用户名: 密码: 验证码:
多臂支化液晶嵌段聚合物电解质及其固态锂离子电池
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池因其能量高、充放电性能好、使用寿命长等特点而受到了人们的广泛关注。应用表明,锂离子电池是一种理想的小型绿色电源,在便携式电子产品如手机、笔记本电脑、摄录像机等方面锂离子电池已得到了广泛应用,在电动摩托车、电动自行车、电动汽车与航空设备等领域也占有重要地位。锂离子电池全固态聚合物电解质,克服了液体电解质电池存在的易漏液、短路、不够安全等问题,同时还弥补了无机固体电解质电导率低、脆性大、成膜性差、机械形变差的不足,更为可贵的是,电池可采用的软性封装材料如铝塑膜等允许弯曲、折叠,电池外形设计可以更加灵活、方便,且总体质量轻,质量比能量大幅度提高。正是因为固态聚合物电解质的稳定性和可靠性,需要制备高电导率的聚合物电解质。聚氧化乙烯(PEO)由于其潜在的优点而被广泛用于聚合物电解质中,但其存在电导率低,和电极相容性差等问题。本文针对目前全固态聚合物电解质室温电导率较低的问题,提出将氰基联苯液晶基元以侧链形式引入到支化的含PEG链段的聚合物中,设计合成新型的液晶性超支化嵌段共聚物,然后将此共聚物和锂盐混合得全固态超支化聚合物电解质薄膜。研究内容总共分为四个部分。
     第一部分:设计合成新型的液晶性超支化嵌段共聚物4-聚乙二醇-x-(4-氰基-4’-二联苯烷氧基)甲基丙烯酸酯(TPEO-MAxLC-Φ)(x=6,Φ=20,30; x=9,0=10,19)。研究了聚合物结构对性能的影响以及形貌和电导率之间的关系。氰基联苯的强诱导取向作用使四臂共聚物及相应的电解质均有光学各向异性。通过两亲性链段的自组装以及液晶基元的取向作用,热退火处理得到层状的微观相分离结构。由于液晶基元的加入,聚合物电解质的电导率得到提高,原因是液晶基元的引入能有效降低EO链段的结晶性,同时液晶的取向使得电解质中形成有效的锂离子传输通道,有利于离子的有效传输。TPEO-MA9LC-19电解质的室温电导率为2.24×10-5,液晶态下热退火以后达到5.39×10-5S/cm。
     第二部分:由于侧链型PEG的链段运动能力较大,设计了侧链型的三臂嵌段共聚物,以甲基丙烯酸聚乙二醇酯(PPEGMA)和聚[10-(4-氰基-4'-二联苯癸氧基)甲基丙烯酸酯](PMALC)为原料通过ATRP合成。由于氰基联苯的强烈的诱导取向能力使得共聚物和电解质具有光学各向异性。通过液晶态下亲水的醚键和疏水的液晶链段的自组装以及液晶的强烈取向作用使得聚合物和电解质形成层状的结构。并且,由于液晶基元处于核的内外的位置不同导致聚合物和电解质形成两种完全不同的形貌。结果证明液晶基元处于核内部(3PMALC-PPEGMA)的液晶基元之间不易接触形成不连续的分子堆砌,而液晶基元处于核外部的3PPEGMA-PMALC/LiClO4电解质能得到有序的微观相分离结构,形成有利于离子传输的形貌。因此,3PPEGMA-PMALC/LiClO4电解质有着较高的电导率,在液晶态下退火后处理得到的电解质膜的室温电导率达1.0×10-4S/cm。
     第三部分:侧链型PEG的引入必然会降低聚合物的力学性能,因此,通过在支化结构中加入聚苯乙烯的方法来增加聚合物的力学性能。以季戊四醇为核,苯乙烯、甲基丙烯酸聚乙二醇酯(PEGMA)和x-(4-氰基-4’-二联苯氧基)烷基甲基丙烯酸酯(MAxLC)(x=3,10)为聚合物单体,合成三嵌段的星型共聚物(4PS-PPEGMA-PMAxLC)(x=3,10)。聚苯乙烯链段(PS)用来增加聚合物的力学性能,聚甲基丙烯酸聚乙二醇酯(PPEGMA)是为了传输离子,液晶链段(PMAxLC)用来调控聚合物的形貌。通过热退火使其中的氰基联苯液晶基元诱导聚合物形成纳米尺寸的微观相分离结构,并且液晶基元上有着更长的柔性亚甲基有利于形成更有序的层状结构。由于有序离子通道的形成,该聚合物电解质的电导率有着很大的提高,特别是在温度较高的时候。共聚物4PS-PPEGMA-PMA10LC形成的电解质通过退火处理以后室温电导率可达1.3×10-4S/cm,且有着较高的锂离子迁移数和宽的电化学窗口。
     第四部分:利用前文合成的三臂液晶嵌段共聚物(3PMALC-PPEGMA)和液晶小分子4-氰基-4’-[(10-癸氧基](10-BPCN)为增塑剂,加入到大分子量的PEO中,形成二元和三元的共混体系。液晶共聚物的加入,能降低PEO的结晶性并且进一步诱导分子形成微观相分离结构。为了弥补和修复3PMALC-PPEGMA中的结构缺陷,继续加入液晶小分子已得到更为有序的层状结构,这对形成固定的锂离子传输通道是非常有益的。考察了不同组分共混物的形貌及其电解质的性能,发现当PEO/3PMALC-PPEGMA/10-BPCN的质量比为70/25/5时,所形成的电解质的电导率最高,退火处理后室温电导率达到1.3×10-5S/cm,高的电导率和锂离子迁移数以及宽的电化学窗口,为锂离子固态聚合物电解质的应用提供了一条新的思路。
Lithium ion batteries get wide attention because of its advantages as high energy, high voltage, charge and discharge performance, low self discharge, and long life. As a small green power source, it has been widely used in the portable electronic products such as mobile phone, notebook computer, video camera, electric motorcycle, electric bicycle, electric vehicle and aviation equipment etc.. The use of polymer electrolyte could overcome not only the leakage, short circuit, security problen caused by the traditional liquid electrolyte, but also offset the shortcoming of the inorganic solid electrolyte low conductivity, brittleness, poor mechanical. Since the solid polymer electrolyte is considered to have a good stability and reliability for lithium ion battery, it is important to design a polymer electrolyte with high conductivity. Poly (ethyleneoxide)(PEO) based polymer electrolytes have receivede extensive attentions for their potential capability to be used as alternative candidate materials in all solid state polymer lithium ion batteries. However, there are many problems such as low conductivity, bad compatibility of the interface between polymer electrolyte and electrode material, which seriously affeeting the cycle and safety. So introduction of the cyano biphenyl mesogenic to the branched polymers with PEG segments, achieving a novel liquid crystalline hyperbranched copolymer, the copolymer mixed with lithium salt to obtain the full solid state hyperbranched polymer electrolyte films. This dissertation includes four major parts.
     Firstly, Novel star branched amphiphilic liquid crystalline (LC) copolymers have been synthesized.4-Arm poly (ethylene oxide)-co-x-[(4-cyano-4'-biphenyl) oxy]alkyl methacrylate (TPEO-MAxLC-Φ)(x=6,Φ=20,30; x=9, Φ=10,19) containing four poly(ethylene oxide) arms (TPEO) and polymethacrylate with cyanobiphenyl mesogenic pendants (MAxLC) at the end of each arm are prepared by atom-transfer radical polymerization (ATRP). The effects of structural variations on the property, and the relationship between morphology and the ionic conductivity of the copolymer electrolytes are studied. The strong assembly of cyanobiphenyl mesogens induces the copolymers with enantiotropic mesophase, even after doped with LiC104. And lamellar structures are also achieved by cooperative assembly of hydrophobic mesogen-containing polymethacrylate groups and the amorphous hydrophilic TPEO nanoscale aggregation, especially after LC thermal annealing. The ionic conductivity has been improved greatly by incorporation of the mesogens. The cyanobiphenyl mesogens not only favor the ordered morphology to provide the efficient ion transportation pathway, but also suppress TPEO crystallization to offer the movement of TPEO chains. Among all of the electrolyte films, TPEO-MA9LC-19shows the best ion conductivity of2.24×10-5S/cm at25℃and this value reaches to5.39×10-5S/cm after annealed at LC states.
     Seeondly, A series of star-shaped polymers are synthesized by atom transfer radical polymerization using poly-(methoxy-poly (ethylene glycol) methacrylate)(PPEGMA) as a hydrophilic segment and poly{10-[(4-cyano-4'-biphenyl) oxy] decatyl methacrylate}(PMALC) as a hydrophobic liquid crystalline segment. The strong assembly of cyanobiphenyl mesogens induces the copolymers with enantiotropic mesophase, even after doped with LiC104. Lamellar morphology is also achieved by cooperative assembly of hydrophobic mesogen-containing polymethacrylate groups and the amorphous hydrophilic PPEGMA nanoscale aggregation, especially after liquid crystal thermal annealing. In addition, the sequential effect, that is, the position difference of the liquid crystalline segments in the copolymer electrolytes causes two quite different morphologies. The liquid crystalline segments arranged in the star polymer inner sphere (3PMALC-PPEGMA) makes it difficult for the mesogens to interact with each other efficiently, which leads to a discontinuous molecular packing. However highly ordered domains can be formed in the3PPEGMA-PMALC/LiC104electrolytes with mesogens in the star copolymer exterior, which can provide a more favorable morphology for the ions transportation. As a result, the ionic conductivity of the electrolytes can be improved by incorporation of the liquid crystalline segments into the copolymer, especially for the3PPEGMA-PMALC with the mesogen arranged in the outside of star copolymer sphere. Ionic conductivity of3PPEGMA-PMALC annealed at liquid crystalline state is1.0×10-4S/cm at25℃, which is higher than that of3PPEGMA electrolytes without mesogen groups.
     Thirdly, Novel star-shaped hard-soft triblock copolymers,4-arm poly (styrene)-block-poly [poly (ethylene glycol) methyl ethyl methacrylate]-block-poly{x-[(4-cyano-4'-biphenyl) oxy] alkyl methacrylate}(4PS-PPEGMA-PMAxLC)(x=3,10) with different mesogen spacer length are prepared by atom-transfer radical polymerization. The star copolymers comprised three different parts:a hard poly styrene (PS) core to ensure the good mechanical property of the solid-state polymer, and a soft, mobile poly [poly (ethylene glycol) methyl ethyl methacrylate](PPEGMA) middle sphere responsible for the high ionic conductivity of the solid poly electrolytes, and a poly{x-[(4-cyano-4'-biphenyl)oxy] alkyl methacrylate} with a birefringent mesogens at the end of each arm to tuning the electrolytes morphology. The star-shaped hard-soft block copolymers fusing hard PS core with soft PPEGMA segment can form a flexible and transparent film with dimensional stability. Thermal annealing from the liquid crystalline states allows the cyanobiphenyl mesogens to induce a good assembly of hard and soft blocks, consequently obtaining uniform nano-scale microphase separation morphology, and the longer spacer is more helpful than the shorter one. There the ionic conductivity has been improved greatly by the orderly continuous channel for efficient ion transportation, especially at the elevated temperature. The copolymer4PS-PPEGMA-PMA10LC shows ionic conductivity value of1.3×10-4S/cm (25℃) after annealed from liquid crystal state, which is higher than that of4PS-PPEGMA electrolyte without mesogen groups.
     Finally, Solid composite polymer electrolytes based on polyethylene oxide (PEO)/LiClO4with the star-shaped liquid-crystalline copolymer and4-cyano-4'-[(10-hydroxyalkyl) oxy](10-BPCN) biphenyl are prepared. The star-shaped liquid-crystalline copolymer,3-arm-poly{10-[(4-cyano-4'-biphenyl) oxy] decatyl methacrylate}-block-poly [methoxy-poly (ethylene glycol) methacrylate](3PMALC-PPEGMA), is composed with a conductive block (PPEGMA block) and an orientation block (PMALC block). The liquid-crystalline fillers induce high chain mobility of PEO because of the decreasing crystallinity and the cyanobiphenyl mesogen impels the blends to achieve lamellar structure. So strong assembly ability of the free mesogens ensure the composite systems to arrange with more ordered nanostructure, consequently obtaining bicontinuous nanoscale microphase separation morphology with the addition of the small liquid crystallite molecules (10-BPCN), which is favorable for ion transportation. Composite polymer electrolytes based on the ternary blend containing70/25/5(PEO/3PMALC-PPEGMA/10-BPCN) mass percent with lithium perchlorate (LiClO4) exhibits the best performance, showing an increase of more than two orders of ionic conductivity value than the pure PEO/LiClO4electrolytes and the maximum value reach to1.3×10-5S/cm (25℃) after annealed from liquid crystal state. The high lithium ion transference number and wide electrochemical stability window exhibit an acceptable performance of the system. Therefore the better miscibility and lower crystallinity, compared to pure PEO, as well as the efficient transport channel in the present system, pave a potential way to develop solid state polymer electrolytes for Li-ion batteries.
引文
[1]郑洪河等.锂离子电池电解质[M].北京:化学工业出版社(第一版),2007.
    [2]吴宇平,袁翔云,董超等.锂离子电池----应用与实践[M].北京:化学工业出版社(第二版),2011.
    [3]Hussain A M, Kumar A. Enhanced eleetrochemical stability of all polymer redox supercapacitors with modified polypyrrole electrodes [J]. Journal of Power Sources,2006, 161(2):1486-1492.
    [4]Sivakkumar S R, Kim D W. Polyaniline/carbon nanotube composite cathode for rechargeable lithium polymer batteries assembled with gel polymer eleetrolyte [J]. Journal of the Electrochemical society,2007,154(2):A134-A139.
    [5]Ohzuku T, Brodd R. J. An overview of positive-electrode materials for advanced lithium-ion batteries [J]. Journal of Power Sources,2007,174:449-456.
    [6]Whittingham M S. Electrical energy storage and intercalation chemistry [J]. Science,1976, 192(4244):1126-1127.
    [7]Koch R V, Young J H. The stability of the secondary lithium electrode in tetrahydrofuran-based electrolytes [J]. J.Eleetroehem.Soc.,1978,125:137-142.
    [8]Yoshimatsu 1, Hirai T, Yamaki J, Lithium electrode morphology during cycling in lithium cells [J]. J. Electrochem. Soc.,1988,135:2422-2427.
    [9]Thackeray M, David W I F, Bruce P G et al. Lithium insertion into manganese spinels. [J] Materials Research Bulletin,1983,18 (4):461-469.
    [10]Nazri G, Pistoia, G. Lithium batteries:science and Technology [M]. Springer,2004.
    [11]Voelcker J, Lithium batteries take to the road [M]. IEEE Spectrum,2010.
    [12]Manthiram A, Goodenough J B. Lithium insertion into Fe2(SO4)3 frameworks [J]. Journal of Power Sources,1989,26(3):403-410.
    [13]Padhi A K. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. Journal of the Electrochemical Society,1997,144 (4):1188-1110.
    [14]Gozdz A S, Scumutz C, Tarascon J M. Rechargeable lithium intercalation with hybrid polymeric electrolyte [P]. US pat:No5296318,1993.
    [15]Wang X M,Kato M, Natio H,et al. A feasibility study of commercial laminated lithium-ion polymer cells for space applications [J]. Journal of the Electrochemical Society,2006, 153(1):A89-A95.
    [16]Zaghib K, Charest P, Guerfi A, et al. Safe Li-ion polymer batteries for HEV applications [J]. J Power Sources,2004,134(1):124-129.
    [17]Gozdz A S, Schmutz C, Tarascon J M, et al. Method of making polymeric electrolytic cell separator membrane [J]. J Power Sources,1998,70(1):168-169.
    [18]Fenton D E, Parker J M, Wright P V. Complexes of alkaline metal ions with poly(ethylene oxide) [J]. Polymer,1973,14(4):589-594.
    [19]Feuillade G, Perche P H. Ion-conductive macromolecular gels and membranes for solid lithium cells [J]. J. Applied Electrochemistry,1975, (5):63-69.
    [20]Armand M B.,Chabagno J M, Duclot M. Second international meeting on solid electrolytes [M], Extend Abstract, St. Scotland:Andrew,1978,20.
    [21]Weston J E, Steele B C H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-PEO polymer electrolytes [J]. Solid Stat e Ionics,1982,7:75-79
    [22]Berthier C, Gorecki W, Armand B. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts [J]. Solid State Ionics,1983,11:91-97.
    [23]Killis A, Cheradame H, Gandini A, et al. Ionic conductivity of polyether-polyurethane networks containing alkali metal salts. An analysis of the concentration effect [J] Macromolecules,1984,17(1):63-66.
    [24]Hall P G, Bannister D J, Davies G R. Ion conductivity in polysiloxane comb polymers with ethylene glycol teeth [J].Polymer Commu.,1986,27:98-100.
    [25]Watanabe M, Yamada S, Sanui K, et. al. A dinuclear copper(Ⅱ) complex bridged simultaneously by end-on azido, bromo and diazole (N2) groups exhibiting strong ferromagnetic exchange. X-Ray structure and magnetic properties [J]. J Chem Soc Chem Commu,1993,82:804-810.
    [26]Boudin F, Andrieu X, Jehoulet C. Microporous PVdF gel for lithium-ion batteries [J]. J Power Sources,1999,81,82:804-807.
    [27]Pitawala H M J C, Dissanayake M A K L, Seneviratne V A, et al. Effect of plasticizers (EC or PC) on the ionic conductivity and thermal properties of the (PEO)9LiTf:Al2O3 nanocomposite polymer electrolyte system [J]. J. Solid State Electrochem,2008,12: 783-789.
    [28]Dygas J R, Krok F, A, et al. Star-branched polyethylene oxide) LiN(CF3SO2)2:A promising polymer electrolyte [J]. J. Power Sources,2009,194:51-57.
    [29]Hekselman A, Kalita M, Plewa-Marczewska A, et al. Effect of calix[6]pyrrole anion receptor addition on properties of PEO-based solid polymer electrolytes doped with LiTf and LiTfSI salts [J]. Electrochim. Acta,2010,55:1298-1307.
    [30]Itoh T, Hirai K, Uno T, Kubo M. Solid polymer electrolytes based on squaric acid structure [J]. Ionics,2008,14:1-6.
    [31]Zhang T, Imanishi N, Hasegawa S, A. et al. Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte [J]. J. Electrochem. Soc.,2008,155 (12):A965-A969
    [32]Zhu C, Cheng H, Yang Y. Electrochemical characterization of two types of PEO-based polymer electrolytes with room-temperature ionic liquids [J]. J. Electrochem. Soc.,2008, 155(8):A569-A575.
    [33]Itoh T, Mitsuda Y, Ebina T, et al. Solid polymer electrolytes composed of polyanionic lithium salts and polyethers [J]. J. Power Sources,2009,189:531-535.
    [34]Angulakshmi N, Kumar T. P, Thomas S, et al. Ionic conductivity and interfacial properties of nanochitin-incorporated polyethylene oxide-LiN(C2F5SO2)2 polymer electrolytes [J]. Electrochim. Acta,2010,55:1401-1406.
    [35]Kumar J, Rodrigues S. J, Kumar B, Interface-mediated electrochemical effects in lithium/polymer-ceramic cells [J]. J. Power Sources,2010,195:327-334.
    [36]Fan L Z, Wang X L, Long F, et al. Enhanced ionic conductivities in composite polymer electrolytes by using succinonitrile as a plasticizer [J]. Solid State Ionics,2008,179: 1772-1775.
    [37]Li N, Wang L, He X, et al. Synthesis of star macromolecules for solid polymer electrolytes [J]. Ionics,2008,14:463-467.
    [38]An S Y, Jeong I C, Won M S, et al. Effect of additives in PEO/PAA/PMAA composite solid polymer electrolytes on the ionic conductivity and Li ion battery performance [J]. J. Appl. Electrochem,2005,39:1573-1578.
    [39]Derrien G, Hassoun J, Sacchetti S, et al. Nanocomposite PEO-based polymer electrolyte using a highly porous super acid zirconia filler [J]. Solid State Ionics,2009,180:1267-1271.
    [40]Shen C, Wang J, Tang Z, et al. Physicochemical properties of poly(ethylene oxide)-based composite polymer electrolytes with a silane-modified mesoporous silica SBA-15 [J]. Electrochim. Acta,2009,54(12):3490-3494.
    [41]Sumathipala H H, Hassoun J, Panero S, et al. High performance PEO-based polymer electrolytes and their application in rechargeable lithium polymer batteries [J]. Ionics,2007, 13:281-286.
    [42]Lauter U, Meyer W. H, Wegner G. Molecular composites from rigid-rod poly(p-phenylene)s with oligo(oxyethylene) side chains as novel polymer electrolytes [J]. Macromol.1997,30(7):2092-2102.
    [43]Wieczorek W, Such K, Chung S H, et al. Comparison of properties of composite polymeric eleetrolytes based on the oxymethylene-linked poly(ethylene oxide) NaClO4 eleetrolyte with polyacrylamide or alpha-Al2O3 additives [J]. J. Phys.Chem.,1994,98(36):9047-9055.
    [44]Reddy J M, Kumar S J, Rao S U.V, et al. Structural and ionic conductivity of PEO blend PEG solid Polymer electrolyte [J]. Solid State Ionics,2006,177:253-256.
    [45]Tanaka R, Sakurai M, Sekiguchi H, et al. Lithium ion conductivity in polyoxyethylene/polyethylenimine blends [J]. Electrochim. Acta,2001,46:1709-1715.
    [46]Wen Z Y, Itoh T, Uno T, et al. Polymer electrolytes based on poly(ethyleyeoxide) and cross-linked poly(ethyleneoxide-co-propylene oxide) [J]. Solid State Ionics,2004,175: 739-742.
    [47]Itoh T, Hirai K, Uno T, et al. Solid polymer electrolytes based on squaric acid structure [J]. Ionics,2008,14:1-6.
    [48]Ana M R, Alexander A C, Robson P P. Polymer electrolytes based on a ternary miscible blend of poly(ethylene oxide), poly(bisphenol A-co-epichlorohydrin) and poly(vinyl ethyl ether) [J]. Polyme,2010,51:5151-5164.
    [49]Li W, Ning L, Xiangming H, Chunrong W, et al. Macromolecule plasticized interpenetrating structure solid state polymer electrolyte for lithium ion batteries [J], Electrochimica Acta, 2012,68:214-219.
    [50]Yarjan A S, Ali A, Boor S L, et al. Networked cellulose entrapped and reinforced PEO-based solid polymer electrolyte for moderate temperature applications [J], J. Appl. Polym. Sci., 2013,129(5):2998-3006.
    [51]Kazem J, Nader T Q, Seyed H J, et al. Enhanced ionic conductivity in PEO/PMMA glassy miscible blends:role of nano-confinement of minority component chains [J]. Journal of polymer science:part B:polymer physics,2010,48:2065-2071.
    [52]Shanshan W, Kyonsuku M. Solid polymer electrolytes of blends of polyurethane and polyether modified polysiloxane and their ionic conductivity [J]. Polymer,2010,51: 2621-2628.
    [53]Jian Y J, Bin L, Wei H Z. Effects of a block copolymer as multifunctional fillers on ionic conductivity, mechanical properties, and dimensional stability of solid polymer electrolytes [J], J. Phys. Chem. B,2010,114 (43):13637-13643.
    [54]Shaowei F, Dongyang S, Fang L, et al. Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl) (trifluoromethanesulfonyl) imide] anions [J]. Electrochimica Acta,2013,93:254-263.
    [55]Panday A, Mullin S, Gomez E D, et al. Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes [J]. Macromolecules,2009,42(13): 4632-4637.
    [56]Singh M, Odusanya O, Wilmes G M, et al. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes [J]. Macromolecules,2007,40(13): 4578-4585.
    [57]Choi I, Ahn H, Park M. J. Enhanced performance in lithium-polymer batteries using surface-functionalized Si nanoparticle anodes and self-assembled block copolymer electrolytes [J]. Macromolecules,2011,44(18):7327-7334.
    [58]Gomez E. D, Panday A., Feng E. H, et al. Effect of Ion Distribution on Conductivity of Block Copolymer Electrolytes [J]. Nano Lett.,2009,9(3):1212-1216.
    [59]Sung K Kim, Dong G Kim, Aeri L, et al. Organic/inorganic hybrid block copolymer electrolytes with nanoscale ion-conducting channels for lithium ion batteries [J]. Macromolecules,2012,45:9347-9356.
    [60]Jeffrey W F. Ceramic and polymeric solid electrolytes for lithium-ion batteries [J]. J. Power Sources,2010,195(15):4554-4569.
    [61]Agrawal R C, Pandey G P. Solid polymer electrolytes:materials designing and all-solid-state battery applications:an overview [J]. J. Phys. D:Appl. Phys.,2008,41:223001-223015.
    [62]Uno T, Kawaguchi S, Kubo M, et al. Ionic conductivity and thermal property of solid hybrid polymer electrolyte composed of oligo(ethylene oxide) unit and butyrolactone unit [J]. J. Power Sources,2008,178:716-722.
    [63]Zhou S, Kim D. Synthesis and properties of all solid polymer electrolytes based on poly(vinyl acetate-co-acetyl ethylene oxide acrylate) [J]. Adv. Technol.,2010,10: 1734-1738.
    [64]Ishmukhametova K G., Yarmolenko O V, Bogdanova L. M, et al. New solid polymer electrolytes based on polyester diacrylate for lithium power sources [J]. Russ. J. Electrochem.,2009,45 (5):558-563.
    [65]Yoshimoto N, Shimamura O, Nishimura T, et al. A novel polymeric electrolyte based on a copolymer containing self-assembled stearylate moiety for lithium-ion batteries [J]. Electrochem. Commun.,2009,11:481-483.
    [66]Bakenov Z, Nakayama M, Wakihara M, et al. Lithium AlPO4 composite polymer battery with nanostructured LiMn2O4 cathode [J]. J. Solid State Electrochem,2008,12:295-302.
    [67]Niitani T, Amaike M, Nakano H, et al. Star-shaped polymer electrolyte with microphase separation structure for all-solid-state lithium batteries [J]. J. Electrochem. Soc.,2009,156 (7):A577-A583.
    [68]Hu L, Frech R, Glatzhofer D T, Mason R, et al. Linear poly(propylenimine)/lithium triflate as a polymer electrolyte system [J]. Solid State Ionics,2008,179:401-408.
    [69]Kim B, Ahn H, Kim J H, et al. Transition behavior and ionic conductivity of lithium perchlorate-doped polystyrene-b-poly(2-vinylpyridine) [J]. Polymer,2009,50:3822-3827.
    [70]Matsumi N, Kagata A, Aoi K. Synthesis of supramolecular solid polymer electrolytes via self-assembly of diborylated ionic liquid [J]. J. Power Sources,2010,195(18):6182-6186.
    [71]Shintani Y, Tsutsumi H. Ionic conducting behavior of solvent-free polymer electrolytes prepared from oxetane derivative with nitrile group [J]. J. Power Sources,2010,195: 2863-2869.
    [72]Nobuko Y, Osamu S Takuya N, et al. A novel polymeric electrolyte based on a copolymer containing self-assembled stearylate moiety for lithium-ion batteries [J]. Electrochemistry Communications,2009,11:481-483.
    [73]Pawel W. M, Manesh G, Woo S J, et al. Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment [J]. J. Am. Chem. Soc.,2010,132:17516-17522.
    [74]Gopinadhan M, Majewski P W, Osuji C O. Facile alignment of amorphous poly(ethylene oxide) microdomains in a liquid crystalline block copolymer using magnetic fields:toward ordered electrolyte membranes [J]. Macromolecules,2010,43:3286-3293.
    [75]Yan Y, Yamada O, Tanaka K, et al. On the development of naphthalene-based sulfonated polyimide membranes for fuel cell applications [J]. Polym. J.,2006,38(3):197-219.
    [76]Miyatake K, Yasuda T, Hirai M, et al. Synthesis and properties of a polyimide containing pendant sulfophenoxypropoxy groups [J]. J. Polym. Sci. Part A:Polym. Chem.2007,45: 157-163.
    [77]Hu Z, Yin Y, Kita H, et al. Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for polymer electrolyte fuel cell application [J]. Polymer,2007, 48:1962-1971.
    [78]Jing S, Gregory M. S, Nitash P. B, et al. Structure-conductivity relationship for peptoid-based PEO-mimetic polymer electrolytes, Macromolecules,2012,45:5151-5156.
    [79]Mitsuru H, Kazuaki Y, Ryousuke K. All solid-state polymer electrolytes prepared from a graft copolymer consisting of a polyimide main chain and poly(ethylene oxide) based side chains [J]. Electrochimica Acta,2010,55:1380-1384.
    [80]Jing S, Gregory M S, Nitash P B, et al. Structure-conductivity relationship for peptoid-based PEO-mimetic polymer electrolytes [J]. Macromolecules,2012,45:5151-5156.
    [81]Wilms D, Schomer M, Wurm F, et al. Hyperbranched PEG by random copolymerization of ethylene oxide and glycidol [J]. Macromol. Rapid Commun.,2010,31(20):1811-1815.
    [82]Sung I L, Martina S, Huagen P, et al. Correlations between ion conductivity and polymer dynamics in hyperbranched poly(ethylene oxide) electrolytes for lithium-ion batteries [J], Chem. Mater.,2011,23:2685-2688.
    [83]Yun P, Hewen L, Xingyuan Z. Star polystyrene-b-hyperbranched polyglycidol:synthesis and ionic conductivity [J]. Journal of Polymer Science:Part A:Polymer Chemistry,2009,47: 949-958.
    [84]Chun C L, Hao Y Wu, Diganta S, et. al. A highly conductive star-branched organic-inorganic hybrid electrolyte with remarkable swelling properties based on PPG-PEG-PPG diamine, cyanuric chloride, and alkoxysilane [J]. Macromolecules,2008,41:8956-8959.
    [85]Catherine N. W, Craig V, Mark T, et. al. Tunable networks from thiolene chemistry for lithium ion conduction [J]. ACS Macro Lett.,2012,1:737-741.
    [86]Dan H, Song Y C, Dong W K, et. al. Enhanced ionic conductivity of semi-IPN solid polymer electrolytes based on star-shaped oligo(ethyleneoxy)cyclotriphosphazenes [J]. Macromolecules,2012,45(19):7931-7938.
    [87]Yu H L, Cheng C W, et al. Synthesis and characterization of a new network polymer electrolyte containing polyether in the main chains and side chains [J]. European Polymer Journal,2008,44:2376-2384.
    [88]Weston J E, Steele B C. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-PEO Polymer electrolytes [J]. Solid State Ionics,1982,7(1):75-79.
    [89]Weston J E, Steele B C H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes [J]. Solid State Ionics, 1982,7(1):75-79.
    [90]Scrosati B, Croce F, Panero S. Progress in lithium polymer battery R&D [J]. J. Power Sources,2001,100 (1-2):93-97.
    [91]Vogel M. Herbers C. Koeh B. Effects of salt and nanoparticles on the segmental motion of poly(ethylene oxide) in its crystalline and amorphous phases:2H and 7Li NMR studies [J]. J. Phys.Chem. B,2008,112:11217-11226.
    [92]Susan K. F, Janna K. M. Structure and mobility of PEO/LiClO4 solid polymer electrolytes filled with Al2O3 nanoparticles [J], J. Phys. Chem. C,2010,114:9196-9206.
    [93]Stephan A. M, Kumar T. P, Angulakshmi N., R. et al. Calcium phosphate incorporated poly(ethylene oxide)-based nanocomposite electrolytes for lithium batteries. I. Ionic conductivity and positron annihilation lifetime spectroscopy studies [J]. J. Appl. Polym. Sci., 2012,124(4):3245-3254.
    [94]Chiappone A, Nair J R, Gerbaldi C, et al. Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability [J]. J. Power Sources, 2011,196(23):10280-10288.
    [95]Angulakhsmi N, Thomas S, Jijeesh R. N, et al. Cycling profile of innovative nanochitin-incorporated poly (ethylene oxide) based electrolytes for lithium batteries [J]. Journal of Power Sources,2013,228:294-299.
    [96]Xiong H M, Wang Z D, Liu D P, et al. Bonding polyether onto ZnO nanoparticles an effective method for preparing polymer nanocomposites with tunable luminescence and stable conductivity [J]. Adv. Fuct. Mater.,2005,15:1751-1756.
    [97]Jennifer L N, Surya S M, Lynden A A. Nanoscale organic hybrid electrolytes [J]. Adv. Mater., 2010,22:3677-3680.
    [98]Agarwal P, Qi H, Archer L A. The Ages in a self-suspended nanoparticle liquid [J]. Nano Lett.,2010,10:111-115.
    [99]Jiawei Z, Xiaobin H, Hao W, et al. Effect of surface modified porous inorganic-organic hybrid polyphosphazene nanotubes on the properties of polyethylene oxide based solid polymer electrolytes [J]. Electrochimica Acta,2010,55:5966-5974.
    [100]Dan Z, Xiaoguang M, Jianyong O. Ionic conductivity enhancement of polyethylene oxide-LiClO4 electrolyte by adding functionalized multi-walled carbon nanotubes [J]. J. Phys. Chem. C,2011,115:16688-16694.
    [101]Hao Y W, Diganta S, Hung Y C, et al. Synthesis and characterization of highly conductive plasticized double core organiceinorganic hybrid electrolytes for lithium polymer batteries [J]. Journal of Power Sources,2013,238:265-273.
    [102]Zaghib K, Charest P, Guerfi A, et al. LiFePO4 safe Li-ion polymer batteries for clean environment [J]. J. Power Sources,2005,146(1-2):380-385.
    [103]Zaghib K, Charest P, Guerfi A, et al. Safe Li-ion polymer batteries for HEV applications [J]. J. Power Sources,2004,134(1):124-129.
    [104]Ameduri B. From Vinylidene Fluoride (VDF) to the Applications of VDF-Containing Polymers and Copolymers:Recent Developments and Future Trends [J]. Chem. Rev.,2009, 109(12):6632-6686.
    [105]Raghavan P, Zhao X, Kim J K, et al. Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers [J]. Electrochim. Acta, 2008,54:228-234.
    [106]Ren Z, Liu Y, Sun K,et al. A microporous gel electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery [J]. Electrochim. Acta,2009,54:1888-1892.
    [107]Gentili V, Panero S, Reale P, et al. Role of the polymer matrix in determining the chemical-physical and electrochemical properties of gel polymer electrolytes for lithium batteries [J]. Ionics,2007,13:111-116.
    [108]Li Z H, Zhang H P, Zhang P, et al. Macroporous nanocomposite polymer electrolyte for lithium-ion batteries [J]. J. Power Sources,2008,184:62-565.
    [119]Miao R, Liu B, Zhu Z, et al. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries [J]. J. Power Sources,2008,184:420-426.
    [110]Ren Z, Sun K, Liu Y, et al. Polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) with crosslinked poly(ethylene glycol) for lithium batteries [J]. Solid State Ionics,2009,180:693-697.
    [111]Ding Y, Di W, Jiang Y, et al. The morphological evolution, mechanical properties and ionic conductivities of electrospinning P(VDF-HFP) membranes at various temperatures [J]. Ionics,2009,15:731-734.
    [112]Zhen Y C, You Y X, Li P Z, et al.. Investigation on PVDF-HFP microporous membranes prepared by TIPS process and their application as polymer electrolytes for lithium ion batteries [J].Ionics,2009,15:469-476.
    [113]Xie H, Tang Z, Li Z, et al. PVDF-HFP composite polymer electrolyte with excellent electrochemical properties for Li-ion batteries [J]. J. Solid State Electrochem.,2008,12: 1497-1502.
    [114]Aravindan V, Vickraman P, Sivashanmugam A. LiFAP-based PVdF-HFP microporous membranes by phase-inversion technique with Li/LiFePO4 cell [J]. Appl. Phys. A,2009, 97(4):811-819.
    [115]Ren Z, Sun K, Liu Y, et al. Polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) with crosslinked poly(ethylene glycol) for lithium batteries [J]. Solid State Ionics,2009,180(9-10):693-697.
    [116]Zhao L, Zhang H, Li X, et al. Modification of electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membranes through the introduction of poly(ethylene glycol) dimethacrylate [J]. J. Appl. Polym. Sci.,2009,111(6):3104-3112.
    [117]Ramesh S, Ang G P. Impedance and FTIR studies on plasticized PMMA-LiN(CF3SO2)2 nanocomposite polymer electrolytes [J]. Ionics,2010,16(5):465-473.
    [118]Rajendran S, Bama V S, Prabhu M R. Effect of lithium salt concentration in PVAc/PMMA-based gel polymer electrolytes [J]. Ionics,2010,16(1):27-32.
    [119]Wilkes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids [J]. Chem. Commun.,1992,13:965-967.
    [120]Sirisopanapom C, Fernicola A, Scrosati B. New, ionic liquid-based membranes for lithium battery application [J]. Journal of Power Sources,2009,186:490-495.
    [121]Ferrari S, Quartarone E, Mustarelli P, et al. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluorome-thanesulfonyl)-imide ionic liquid [J]. Journal of Power Sources,2010,195:559-563.
    [122]Kim J K, Matic A, Ahn J H, et al. An imidazolium based ionic liquid electrolyte for lithium batteries [J]. J. Power Sources,2010,195(22):7639-7643.
    [123]Tang Z, Qi L, Gao G. Structural, thermal, and impedance properties of a gel polymer electrolyte containing ionic liquid [J]. Polym. Adv. Technol.,2010,21(3):153-157.
    [124]Kim J K, Manuel J, Chauhan G S, et al. Ionic liquid-based gel polymer electrolyte for LiMn0.4Fe0.6PO4cathode prepared by electrospinning technique [J]. Electrochim. Acta, 2010,55(4):1366-1372.
    [125]Yuan L X, Feng J K, Ai X P, et al. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte [J]. Electrochem. Commun.,2006,8(4): 610-614.
    [126]Sakaebe H, Matsumoto H, Tatsumi K. Discharge-charge properties of Li/LiCoO2 ell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation-Effect of the structure [J]. J. Power Sources,2005,146(1-2):693-697.
    [127]Susan A B H, Kaneko T, Noda A, Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes [J]. J. Am. Chem. Soc.,2005,127(13):4976-4983.
    [128]Lavall R L, Ferrari S, Tomasi C, et al. Novel polymer electrolytes based on thermoplastic polyurethane and ionic liquid/lithium bis(trifluoromethanesulfonyl)imide/propylene carbonate salt system [J]. J. Power Sources,2010,195(17):5761-5767.
    [129]Chen L, Xiao G S, Sheng D. Crosslinked gel polymer electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium ion battery applications [J]. Electrochimica Acta,2013,87:889-894.
    [130]Dan Z, Rui Z, Chuanxiang C, et al. Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices [J]. J. Phys. Chem. B,2013,117(25):7783-7789.
    [131]Ji A C, Yongku K, Dong W K. Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent [J]. Electrochimica Acta,2013,89:359-364.
    [132]Li L, Wang J, Yang P, et al. Preparation and characterization of gel polymer electrolytes containing N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid for lithium ion batteries [J]. Electrochimica Acta,2013,88:147-156.
    [133]Lane G H, Best A S, MacFarlane D R, et al. The electrochemistry of lithium in ionic liquid/organic diluent mixtures [J]. Electrochim. Acta,2010,55(28):8947-8952.
    [134]Larush L, Borgel V, Markevich E, et al. On the thermal behavior of model Li-LixCoO2 systems containing ionic liquids in standard electrolyte solutions [J]. J. Power Sources,2009,189(1):217-223.
    [135]Lewandowski A, Swiderska A M. Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies [J]. J Power Sources,2009,194(2):601-609.
    [136]Xiang H F, Yin B, Wang H, et al. Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries [J]. Electrochim. Acta,2010, 55(18):5204-5209.
    [137]Appetecchi G B, Kim G T, Montanino M, et al. Room temperature lithium polymer batteries based on ionic liquids [J]. J. Power Sources,2011,196 (16):6703-6709.
    [138]Kim G T, Jeong S S, Xue M Z, et al. Development of ionic liquid-based lithium battery prototypes [J]. J. Power Sources,2012,199(1):239-246.
    [139]Ye H, Huang J, Xu J J, et al. Li ion conducting polymer gel electrolytes based on ionic liquid/PVDF-HFP blends [J]. J. Electrochem. Soc.,2007,154(11):A1048-A1057.
    [140]Fernicola A, Weise F C, Greenbaum S G, et al. Lithium-ion-conducting electrolytes:from an ionic liquid to the polymer membrane [J]. J. Electrochem. Soc,2009,156(7):A514-A520.
    [141]Akiko T, Maria A N, Stefania P, et al. N-n-Butyl-N-methylpyrrolidinium hexafluorophosphate-added electrolyte solutions and membranes for lithium-secondary batteries [J], Journal of Power Sources,2013,233:104-109.
    [142]Andrzej L, Agnieszka S M, Lukasz W. Li+conducting polymer electrolyte based on ionic liquid for lithium and lithium-ion batteries [J]. Electrochimica Acta,2013,92:404-411.
    [143]Bin C, Ute B, Gerhard P, et al. Carbohydrate rod conjugates:ternary rod-coil molecules forming complex liquid crystal structures [J]. J.Am. Chem. Soc.,2005,127:16578-16591.
    [144]Xiaohong C, Xing D, Rong H, et al. Polygonal cylinder phases of 3-alkyl-2,5-diphenylthiophene-based bolaamphiphiles:changing symmetry by retaining net topology [J]. Chem. Mater,2008,20:4729-4738.
    [145]. Masafumi Y, Takayoshi K, Koji H, et al. One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals[J]. J. Am. Chem. Soc.,2006,128:5570-5577.
    [146]Takahiro I, Masafumi Y, Atsushi H, et al. Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases:formation of nano-ion channel networks [J]. J.Am. Chem. Soc.,2007,129:10662-10663.
    [147]Kato T, Mizoshita N, Kishimoto K. Funktionelle flussigkristalline Aggregate: selbstorganisierte weiche Materialien [J]. Angew. Chem.,2006,118:44-74.
    [148]Yoshio M, Mukai T, Ohno H, et al. One-dimensional ion transport in self-organized columnar ionic liquids [J]. J. Am. Chem. Soc.,2004,126:994-995.
    [149]Yoshio M, Kagata T, Hoshino K, et al. One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals [J]. J. Am. Chem. Soc.,2006,128:5570-5577.
    [150]Shimura H, Yoshio M, Hoshino K. et al. Noncovalent approach to one-dimensional ion conductors:enhancement of ionic conductivities in nanostructured columnar liquid crystals [J]. J. Am. Chem. Soc.,2008,130:1759-1765.
    [151].Takashi K. Self-assembly of phase-segregated liquid crystal structures [J]. Science,2002, 295:2414-2419.
    [152]Tschierske C. Micro-segregation, molecular shape and molecular topology- partners for the design of liquid crystalline materials with complex mesophase morphologies [J]. J. Mater. Chem.,2001,11:2647-2671.
    [153]Gopinadhan M, Majewski P W, Osuji C O. Facile alignment of amorphous poly(ethylene oxide) microdomains in a liquid crystalline block copolymer using magnetic fields.toward ordered electrolyte membranes [J]. Macromolecules,2010,43:3286-3293.
    [154]Takashi K. From nanostructured liquid crystals to polymer-based electrolytes [J]. Angew. Chem. Int. Ed.,2010,49:7847-7848.
    [155]Majewski P W, Gopinadhan M, Jang W S, et al..Anisotropic ionic conductivity in block copolymer membranes by magnetic field alignment [J]. J. Am. Chem. Soc.,2010,132(49): 17516-17522.
    [156]Tenneti K. K, Chen X, Li C. Y, et al. Influence of LC content on the phase structures of side-chain liquid crystalline block copolymers with bent-core mesogens [J]. Macromolecules,2009,42:3510-3517.
    [157]Tenneti K K, Chen X, Li C Y, et al. Competition between liquid crystallinity and block copolymer self-assembly in core-shell rod-coil block copolymers [J]. Soft Matter,2008,4: 458-461.
    [158]He X, Sun W, Yan D, et al. Novel ABC2-type liquid-crystalline block copolymers with azobenzene moieties prepared by atom transfer radical polymerization [J]. Eur. Polym. J., 2008,44:42-49.
    [159]He X, Sun W, Yan D, et al. Synthesis and characterization of side-chain liquid crystalline ABC triblock copolymers with p-methoxyazobenzene moieties by atom transfer radical polymerization [J]. J. Polym. Sci., Part A:Polym. Chem.2008,46:4442-4450.
    [160]Bae J, Kim J K, Oh N K, et al. Organization of rigid wedge-flexible coil block copolymers into liquid crystalline assembly [J]. Macromolecules,2005,38:4226-4230.
    [161]Xu B, Pinol R, Nono D M, et al.. Self-assembly of liquid crystal block copolymer PEG-b-smectic polymer in pure state and in dilute aqueous solution [J]. Faraday Discuss, 2009,143:235-250.
    [162]Yang J, Pianol R, Gubellini F, et al. Formation of polymer vesicles by liquid crystal amphiphilic block copolymers [J]. Langmuir,2006,22:7907-7911.
    [163]Jia L, Cao A, Levy D, et al. Smectic polymer vesicles [J]. Soft Matter,2009,5:3446-3451.
    [164]Yuxiang Z, Suk-kyun A, Rubinder K L, et al. Tailoring crystallization behavior of PEO-based liquid crystalline block copolymers through variation in liquid crystalline content [J]. Macromolecules,2011,44 (10):3924-3934.
    [165]Kishimoto K, Suzawa T, Yokota T, et al. Nano-segregated polymeric film exhibiting high ionic conductivities [J]. J. Am. Chem. Soc.,2005,127:15618-15623.
    [166]查全性.电极过程动力学[M].北京:科学出版社,2002.
    [167]Leo C J, Thakur A K, Subba R G V, et al. Effeet of glass-ceramic filler on properties of Polyethylene oxide-LiCF3S03 complex [J]. J. Power Sources,2003,115:295-304.
    [168]Bruce P G, Vineent C A. Steady state current flow in solid binary electrolyte cells [J]. J. Electroanal. Chem.,1987,225:1-17.
    [169]Zhou D, Chen Y W., Chen L, et al. Synthesis and properties of polyacetylenes containing terphenyl pendent group with different spacers [J], Macromolecules,2009,42:1454-1461.
    [170]Zhou Y, Ahn S, Lakhman R K, et al. Tailoring crystallization behavior of PEO-based liquid crystalline block copolymers through variation in liquid crystalline content [J]. Macromolecules,2011,44:3924-3934.
    [171]Basko D M, Conwell E M. Hot exciton dissociation in conjugated polymers. Physicai Review B:condensed Matter and Materials Physies [J],2002,66(15):155210/1-155210/7.
    [172]Yao K, Chen Y W, Chen L, et al. Mesogens mediated self-assembly in applications of bulk heterojunction solar cells based on a conjugated polymer with narrow band gap [J]. Macromolecules,2011,44:2698-2706.
    [173]Adam G, Gibbs J H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids [J]. Journal of Chemical Physics,1965,43:139-146.
    [174]Samir M A S A, Alloin F, Sanchez J Y, A. Dufresne, Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers [J]. Macromolecules,2004,37:4839-4844.
    [175]Binesh N, Bhat S V. VTF to arrhenius crossover in temperature dependence of conductivity in (PEG)xNH4ClO4 polymer electrolyte [J]. J Polym. Sci. B Polym. Phys.,1998,36: 1201-1209.
    [176]Zuo X, Liu X M, Cai F, et al. A novel all-solid electrolyte based on a co-polymer of poly-(methoxy/hexadecal-poly (ethylene glycol) methacrylate) for lithium-ion cell [J]. J. Mater. Chem.,2012,220:22265-22271.
    [177]Niitani T, Shimada M, Kawamura K, et al. Synthesis of Li+ ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure [J]. Electrochem. Solid-State Lett.,2005,8(8):A385-A388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700