用户名: 密码: 验证码:
聚合物共混状态超声在线监测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在聚合物共混过程中,对聚合物混合状态的实时监测具有重要的意义,它可以有效地提高生产效率,缩短新产品的研发周期,降低生产和研发成本。本文针对聚合物共混过程中混合状态的监测问题,提出了超声在线监测方案,并研制了适用于熔态聚合物监测的高信噪比超声传感器,探讨超声信号特征参数表征聚合物混合状态的方法及其相应的信号处理技术。
     本文的主要研究内容包括:
     (1)针对超声波在缓冲杆中传播存在尾随回波的现象,采用波导理论分析了超声波在杆中传播的边界反射、波型转换等情况,给出了尾随信号的间隔与杆直径和声速的确定关系;提出了超声波在有限长中传播的系统仿真方法,剖析了杆长度、直径对回波信号幅值、尾随回波幅值以及信噪比的影响;建立了超声波在缓冲杆中传播的有限元模型,分析了超声波在圆柱杆、包覆圆柱杆、双锥形杆、包覆双锥形杆中传播的回波信号;综合上述的研究结果,探讨了抑制尾随回波的措施。研究成果也可应用于不同监测领域高信噪比缓冲杆的设计和加工
     (2)为了设计高信噪比的超声缓冲杆,试验分析了声衰减、声速、声阻抗对缓冲杆端面回波信号、尾随信号和检测特征回波信号的影响,结果表明,当使用温度和强度满足要求的情况下,非金属缓冲杆用于检测熔态聚合物时比金属缓冲杆更有优势。
     (3)针对聚合物混合状态的在线监测要求,提出了适用于熔态聚合物监测的超声传感器设计方案;结合超声波在缓冲杆中传播的理论分析和试验结果,以聚醚醚酮(PEEK)作为缓冲杆材料,设计了多种不同结构、不同长度缓冲杆的超声传感器;测试了所设计传感器在熔态聚合物中的超声传输性能和检测能力,并将其应用于多种聚合物/填充料混合物的高温检测试验,结果表明所研制的传感器在150℃下工作的信噪比达20dB。
     (4)为了在监测过程中准确获取表征聚合物混合状态的超声参数,探究了特征回波信号与螺杆运转的准周期性,确定了以同一位置不同旋转周期的回波信号的幅值偏差度作为表征聚合物混合状态的参数;利用秩滤波和低通滤波有效地校正了由于温度等外界因素影响所造成的幅度变化趋势,采用相关系数法进行不同旋转周期间同一位置的数据匹配;探讨了获取同一位置幅值偏差度的差值比较法和比值比较法。
     (5)在单螺杆挤出机上完成了聚合物/填充料混合物、两种聚合物混合物以及多种原料混合物挤出过程的超声在线监测试验,采用扫描电镜观测了试验样品,并分析了各种试验过程的超声特征参数;研制了螺杆挤出机聚合物混合状态超声在线监测系统样机。
     论文的研究为拓展超声检测技术在新领域的应用和聚合物生产过程的可视化具有重要的理论意义和实用价值。
Real-time monitoring the compounding state of the polymer is very important during extrusion process. It is a good approach to increase production efficiency, shorten the new product development cycle and reduce the product cost. For the issue of monitoring polymer compounding state in screw extruder, a new in-line monitoring proposal using ultrasonic technology was presented. The ultrasonic probes with high SNR suitable for monitoring melt polymer were designed and fabricated. The method using ultrasonic characteristic parameters to represent polymer compounding state and corresponding signal processing technology were studied.
     The contributions in this paper are described below.
     (1) In view of the presence of trailing echo during the ultrasonic propagation in a buffer rod, the wave guide theory was used to analyse the wave reflection and mode conversion at the boundary, and the relation between the intervals of the echoes and rod's diameter vs. wave velocity was established. Then the simulation approach based on the system model of ultrasonic propogation in a finite rod was given. The effect of the length and diameter of the rod on the amplitude of ultrasonic signals and trailing echoes was analyzed. The FEM model of ultrasonic propagation in a buffer rod was built, and the ultrasonic echoes through cylindrical rod, clad cylindrical rod, double cone rod and clad double cone rod were analyzed by the FEM. Measures to suppress the trailing signal were studied based on the above results. The results can also be applied for designing and machining buffer rod with high SNR in some related other applications.
     (2) Aim to design an ultrasonic buffer rod with high SNR, the effects of attenuation, velocity and impedance on ultrasonic signals from rods'end, trailing echoes and characteristic signals were studied based on experiment using different material buffer rods. The results show that the nonmetal buffer rod is more suitable than the metal buffer rod for testing melt polymer.
     (3) The proposal of ultrasonic probe applying for melt polymer testing was presented to meet the requirement of in-line monitoring polymer compounding state. Based on theoretical and experimental results of ultrasonic propagation in a buffer rod, some ultrasonic probes composed of polyetheretherketone(PEEK) buffer rods with different structure and length were designed. The signal transmission rate in melt polymer of the ultrasonic probes was analyzed. And the probe was tested in the polymer/filler blends at high temperature. The results show that the ultrasonic probe designed in this paper has SNR of above 20dB under the temperature of 150℃.
     (4) The quasi-periodic between the characteristic signals and the screw was studied in order to gain ultrasonic parameter for characterizing polymer compounding state accurately during monitoring process. The amplitude deviation of ultrasonic signals reflected from the same position in different cycle was used to represent polymer compounding state. Rand filtering technique and low-pass filtering technique were used to correct the amplitude error of signal caused by some outside factors such as temperature. The correlation technique was used to match the signal data from same position in different cycle. The difference-comparative method and ratio-comparative method were studied to represent amplitude deviation of the ultrasonic signal from the same position.
     (5) The mixtures, which are composed of one polymer and filler, or two polymers, or more than one polymers and fillers, were compounded in single-screw extruder respectively, and the compounding state was monitored at the same time. The scanning electric microscopes of compounding samples were gained and the ultrasonic characteristic parameters representing the compounding state were analyzed. An ultrasonic in-line monitoring prototype system of polymer compounding state in screw extruder has been developed.
     The work of this paper is of profound theoretical and practical significance on the application in ultrasonic technology in new field and visualization of the preceture of polymer production.
引文
[1]赵文元,赵文明,王亦军.聚合物材料的电学性能及其应用[M].北京:化学工业出版社,2006:1-2.
    [2]王国全.聚合物共混改性原理与应用[M].北京:中国轻工业化出版社.2008.
    [3]周持兴,俞炜.聚合物加工理论[M].北京:科学出版社,2004:3-4.
    [4]Rajulu A.V., Sab P.M.. Ultrasonic studies of water/poly(ethylene glycol) mixtures [J]. European Polymer Journal,1996,32(2):267-268.
    [5]Wu H.C., Shen F.W., Hong X.. Monitoring the degradation process of biopolymers by ultrasonic longitudinal wave pulse-echo technique [J]. Biomaterials,2003,24(22): 3871-3876.
    [6]Nishikawa K., Hirose Y., Urakawa O., et al. Ultrasonic absorption and relaxations in ABS composite polymers [J]. Polymer,2002,43:1483-1490.
    [7]Nguyen N.T., Lethiecq M., Gerard J.F.. Glass transition characterization of homogeneous and heterogeneous polymers by an ultrasonic method [J]. Ultrasonics, 1995,33(4):323.
    [8]Povolo F., Jorge G, Hermida E.B.. Glass transition temperature measured at high frequencies by piezoelectric excitation [J]. Journal of Alloys and Compounds,2000, 310(1):388-391.
    [9]Lionetto E., Sannino A., Maffezzoli A.. A cellulose-based hydrogel as a potential bulking agent for hypocaloric diets:An in vitro biocompatibility study on rat intestine [J]. Polymer,2005,46:1796-1803.
    [10]Choy C.L., Lau K.W.E., Wong Y.W.. Elastic modulus and thermal conductivity of injectionmolded short-fibre-reinforced thermoplastics [J]. Polymer,1996,36 (9): 1256-1265.
    [11]Gusev A.A., Ward IM.. Fiber packaging and elastic properties of a transversely random unidirectional glass/epoxy composites [J]. Composites Science and Technology,2000, 60(4):535-541.
    [12]Kelly A., Hine P.J., Ward IM., et al. The effect of the measurement frequency on the elastic anisotropy of fibre laminates [J]. Journal of Materials Science,2005,40: 4461-4467.
    [13]Rajulu A.V., Reddy R.L., Raghavendra S.M., et al. Miscibility of PVC/PMMA blend by the ultrasonic and refractive index method [J]. European Polymer Journal,1999,35(6), 1183-1186.
    [14]Rao V., Ashokan P.V.. Miscible blends of cellulose acetate hydrogen phthalate and poly characterization by viscometry, ultrasound, and DSC [J]. Polymer,1999,76(6): 859-867.
    [15]Verdier C., Piau M.. Analysis of the morphology of polymer blends using ultrasound [J]. Journal of Applied Physics,1996,29(6):1454-1461.
    [16]Jen C.K., Sun Z., Kobayashi M.. Ultrasonic monitoring of barrel wear and screw status [R]. Annual Technical Conference Proceedings, Chicago,2004, (1):402-406.
    [17]Redwood M. R著,严仁傅译.声·波·导[M].上海:上海科学技术出版社,1965:162-167.
    [18]Onoe M., McNiven H.D., Mindlin R.D.. Dispersion of axially symmetric waves in elastic rods [J]. Journal of Applied Mechanics,1962,29:729-734.
    [19]Mindlin R.D., Herrmann G. A one-dimensional theory of compressional waves in an elastic rod [R].1st US National Congress of Applied Mechanics, New York,1952.
    [20]Mindlin R.D., McNiven H.D.. Axially symmetric waves in elastic rods [J]. Journal of Applied Mechanics,1960,27:145-151.
    [21]McNiven H.D., Perry D.C.. Axially symmetric waves in finite elastic rods [J]. Journal of the Acoustical Society of America,1962,34:433-437.
    [22]Morse R.W.. Compressional waves along an anisotropic circular cylinder having hexagonal symmetry [J]. Journal of the Acoustical Society of America.1954,26: 1018-1021.
    [23]Buchwald V.T.. Rayleigh wave in transversely isotropic media [J]. Quarterly Journal of Mechanics and Applied Mathematics.1961,14:293-317.
    [24]Mirsky I.. Wave propagation in transversely isotropic circular cylinders, Part Ⅰ:Theory [J]. Journal of the Acoustical Society of America.1965,37:1016-1026.
    [25]Tsai Y.M., Liu S.N., Light G.M.. Cylindrically guided waves in a transversely isotropic shaft [R]. Review of Progress in Quantitative Nondestructive Testing. New York,1990.
    [26]Tsai Y.M.. Longitudinal motion of a transversely isotropic hollow cylinder [J]. Journal of Pressure Vessel Technology.1991,113:585-589.
    [27]Nagy P.B.. Longitudinal guided wave propagation in a transversely isotropic rod immersed in fluid [J]. Journal of the Acoustical Society of America.1995,98:454-457.
    [28]Berliner M., Solecki R.. Wave propagation in fluid-loaded, transversely isotropic cylinders, Part Ⅰ:Analytical formulation [J]. Journal of the Acoustical Society of America.1996,99 (4):1841-1847.
    [29]Ahmad F.. Guided waves in a transversely isotropic cylinder immersed in a fluid [J]. Journal of the Acoustical Society of America.2001,109 (3):886-890.
    [30]Honarvar F., Sinclair A.N.. Acoustic wave scattering from transversely isotropic cylinders [J]. Journal of the Acoustical Society of America.1996,100:57-63.
    [31]Kim J.Y., Ih J.G.. Scattering of plane acoustic waves by a transversely isotropic cylindrical shell-application to material characterization [J]. Journal of Applied Acoustics,2003,64:1187-1204.
    [32]Pan Y., Rossignol C., Audoin B.. Acoustic waves generated by a laser line pulse in a transversely isotropic cylinder [J]. Applied Physics Letters.2003,82:4608-4610.
    [33]Pan Y., Rossignol C., Audoin B.. Acoustic waves generated by a laser point source in an isotropic cylinder [J]. Journal of the Acoustical Society of America.2004,116(2): 814-820.
    [34]Honarvar F., Enjilela E., Sinclair A. N., et al. Wave propagation in transversely isotropic cylinders [J]. International Journal of Solids and Structures.2007,44:5236-5246.
    [35]Kari L.. Axially symmetric modes in finite cylinders—the wave guide solution [J]. Wave Motion.2003,37:191-206.
    [36]Fonseca A.F., Aguiar M.A.M.. Solving the boundary value problem for finite Kirchhoff rods [J]. Physica D.2003,181:53-69.
    [37]Shakeri M., Akhlaghi M., Hoseini S.M.. Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder [J]. Composite Structures.2006,76: 174-181.
    [38]Krawczuk M., Grabowska J., Palacz M.. Longitudinal wave propagation. Part Ⅰ— Comparison of rod theories [J]. Journal of Sound and Vibration.2006,295:461-478.
    [39]Krawczuk M., Grabowska J., Palacz M.. Longitudinal wave propagation. Part Ⅱ— Analysis of crack influence [J]. Journal of Sound and Vibration.2006,295:479-490.
    [40]Puckett A.D., Peterson M.L.. A semi-analytical model for predicting multiple propagating axially symmetric modes in cylindrical waveguides [J]. Ultrasonic.2005, 43:197-207.
    [41]Abd-Alla A.M. The effect of initial stress and orthotropy on the propagation waves in a hollow cylinder [J]. Applied Mathematics and Computation.1999,106:237-244.
    [42]Chau K.T., Wei X.X.. Finite solid circular cylinders subjected to arbitrary surface load. Part Ⅰ— Analytic solution [J]. International Journal of Solids and Structures.2000,37: 5707-5732.
    [43]Wei X.X., Chau K.T.. Finite solid circular cylinders subjected to arbitrary surface load. Part Ⅱ— Application to double-punch test [J]. International Journal of Solids and Structures.2000,37:5733-5744.
    [44]Hayashi T., Song W.J., Rose J.L.. Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example [J]. Ultrasonics.2003,41:175-183.
    [45]Hutchinson J.R.. Vibrations of solid cylinders [J]. Journal of Applied Mechanics,1980, 47:901-907.
    [46]Hutchinson J.R.. Transverse vibrations of beams, exact versus approximate solutions [J]. Journal of Applied Mechanics,1981,48:923-928.
    [47]Rasband S.N.. Resonant vibrations of free cylinders and disks [J]. Journal of the Acoustical Society of America,1957,57:899-905.
    [48]Rumerman M., Raynor S.. Natural frequencies of finite circular cylinders in axially symmetric longitudinal vibration [J]. Journal of Sound and Vibration,1971,15: 529-543.
    [49]Leissa A.W., So J.. Comparisons of vibration frequencies for rods and beams from one-dimensional and three-dimensional analyses [J]. Journal of the Acoustical Society of America,1995,98:2122-2135.
    [50]Liew K.M., Hung K.C.. Three-dimensional vibratory characteristics of solid cylinders and some remarks on simplified beam theories [J]. International Journal of Solids and Structures,1995,32:3499-3513.
    [51]Nieves F.J., Gascon F., Bayon A., Estimation of the elastic constants of a cylinder with a length equal to its diameter [J]. Journal of the Acoustical Society of America,1998, 104:176-180.
    [52]Pickett G.. Application of the Fourier method to the solution of certain boundary problems in the theory of elasticity [J]. Journal of Applied Mechanics,1944,16: 176-182.
    [53]Miyagi M., Nisheida S.. A proposal of low-loss leaky waveguide for submillimeter waves transmission [J]. IEEE Transactions on Microwave Theory and Techniques. 1980,28(4):398-401.
    [54]Jen C.K.. Similarities and differences between fiber acoustics and fiber optics [J]. Ultrasonics Symposium.1985:1128-1133.
    [55]Jen C.K., Ahmad S.J., Gerald W.F.. Leaky modes in weakly guiding fiber acoustic waveguides [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.1986,33(6):634-643.
    [56]Jen C.K., Neron C., Adler E.L., et al. Long acoustic imaging probes [J]. Ultrasonics Symposium.1990:875-880.
    [57]Valle C., Qu J., Jacobs L.J.. Guided circumferential waves in layered cylinders [J]. International Journal of Engineering Science.1999,37:1369-1387.
    [58]候宇,何福保.有限长圆柱体轴对称问题的弹性理论解[J].应用数学和力学,1991, 12(10):903-912.
    [59]刘德顺,朱萍玉.应力波在杆形部件中的传播与反演设计[J].振动工程学报,2001,14(4):482-486.
    [60]谢素明.横观各向同性圆柱体中瞬态波传播规律的研究[J].大连铁道学院学报,2000,21(2):1-5.
    [61]任文青.任意轴对称载荷作用下的圆杆分析[J].河海大学学报,2001,15(5):32-37.
    [62]刘银斌.固体圆柱体的散射和孔隙介质中的波[D].博士后论文.北京:中国科学院声学研究所,1997.
    [63]Dattal D., Kishoret N.N.. Features of ultrasonic wave propagation to identify defects incomposite materials modelled by finite element method [J]. NDT&E International. 1996,29(4):213-223.
    [64]Abboud N.N., Wojcik. G.L., Vaughan D.K., et al. Finite element modeling for ultrasonic transducers [R]. Proc. SPIE Int. Symp. Medical Imaging. San Diego,1998.
    [65]Barauskas R. On space and time step sizes in rectangular finite element meshes for ultrasonic pulse propagation [J]. Ultrasonics.2000,1(34):47-53.
    [66]Beche B., Jouin J.F., Grossard N. et al. PC software for analysis of versatile integrated optical waveguides by polarised semi-vectorial finite difference method [J]. Sensors and Actuators A.2004,114:59-64.
    [67]Sun Xiaoqing, Erich A. Witzel, Bian,Hongxin, ect..3-D finite element simulation for ultrasonic propagation in tooth [J]. Journal of dentistry.2008,36:546-553.
    [68]Ke W., Castaings M., Bacon C..3D finite element simulations of an air-coupled ultrasonic NDT system [J]. NDT&E International.2009,42:524-533.
    [69]Iovane G, Nasedkin A.V.. Modal analysis of piezoelectric bodies with voids Ⅱ:Finite element simulation [J]. Applied Mathematical Modelling.2010,34(1):47-59.
    [70]Chassignole B., Duwig V., Ploix M.A., et al. Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds [J]. Ultrasonics.2009,49(8):653-658.
    [71]Wang Jijun, Shen Zhonghua, Ni Xiaowu, et al. Numerical simulation of laser-generated surface acoustic waves in thetransparent coating on a substrate by the finite element method [J].Optics & Laser Technology.2007,39:21-28.
    [72]Wang Jijun, Sheng Zhonghua, Xu Baiqiang, ect.. Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method [J]. Optics & Laser Technology.2007,39:806-813.
    [73]王敏慧.阶梯形变幅杆的有限元仿真及其在局部共振研究中的应用[D].硕士学位论文.西安:陕西师范大学,2005.
    [74]吴先梅.Studies of rayleigh waves on cylindrical surfaces [D].上海:同济大学,2000.
    [75]赵艳.激光在圆柱表面激发柱面瑞利波的有限元模拟[J].中国激光,2006,33(8):1062-1065.
    [76]Zhao Yan, Shen Zhonghua, Lu Jian, ect.. Simulation on laser-induced surface acoustic wave on isotropic cylinders by finite element method [J]. Optics & Laser Technology 2007,39:774-777.
    [77]周义清.超声纵向导波进行管道裂纹检测的数值模拟[J].中北大学学报,2006,27(3):258-262.
    [78]程载斌.管道超声纵向导波裂纹检测数值模拟[J].应用力学学报,2004,21(4):76-79.
    [79]Mazuch T.. Wave dispersion modelling in anisotropic shells and rods by the finite element method [J]. Journal of Sound and Vibration.1996,198(4):429-438.
    [80]Ikuo ham., Dikky Burhan, Hiroshi Aso, ect.. Ultrasonic in-line sensors for inclusion detection in liquid metals [J]. IEEE Ultraconics Symposium.2002:811-814.
    [81]Garcia A.J., Yan Y., Prego J.L., ect.. Noise level analysis in buffer rod geometries for ultrasonic sensors [J]. Ultrasonics.2006,44:1093-1100.
    [82]Jen C.K., Piche L., Bussiere J.F.. Long isotropic buffer rods [J]. Journal of the Acoustical Society of America.1990,88(1):23-25.
    [83]Jen C.K., Legoux J.G.. High performance slad metallic buffer rods [J]. IEEE Ultrasonics Symposium.1996:771-776.
    [84]Jen C.K., Legoux J.G., Parent L.. Experimental evaluation of clad metallic buffer rods for high temperature ultrasonic measurements [J]. NDT&E International.2000,33(3): 145-153.
    [85]Franca D.R., Jen C.K., Nguyen K.T., et al. Ultrasonic in-Line monitoring of polymer extrusion [J]. Polymer Engineering and Science.2000,40(7):82-94.
    [86]Ono Y. Jen C.K., Su C.Y.. Aluminum buffer rods for ultrasonic monitoring at elevated temperatures [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2005,52(6):1042-1047.
    [87]Legros N., Jen C.K., Ihara I.. Ultrasonic evaluation and application of oriented polymer rods [J]. Ultrasonics.1999,37:291-297.
    [88]Jen C.K., Franca D.R., Sun Z.. Clad polymer buffer rods for polymer process monitoring [J]. Ultrasonics.2001,39:81-89.
    [89]杨万泰.聚合物材料表征与测试[M].北京:中国轻工业出版社,2008.
    [90]Reifer D, Windeit R, Kumpf R.J., et al. AFM and TEM investigations of polypropylene/polyurethane blends [J]. Thin Solid Films,1995,26(4):148-152.
    [91]万勇军,谢美丽,顾宜等.聚醚型聚氨酯乙烯基酯树脂互穿聚合物网络结构的研究[J].高分子材料科学与工程,1999,15(6):135-141.
    [92]郑一泉,杨其.可互容的PVME/SAN共混物的微细结构[J].合成橡胶工业,2003,26(5):316.
    [93]范泽夫,王霞瑜等.原子力显微镜研究环带球晶的形貌和片晶结构[J].中国科学B缉-化学,2003,33(1):40-46.
    [94]Boer P., Verhoogt H., Dam J.. Confocal laser scanning microscopy:A new method for determination of the morphology of polymer blends [J]. Polymer,1993,34:1325-1329.
    [95]金熹高,朱世雄等.多组分高聚物体系多层形态观察的新方法:激光共聚焦荧光显微技术[J].化学通报,1999(6):34-38.
    [96]Zhu S., Jin X., Chen L., et al. Study of bullk morphology of polymer latex films using laser confocal fluoresence microscopy [J]. Science in China (B),1998,41(5):549-555.
    [97]Jinnai H., Nishikawa Y., Hashimoto T., et al. Direct observation of three-dimensional bicontinuous structure developed via spinodal decomposition [J]. Macromolecules, 1995,28:4782-4784.
    [98]刘世勇,蔡倩等.改性酚氧树脂/聚(甲基丙烯酸丁酯-co-4-乙烯基吡啶)共混物的相容-络合行为和表面特征[J].高等学校化学学报,2005,26(6):1149-1155.
    [99]邓杰,瞿金平,任鸿烈.光散射测量技术在聚合物共混体系中的应用[J].塑料,2003,32(4):28-31.
    [100]陈云,盛京,沈宁祥,贾宏涛.小角光散射在线系统研究多相聚合物双螺杆挤出过程中的相尺寸-非相容PE/PA1010体系[J].高分子学报,2004,15(2):282-287.
    [101]Zhou Jiamin, Sheng Jing. Small angle light backscattering of polymer blends:Multiple scattering [J]. Polymer,1997,38 (15):3727-3731.
    [102]陈云.聚乙烯/尼龙1010体系双螺杆挤出过程中的在线分析及相结构研究[D].硕士学位论文.天津:天津大学,2002.
    [103]杨宇平.聚丙烯/顺丁橡胶共混物相结构形成演变及其分散动力学研究[D].博士学位论文.天津:天津大学,2007.
    [104]Schlatter G., Serra C., Bouguey M., et al. Online light scattering measurements:A method to assess morphology development of polymer blends in a twin-screw extruder [J]. Polymer Engineering & Science,2002,42(10):1965-1975.
    [105]Takefumi Nagata, Masahiro Ohshima, Masataka Tanigaki. In-Line Monitoring of Polyethylene Density Using Near Infrared (NIR) Spectroscopy [J]. Polymer Engineering and Science,2000,40(5):1107-1113.
    [106]Dieter Fischer, Karin Sahre, Mona Abdelrhim, et al. Process monitoring of polymers by in-line ATR-IR, NIR and Raman spectroscopy and ultrasonic measurements [J]. Comptes Rendus Chimie.2006,(9):1419-1424.
    [107]Rath M., Doring J., Stark W., et al. Process monitoring of moulding compounds by ultrasonic measurements in a compression mould [J]. NDT&E International 2000, 33:123-130.
    [108]Yashiro S., Takatsubo J., Toyama N. An NDT technique for composite structures using visualized Lamb-wave propagation [J]. Composites Science and Technology.2007,67: 3202-3208
    [109]Benammar A., Drai R., Guessoum A.. Detection of delamination defects in CFRP materials using ultrasonic signal processing [J]. Ultrasonics.2008,48:731-738.
    [110]Sudha J., Subodh Kumar, Prabha Srinivasan, et al. Fatigue behaviour of carbon fibre reinforced plastic under spectrum loading [J]. Materials Science and Engineering A. 2009, (501):44-51.
    [111]Choy C.L., Leung W.P., Yee A.F.. Ultrasonic measurements of the elastic moduli of liquid crystalline polymers [J]. Polymer.1992,33(8):1788-1791.
    [112]Sweeney J., Brew B., Duckett R.A., et al. Mechanical anisotropy and inhomogeneity of an aromatic liquid crystalline polyester [J]. Polymer.1992,33(23):4901-4907.
    [113]Darras O., Duckett R.A., Hine P.J.,et al. Anisotropic elasticity of oriented polyethylene materials [J]. Composites Science and Technology.1995, (55):131-138.
    [114]Hine P.J., Davidson N., Duckett R.A., et al. Measuring the fibre orientation and modelling the elastic properties of injection-moulded long-glass-fibre-reinforced nylon [J]. Composites Science and Technology 1995, (53):125-131.
    [115]Gusev A.A., Hine P. J., Ward I.M.. Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite [J]. Composites Science and Technology.2000, (60):535-541
    [116]Hosten B, Castaings M. Comments on the ultrasonic estimation of the viscoelastic properties of anisotropic materials [J]. Composites:Part A.2008,39:1054-1058.
    [117]Higazy A.A., Afifi H., Khafagy A.H.,et al. Ultrasonic studies on polystyrene/styrene butadiene rubber polymer blends filled with glass fiber and talc PS/SBR, PS/SBR filled with glass fiber and PS/SBR filled with talc [J]. Ultrasonics.2006,44:1439-1445.
    [118]Vikram K. Kinra, Martin S. Petraitis, Subhendu K. Datta. Ultrasonic wave propagation in a random particulate composite [J]. International Journal of Solids and Structures. 1980,16(4):301-312.
    [119]Kinra, V.K., Anand A.. Wave propagation in a random particulate composite at long and short wavelengths [J]. International Journal of Solids and Structures.1982,18(5): 367-380.
    [120]Abraham I. Beltzer, Charles W. Bert, Alfred G Striz.. On wave propagation in random particulate composites [J]. International Journal of Solids and Structures.1983,19(9): 785-791.
    [121]Sayers C.M.,Smith R.L.. Ultrasonic velocity and attenuation in an epoxy matrix containing lead inclusions [J]. J. Phys. D:Appl. Phys.1983,16:1189-1194.
    [122]Sabina F. J., Willis J. R.. A simple self-consistent analysis of wave propagation in particulate composites [J]. Wave Motion.1988,10(2):127-142.
    [123]Anson L.W, Chivers R.C.. Ultrasonic velocity in suspensions of solids in solids-a comparison of theory and experiment [J]. Journal of Physics D:Applied Physics.1993, 26:1566-1575.
    [124]Matsukawa M., Yamada K., Nagai I.. An ultrasonic evaluation of the sol-gel synthesis of silica glass [J]. Ultrasonics.1996,34:335-338.
    [125]Nguyen N.T., Lethiecq M., Karlsson B., et al. Highly attenuative rubber modified epoxy for ultrasonic transducer backing applications [J]. Ultrasonics,1996,34 (6): 669-675.
    [126]Biwa S., Watanabe Y, Motogi S., et al.. Analysis of ultrasonic attenuation in particle-reinforced plastics by a differential scheme [J]. Ultrasonics.2004,43:5-12.
    [127]Krone R.T., Martin L.P., Patterson J.R.. Fabrication and characterization of graded impedance impactors for gas gun experiments from hot-pressed magnesium and polyethylene powders [J]. Materials Science and Engineering A.2008, (479):300-305.
    [128]Yadav R.R., Mishra Giridhar, Yadawa P.K., et al. Ultrasonic properties of nanoparticles-liquid suspensions [J]. Ultrasonics.2008,48:591-593.
    [129]Youssef M.H., Nasr G. M., Gomaa A. S.. Absorption and velocity of ultrasonic waves in interlinked SBR composite [J]. Polymer Testing.2000,19:311-320.
    [130]Rao V., Ashokan P.V., Shridhar M. H.. Studies on the compatibility and specific interaction in cellulose acetate hydrogen phthalate (CAP) and poly methyl methacrylate (PMMA) blend [J]. Polymer 1999,40:7167-7171.
    [131]Thomas G.V., Nair M. R. G.. Ultrasonic investigation on compatibility of PVC-modified liquid natural rubber blends [J]. Journal of Applied Polymer Science. 1998,69(4):785-790.
    [132]Hourston D. J., Hughes I. D.. Dynamic mechanical and sonic velocity behaviour of polystyrene-poly (vinyl methyl ether) blends [J]. Polymer.1978,19(10):1181-1185.
    [133]Hourston D. J., Hughes I. D.. Poly(vinylidene fluoride)-poly(methyl methacrylate) blends [J]. Polymer.1977,18(11):1175-1178.
    [134]Singh Y. P., Singh R.P.. Compatibility studies on solutions of polymer blends by viscometric and ultrasonic techniques [J]. European Polymer Journal.1983,19(6): 535-541.
    [135]Singh Y.P., Singh R.P.. Compatibility studies on solid polyblends of poly(methyl methacrylate) with poly(vinyl acetate) and polystyrene by ultrasonic technique [J]. European Polymer Journal.1983,19(6):529-533.
    [136]Shaw S., Singh R. P.. Study of compatibility of polystyrene with ethylene-propylene-diene rubber [J]. European Polymer Journal.1987,23(7):547-550.
    [137]Sidkey M.A., Abd El Fattah A. M., Abd El All N. S.. Compatibility studies on some solutions of rubber blends by ultrasonic techniques [J]. Journal of Applied Polymer Science.1992,46(4):581-585.
    [138]Youssef M. H.. Temperature dependence of the degree of compatibility in SBR/NBR blends by ultrasonic attenuation measurements:Influence of unsaturated polyester additive [J]. Polymer.2001,42:10055-10062.
    [139]Fadnis C., Illiger S.R., Rao K.P., et al.. Miscibility studies of HPMC/PVA blends in water by viscosity, density, refractive index and ultrasonic velocity method [J]. Carbohydrate Polymers.2008,74:779-782.
    [140]Illiger S.R., Fadnis C., Demappa T., et al. Miscibility studies of HPMC/PEG blends in water by viscosity, density, refractive index and ultrasonic velocity method [J]. Carbohydrate Polymers.2009,75:484-488.
    [141]Geetha D., Ramesh P.S.. Ultrasonic studies on polymer blend (natural/synthetic) in strong electrolyte solutions [J]. Journal of Molecular Liquids.2007,136:50-53.
    [142]何波兵.超声技术在聚合物形态结构表征及注射成型过程在线检测中应用的基础研究[D].博士学位论文.成都:四川大学,2006.
    [143]He Bobing, Yang Yang, Zou Hao, et al. Fast determination of phase inversion in polymer blends using ultrasonic technique [J]. Polymer 2005,46:7624-7631.
    [144]Brown E.C., Olley P., Coates P.D. In line melt temperature measurement during real time ultrasound monitoring of single screw extrusion [J]. Plastics, Rubber and Composites.2000,29(1):3-13.
    [145]Michaeli W.,Starke C.. Ultrasonic investigations of the thermoplastics injection moulding process [J]. Polymer Testing.2005,24(2):205-209.
    [146]Wen S.S.L., Jen C.K., Nguyen K.T.. Advances in on-line monitoring of the injection molding process using ultrasonic techniques [J]. International Polymer Processing. 1999, (2):175-182.
    [147]Brown E.C., Collins T.L.D., Dawson A. J., et al. Ultrasound:A virtual instrument approach for monitoring of polymer melt variables [J]. Journal of Reinforced Plastics and Composites,1999,18(4):331-338.
    [148]Brown E.C., Dawson A.J., Coates P.D.. Ultrasonic Monitoring of Nozzle and Cavity during Injection Moulding [J]. Journal of Reinforced Plastics and Composites,2002, 21(5):441-450.
    [149]Schmachtenberg E., Heide J. S., Topker J.. Application of ultrasonics for the process control of resin transfer moulding (RTM) [J]. Polymer Testing.2005,24:330-338.
    [150]Edwards R., Thomas C.. On-line measurement of polymer orientation using ultrasonic technology [J]. Polymer engineering and science.2001,41(9):1644-1653.
    [151]German R.M. Ultrasonic sensors for process monitoring of powder injection moulding [J]. Metal Powder Report,1994,49(10):42.
    [152]German R.M. Using ultrasonic sensors in powder injection moulding [J]. Journal of Metals,1996,48(9):24-28.
    [153]Hongerholt D.D., Rose J.L.,German R.M.. A self-tuning ultrasonic sensor based powder injection molding process [J]. NDT&E International,1997,30(6):389-396.
    [154]Chang, C.C., Song, K.T..Using ultrasonic sensors for powder injection molding [J]. Journal of Robotic Systems.1996,13(10):663-677.
    [155]Gendron R., Daigneault L.E., Tatibouet J., et al. Residence time distribution in extruders determined by in-line ultrasonic measurements [J]. Advances in Polymer Technology.1996,15(2):111-125.
    [156]Chen T.F., Nguyen K.T., Wen S.S.L, et al. Temperature measurement of polymer extrusion by ultrasonic techniques [J]. Measurement Science and Technology.1999, (10):139-145.
    [157]Sun Z., Jen C.K., Shih C.K.. Application of ultrasound in the determination of fundamental extrusion performance:Monitoring of melting and mixing processes [R]. Polymer Processing Society,18th Annual Meeting, Guimaraes, Portugal,2002.
    [158]Sun Z., Jen C.K., Shih C.K.,et al. Application of ultrasound in the determination of fundamental extrusion performance:Residence time distribution measurement [J]. Polymer Engineering and Science.2003,43(1):102-111.
    [159]Sun Z., Tatibouet J., Jen C.K.. Application of ultrasound in the determination of fundamental extrusion performance:Monitoring of single-screw compounding extrusion [R]. Polymer Processing Society,18th Annual Meeting, Guimaraes, Portugal, 2002.
    [160]Sun Z., Jen C.K.. Application of ultrasound and neural networks in the determination of filler dispersion during polymer extrusion processes [J]. Polymer Engineering and Science.2005,45:764-772.
    [161]Jen C.K., Sun Z., Kobayashi M.. Real-time monitoring of barrel thickness and barrel/screw separation using ultrasound [J]. Measurement Science and Technology. 2005,16:842-850.
    [162]Kiehl C., Chu L.L., Letz K., et al. On-line ultrasonic measurements of methyl methacrylate polymerization for application to reactive extrusion [J]. Polymer Engineering and Science.2001,41(6):1078-1086.
    [163]Wang D.B., Min K.. In-Line monitoring and analysis of polymer melting behavior in an intermeshing counter-rotating twin-screw extruder by ultrasound waves [J]. Polymer Engineering and Science.2005,45:998-1010.
    [164]Villanueva M.P., Cabedo L., Gimenez E., et al.. Study of the dispersion of nanoclays in a LDPE matrix using microscopy and in-process ultrasonic monitoring [J]. Polymer Testing.2009,28:277-287.
    [165]Jen C.K., Cao B., Nguyen K.T., et al. On-line ultrasonic monitoring of a die-casting process using buffer rods [J]. Ultrasonics.1997,35:335-344.
    [166]Ihara I., Jen C.K. Ultrasonic imaging, particle detection, and V(z) measurements in molten zinc using focused clad buffer rods [J]. Review of Scientific Instruments.2000, 71(9):3579-3586.
    [167]Jen C.K., Liaw J.W., Chen T.F. Ultrasonic evaluation of semi-solid metals during processing [J]. Measurement Science and Technology.2000,11:1570-1575.
    [168]Jen C.K., Moisan J.F., Zheng C.Q., et al. In-line ultrasonic monitoring of semi-solid magnesium die casting process [J]. Ultrasonics.2004,41:777-784.
    [169]Moisan J.F., Jen C.K., Liaw J.W., et al. Ultrasonic sensor and technique for in-line monitoring of die casting process [J]. Measurement Science and Technology.2001,12: 1956-1963.
    [170]Ono Y, Moisan J.F., Jen C.K.. Ultrasonic techniques for imaging and measurements in molten aluminum [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2003,50(12):1711-1721.
    [171]Ono Y, Moisan J.F., Jen C.K.. Ultrasonic imaging in molten magnesium [J]. Measurement Science and Technology.2004,15:N25-N29.
    [172]Kumaran S.M., Priyadharsini N., Rajendran V, et al. In situ high temperature ultrasonic evaluation for on-line characterisation of fine scale precipitation reactions in 8090 Al-Li alloy [J]. Materials Science and Engineering A.2006,435-436:29-39.
    [173]Bourgeois L., Nadal M.H., Clement F., et al. Determination of elastic moduli at high temperatures for uranium-vanadium alloy and pure plutonium by an ultrasonic method [J]. Journal of Alloys and Compounds.2007, (444-445):261-264.
    [174]Rehman A.U., Jen C.K., Ihara I.. Ultrasonic probes for high temperature immersion measurements [J]. Measurement Science and Technology.2001,12:306-312.
    [175]Singh K.J., Matsuda Y., Hattori K.,et al. Non-contact sound velocities and attenuation measurements of several ceramics at elevated temperatures [J]. Ultrasonics.2003,41: 9-14.
    [176]Baranchikov Alexander Ye., Ivanov Vladimir K., Tretyakov Yuri D.. Kinetics and mechanism of nickel ferrite formation underhigh temperature ultrasonic treatment [J]. Ultrasonics Sonochemistry.2007,14:131-134.
    [177]Chotard T., Soro J., Lemercier H., et al. High temperature characterisation of cordierite-mullite refractory by ultrasonic means [J]. Journal of the European Ceramic Society.2008,28:2129-2135.
    [178]Prasad V.S.K., Balasubramaniam K., Kannan E., et al. Viscosity measurements of melts at high temperatures using ultrasonic guided waves [J]. Journal of Materials Processing Technology.2008,207:315-320.
    [179]Kobayashi M., Jen C.K., Bussiere J.F, et al. High-temperature integrated and flexible ultrasonic transducers for nondestructive testing [J]. NDT&E International.2009,42: 157-161.
    [180]杨为民,杨高品,丁玉梅.塑料挤出加工新技术[M].北京:化学工业出版社,2006.
    [181]Tadmor Z., Gogos C.G.著,任冬云译.聚合物加工原理(原著第二版)[M].北京:化学工业出版社,2009.
    [182]Baird D.G., Colloas D.I主编,西鹏等译.聚合物加工设计与原理[M].北京:化学工业出版社,2004.
    [183]超声波探伤编写组.超声波探伤[M].北京:电力工业出版社,1980.
    [184]冯诺主编.超声手册[M].南京:南京大学出版社,1999.
    [185]Rose J,L著,何存富等译.固体中的超声波[M].北京:科学出版社,2004.
    [186]Gregory R.D., Gladwell I.. Axisymmetric waves in a semi-infinite elastic rod [J]. Quarterly Journal of Mechanics and Applied Mathematics.1989,42(2):327-337.
    [187]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社, 1996.
    [188]Logan D.L.著,伍义生,吴永礼等译.有限元方法基础教程(第三版)[M].北京:电子工业出版社,2003.
    [189]成瑾,杨伟燕,李新元.纳米碳酸钙对丁苯橡胶性能改善探讨[J].甘肃石油和化工.2007,(1):25-27.
    [190]张振涛,沈春银,刘学习等.PET/纳米硫酸钡复合材料性能研究[J].工程塑料应用.2008,36(2):8-11.
    [191]唐宇航,黄汉雄,黄耿群.玻纤增强聚丙烯的三维弯管挤出吹塑[J].塑料工业.2008,36(7):34-37.
    [192]石蔼如.石墨-聚合物复合材料膜的导电行为[J].青岛大学学报.1996,9(2):6-10.
    [193]邢蕴婷.基于X光图像的焊缝自动判级软件系统的研制[D].大连:大连海事大学,2002.
    [194]叶万洲.秩滤波的收敛性理论及小波的正交性[D].博士后研究工作报告.上海:上海交通大学,2003.
    [195]张健,张振宇,车延博.基于插值法的旋转设备振动信号的谐波分析[J].电气传动自动化.2004,26(5):19-20.
    [196]胡劲松,杨世锡.转子振动信号同步整周期重采样方法的研究[J].动力工程.2008,28(3):408-410.
    [197]胡劲松,杨世锡,郭荣,基于模式匹配的振动信号整周期采样方法[J].振动、测试与诊断.2008,28(2):135-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700