Zhu. A keystone transform without interpolation forSAR ground moving-target imaging[J]. IEEE GRSL.,2007,4(1):18–22.
    [29]S. Q. Zhu, G. S. Liao, Y. Qu, Z. G. Zhou, and X. Y. Liu. Ground moving targetsimaging algorithm for synthetic aperture radar[J]. IEEE Trans.on GRS.,2011,49(1):462–477.
    [30]S. Chiu and M. V. Dragosevic. Moving target indication via RADARSAT-2multichannel synthetic aperture radar processing[J]. EURASIP Journal of Advancesin Signal Processing,2010, article ID740130.
    [31]R. K. Raney. Doppler properties of radars in circular orbits[J]. Int. J. Remote Sens.,1986,7(9):1153–1162.
    [32]R. K. Raney. Considerations for SAR image quantification unique to orbitalsystems[J]. IEEE Trans.on GRS.,1991,29(5):754–760.
    [33]H. Runge. Benefits of antenna yaw steering for SAR[C]. in Proc. IGARSS, Espoo,Finland,1991:257–261.
    [34]M. V. Dragosevic. Parametric methods for strip-map SAR Doppler ambiguityresolution[J]. IEEE Trans.on AES.,2009,45(3):869-884.
    [35]G. Li, X.-G. Xia, and Y. N. Peng. Doppler keystone transform: an approachsuitable for parallel implementation of SAR moving target imaging[J]. IEEE GRSL.,2008,5(4):573-577.
    [36]X.-G. Xia, G. Y. Wang, and V. C. Chen. Quantitative SNR analysis for ISARimaging using joint time-frequency analysis–short time Fourier transform[J]. IEEETrans.on AES.,2002,38(2):649–659.
    [37]V. C. Chen. Time-frequency analysis of SAR images with ground movingtargets[C]. in Proc. SPIE3391,295(1998); doi:10.1117/12.304879
    [38]V. C. Chen, R. Lipps, and M. Bottoms.FOPEN SAR: imaging of ground movingtargets using rotational time-frequency-radon transforms[C]. in Proc. of the IEEERadar Conference,2002:154–159.
    [39]S. Q. Zhu, G. S. Liao, Y. Qu, X. Y. Liu, and Z. G. Zhou. A new slant-rangevelocity ambiguity resolving approach of fast moving targets for SAR system[J].IEEE Trans.on GRS.,2010,48(1):432-451.
    [40]M. Born and E. Wolf. Principles of Optics. New York: Pergamon Press[M].1959,Appendix III.
    [41]B. C. Liu, T. Wang, and Z. Bao. Slant-range velocity estimation based onSmall-FM-Rate Chirp[J]. Signal Processing,2008,88(10):2472-2482.
    [42]X. Li, G. S. Liu, and J. L. Ni. Autofocusing of ISAR images based on entropyminimization[J]. IEEE Trans.on AES.,1999,35(4):1240-1251.
    [43]R. Lanari. A new method for the compensation of the SAR range cell migrationbased on the chirp Z-transform[J]. IEEE Trans. on GRS.,1995,33:1296–1299.
    [44]K. Natroshvili, O. Loffeld, A.Maya, M. Ortiz, and S. Knedlik. Focusing of generalbistatic SAR configuration data with2-d inverse scaled FFT[J]. IEEE Trans.onGRS.,2004,44(10):2718-2727.
    [45]N. Gebert and G. Krieger. Phase center adaptation on transmit for high resolutionwide-swath SAR imaging[J]. IEEE GRSL.,2009,6(4):782–786.
    [46]S. Hinz, F. Meyer, A. Laika, and R. Bamler. Spaceborne traffic monitoring withdual channel synthetic aperture radar—Theory and experiments[J]. in Proc. IEEECVPR,2005:20–26.
    [47]Jeong-Won Park and Joong-Sun Won. An Efficient Method of Doppler ParameterEstimation in the Time–Frequency Domain for a Moving Object From TerraSAR-XData[J]. IEEE Trans.on GRS., in press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700