用户名: 密码: 验证码:
大分子表面印迹藻酸盐基杂化聚合物微球的制备与特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大分子印迹聚合物与技术近些年来受到特别关注并已显示出重要的学术研究和应用前景。本文首先对分子印迹的基本原理、分子印迹聚合物微球的制备方法和应用、特别是蛋白质等大分子表面印迹的特点和方法进行了较为详细的总结和评述,并选题对大分子表面印迹海藻酸盐基杂化聚合物微球进行研究。
     本文以海藻酸钠、聚丙烯酸钠和磷酸氢二铵等为原料,采用反相悬浮钙离子交联的方法,分别设计和制备了磷酸/海藻酸钙(CP/A)、聚丙烯酸/海藻酸钙(CPA/A)和磷酸/聚丙烯酸/海藻酸钙(CP/PA/A)大分子印迹杂化聚合物微球。采用光学显微镜、扫描电子显微镜等观测了微球的形貌、结构。红外光谱和电导率滴定分析均表明,微球中出现了新的杂化组分。杂化凝胶微球的溶胀行为对pH值和离子强度的变化具一定敏感性。
     在此基础上,发展了一种大分子表面印迹技术(对应于包埋法)制备了具有不同重结合特性的蛋白质印迹杂化聚合物微球。研究了各种因素如组成、CaCl2浓度、蛋白质用量和pH值等对印迹效率的影响,探讨了微球表面印迹技术的特征和强化表面印迹效果的途径。重结合动力学和热力学测试表明,两种印迹微球均比非印迹微球对目标蛋白质表现出更高的重结合量。选择性测试表明微球对目标蛋白具有较好的识别性。表面印迹聚合物微球(SMIPMs)比包埋印迹聚合物微球(EMIPMs)表现出更好的分子印迹特异重结合性如更快的重结合速度等。
     研究还表明,凝胶化、洗脱和重结合过程中的诸多因素如pH值和离子强度等对蛋白质大分子印迹杂化聚合物微球的分子印迹特异重结合性参数如重结合容量和印迹效率等产生重要影响。论文中进一步应用目标作用模式原理研究并判定了不同蛋白质印迹海藻酸钙基杂化聚合物微球的最优环境条件及其影响规律。大分子印迹海藻酸盐基杂化聚合物微球体系的优化pH值如下:凝胶化过程pH为4.0-4.2,Tris-HCl洗脱液pH为8.14-8.42,最佳重结合BSA溶液的pH为4.7-4.9。
In recent years molecular imprinting polymer (MIP) and molecular imprinting technology (MIT) has received a great deal of attention, which exhibited an extensive application in industrialization fields and in academe. In this thesis, the principle of MIT, the preparation methods of molecularly imprinted polymeric microspheres (MIPMs), and the application of MIPMs, as well as the specialty and methods of protein surface imprinting was expatiated detailedly. The preparation and properties of macromolecularly imprinted alginate-based hybrid polymer microspheres were researched.
     Firstly, calcium phosphate/alginate(CP/A), calcium polyacrylate/alginate(CPA/A) and calcium phosphate/polyacrylate/alginate(CP/PA/A) macromolecularly imprinted hybrid polymer microspheres were firstly designed and prepared with sodium alginate (SA) and sodium polyacrylate (SPA) by using CaCl2 as gelling agent in inverse-phase suspension. Morphology of BSA imprinted alginate-based hybrid polymer microspheres was observed by optical microscopy and scanning electron microscope (SEM). Infrared spectrum and conductance titration analysis demonstrated that hybrid components were produced in these microspheres. It was found that these calcium alginate based hybrid microspheres exhibited pH and ion-sensitive swelling properties.
     Based on this investigation, protein surface imprinted (compared to embedding imprinted) hybrid microspheres were prepared, which had different specific rebinding properties. Preparation process and characters of imprinted microspheres, such as the ingredient, the concentration of CaCl2, template content and pH etc. were analyzed to explore approaches for higher imprinting efficiency. Rebinding dynamic and thermodynamic behaviors of the two imprinted microspheres were evaluated, resulting in a higher affinity for imprinted microspheres relative to non-imprinted ones. Selectivity tests showed that the imprinted beads exhibited good recognition properties for the template protein. It was found that SMIPMs exhibited higher rebinding rate and better the specific rebinding property than EMIPMs did.
     It is found that many factors in gelling, removing template and rebinding process such as pH values and ionic concentration etc. make an important influence on the parameters such as rebinding capacity and imprinting efficiency etc. of protein-imprinted hybrid microspheres. Furthermore, the principle of target interaction model between protein and imprinting substrate in the level of molecular structure were used to investgate the optimized environmental conditions and the specific rebinding properties corresponding to the process of gelling, removing template and rebinding. The optimized pH values for the imprinting of BSA in gelling, removing template and rebinding procedure was 4.0-4.2, 8.14-8.42 and 4.7-4.9, respectively.
引文
[1] Hishiya T, Shibata M, Kakazu M, et al, Molecularly imprinted cyclodextrins as selective receptors for steroids. Macromolecules, 1999, 32(7): 2265~2269
    [2] Kempe M, Glad M, Mosbach K. An approach towards surface imprinting using the anzyme ribonuclease: A biorecognition and affinity technology. J. Mol. Recogni., 1995, 8(1-2): 35~38
    [3] Cameron Alexander, Hakan S. Andersson, Lars I. Andersson, et al, Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003, J. Mol. Recogni., 2006, (19): 106~180
    [4] Pauling L J, A theory of structure and process of formation of antibodies, American Chemical Society, 1940, 62(3): 2643~2657
    [5]徐筱杰,超分子建筑—从分子到材料,北京:科学技术文献出版社, 2000, 49~52
    [6] Wulff G, Sarhan A, The use of polymers with enzyme-analogous structures for the resolution of racemates, Angewandte Chemie (International Edition in English), 1972, 11: 341~348
    [7] Wulff G, Vesper W, Einsler R G, et al, Synthetic polymer with chiral cavities, Makromol Chem, 1977, 178(1): 2799~2802
    [8] Wulff G, Selective binding to polymers via covalent bonds. the construction of chiral cavities as specific receptor sites, Pure and Applied Chemistry, 1982, 54(11): 2093~2102
    [9] Wulff G, Molecular Recognition In Polymers Prepared By Imprinting With Templates, ACS Symposium Series, Sponsored by ACS, Div of Organic Chemistry, Washington, DC, USA: ACS, Div of Polymer Chemistry, Washington, DC: ACS, 1986, 186~230
    [10] Wulff G, Main-chain chirality and optical activity in polymers consisting of C-C chains,Angewandte Chemie (International Edition in English),1989, 28(1): 21~37
    [11] Wulff G, Polymer assisted molecular recognition, Reactive Polymers, 1989, 10(2-3): 306~312
    [12] Wulff G, On the chirality and optical activity of vinyl polymers, Polymer Preprints, Division of Polymer Chemistry, American Chemical Society, 1989, 30(2): 427~428
    [13] Wulff G, Dhal P K, Chirality of polyvinyl compounds. 10. Asymmetric perturbation of side-chain chromophores caused by the main-chain configuration of optically active vinyl polymers, Macromolecules, 1990, 23(1): 100~111
    [14] Wulff G, Dhal P K, Template monomer control of the chirality induction in the polymer backbone during asymmetric vinyl polymerization, Macromolecules, 1990, 23(21): 4525~4527
    [15] Wulff G, Role of binding-site interactions in the molecular imprinting of polymers, Trends in Biotechnology, 1993, 11(3): 85~93
    [16] Wulff G, Molecular imprinting in cross-linked materials with the aid of molecular templates - a way towards artificial antibodies, Angewandte Chemie (International Edition in English), 1995, 34(17): 1812~1832
    [17] Wulff G, Schoenfeld R, Polymerizable amidines - adhesion mediators and binding sites for molecular imprinting, Advanced Materials, 1998, 10(12): 957~959
    [18] Mosbach K, Molecular imprinting. molecularly imprinted polymers - their use inenantiomeric resolution, as antibody binding mimics and as catalysts, Protein Engineering, 1995, 8: 54~60
    [19] Mosbach K, Ramstrom O, Emerging technique of molecular imprinting and its future impact on biotechnology, Bio/Technology, 1996, 14(2): 163~169
    [20] Mosbach K, Toward the next generation of molecular imprinting with emphasis on the formation, by direct molding, of compounds with biological activity (biomimetics), Analytica Chimica Acta, 2001, 435: 3~8
    [21] Kempe M, Mosbach K, Molecular imprinting used for chiral separations, Journal of Chromatography A, 1995, 694: 3~13
    [22] Kempe M, Mosbach K, Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases,Journal of Chromatography A, 1995, 691: 317~323
    [23] Sellergren B, Lepisteo M, Mosbach K, Highly enantio- and substrate-selective polymers obtained by molecular imprinting based on non-covalent interactions, Reactive Polymers, 1989, 10: 306~312
    [24] Vidyasankar S, Arnold F H, Molecular imprinting: selective materials for separations, sensors and catalysis, Curr. Opin. Biotech., 1995, 6(2): 218~224
    [25] Joshi V P, Karode S K, Kulkarni M G, et al, Novel separation strategies based on molecularly imprinted absorbents, J. Eng. Appl. Sci., 1998, 53(13):2271~2284
    [26] Kempe M. Antibody-mimicking polymers as chiral stationary phases in HPLC, Anal. Chem., 1996, 68(11): 1948~1953
    [27] Randall H-F S, Harry M W, Huval C C, Novel cholesterol lowering polymeric drugs obtained by molecular imprinting, Macromolecules, 2001, 34(6): 1548~1550
    [28] Lele B S, Kulkarni M G, Mashelkar R A, Molecularly imprinted polymer mimics of chymotrypsin 1: Cooperative effects and substrate specificity, React. Funct. Polym., 1999, 39(1): 37~52
    [29] Malitesta C, Losito I, Zambonin P G, Molecularly imprinted electrosynthesized polymers: New materials for biomimetic sensors, Anal. Chem., 1999, 7(7): 1366~1370
    [30] Haupt K, Mosbach K, Molecularly imprinted polymers and their use in biomimetic sensors, Chem. Rev., 2000, 100(7): 2495~2504
    [31]郭洪声,分子印迹聚合物的合成,识别机理及分析应用研究:[博士学位论文],南开大学,2001
    [32] Katz A. Davis M E, Investigations into the mechanisms of molecular recognition with imprinted polymers, Macromolecules, 1999, 32(12): 4113~4121
    [33] Zhou J, He X W, Zhao J, et al, Study of binding action and selectivity of trimethoprim molecular template polymer, Chem. J. Chinese U., 1999, 20(2): 204~208
    [34] Dickert F L, Besenbock H, Tortschanoff M, Molecular imprinting through van der Waals interactions: Fluorescence detection of PAHs in water, Adv. Mater., 1998, 10(20): 149~151
    [35] Piletsky S A, Piletskaya E V, Panasyuk T L, et al, Imprinted membranes for sensor technology: opposite behavior of covalently and noncovalently imprinted membranes, Macromolecules, 1998, 31(7): 2137~2140
    [36] Piletsky S A, Andersson H S, Nicholls I A, Combined hydrophobic and electrostatic interaction-based recognition in molecularly imprinted polymers, Macromolecules, 1999, 32(3): 633~636
    [37] Sreenivasan K, Sivakumar R, Interaction of molecularly imprinted polymers with creatinine, J. Appl. Polym. Sci., 1997, 66(13): 2539~2542
    [38] Yu C, Mosbach K, Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers, J. Org. Chem., 1997, 62(12): 4057~4064
    [39] Zhang T, Liu F, Chen W, et al, Influence of intramolecular hydrogen bond of templates on molecular recognition of molecularly imprinted polymers, Anal. Chim. Acta, 2001, 450: 53~61
    [40] Lu Y, Li Ch X Liu X H, et al, Molecular recognition through the exact placement of functional groups on non-covalent molecularly imprinted polymers, J. Chromatogr. A, 2002, 950: 89~97
    [41] Sasaki T, Hwang K-O, Yakura Y, et al, Template-assisted assembly of metal binding sites on a silica surface, Mater. Sci. Eng.: C, 1995, 3: 137~141
    [42]裴广玲,成国祥,金属离子印迹聚合物微球的制备研究进展,热固型树脂,2002, 17(4): 26~28
    [43] Bene M J, Stambergova A, Scouten W H, Molecular interaction in bioseparations, New York: Plem, 1993, 313~322
    [44] Andersson H S, Karlsson J G, Piletsky S A, et al, Study of the nature of recognition in molecularly imprinted polymers, II: Influence of monomer–template ratio and Sample load on retention and selectivity, J. Chromatogr. A, 1999, 848: 39~49
    [45] Matsui J, Nicholls I A, Takeuchi T, et al, Metal ion mediated recognition in molecularly imprinted polymers, Anal. Chim. Acta, 1996, 335: 71~77
    [46] Fujii Y K, Kikuchi K, Matsutani K, et al, Template synthesis of polymer schiff base cobalt(Ⅲ) complex and formation of specific cavity for chiral amino acid, Chem. Lett., 1984, 153(9): 1487~1490
    [47] Dhal P K, Arnlod F H, metal-coordination interaction in the template-mediated synthesis of substrate-selective polymers: recognition of bis(imidazole) substrates by copper(Ⅱ) iminodiacetate containing polymers, Macromolecules, 1992, 25(25): 7051~7059
    [48] Pinel C, Loisil P, Gallezot P, Preparation and utilization of molecularly imprinted silicas, Advanced Materials, 1997, 9(7): 582~585
    [49] Hunnius M, Rufinska A, Maier W F, Selective surface rebinding versus imprinting in amorphous microporous silicas, Microporous and Mesoporous Materials, 1999, 29(3): 389~403
    [50] Markowitz M A, Kust P R, Deng G, Catalytic silica particles via template-directed molecular imprinting, Langmuir, 2000, 16(4): 1759~1765
    [51]何天白,胡汉杰,海外高分子科学的新进展,北京:化学工业出版社, 1997, 193~214
    [52] Slade C J, Molecular (or bio-) imprinting of bovine serum albumin,Journal of Molecular Catalysis B: Enzymatic, 2000, 9: 97~105
    [53] Shulai Lu, Guoxiang Cheng, Xingshou Pang, Preparation of molecularly imprinted Fe3O4/P(St-DVB) composite beads with magnetic susceptibility and their characteristics of molecular recognition for amion acid, Journal of Applied Polymer Science, 2003, 89:3790-3796
    [54] Shulai Lu, Guoxiang Cheng, Zhijiang Cai, et al, Preparing methods of nanocavity biomaterials with recognition specificity via template imprinting of protein. Zhongguo Yixue Kexueyuan Xuebao, 2003, 25(5): 640-644.
    [55]成国祥,陆书来,张立广等,分子印迹聚合物磁性复合微球及其悬浮聚合制备方法,中国专利,02121489.1
    [56]成国祥,陆书来,庞兴收等,生物大分子模板印迹凝胶磁性复合微球及其反相悬浮聚合制备方法,中国专利,02121485.9
    [57]成国祥,陆书来,张立广等,生物大分子模板表面印迹凝胶磁性复合微球及其种子反相悬浮聚合制备方法,中国专利,02121486.7
    [58] Byrne M E, Park K, Peppas N A, Molecular imprinting within hydrogels, Adv. Drug Deliver. Rev., 2002, 54:149~161
    [59] Marty J D, Tizra M, Mauzac M, et al, New molecular imprinting materials: liquid crystalline networks. Macromolecules, 1999, 32: 8674~8677
    [60] Wizeman W J, Kofinas P, Molecularly imprinted polymer hydrogels displaying isomericaly resolved glucose binding, Biomaterials, 2001, 22: 1485~1491
    [61] Enoki T, Tanaka K, Watanabe T, et al, Frustrations in polymer conformation in gels and their minimization through molecular imprinting. Phys. Rev. Lett., 2000, 85: 5000~5003
    [62] Alvarez-Lorenzo C, Hiratani H, Tanaka K, et al, Simultaneous multiple-point rebinding of aluminum ions and charged molecules by a polyDAPholyte thermo-sensitive gel: controlling frustrations in a heteropolymer gel, Langmuir, 2001, 17: 3616~3622
    [63] Amrita Mohan, Christopher J. Oldfield. Analysis of Molecular Recognition Features (MoRFs). J. Mol. Biol. (2006) 362, 1043-1059.
    [64] Claudio Amovilli. Roy McWeeny. Shape and similarity: two aspects of molecular recognition. Received 2 April 1990. Journal of Molecular Structure: THEOCHEM. Volume, 1991, 227, 1-9
    [65] S. M. D'Souza, C. Alexander, S. W. Carr, et al, Directed nucleation of calcite at a crystal-imprinted polymer surface. Nature 1999 398(25): 312
    [66] Rachkov A, Minoura N, Towards molecularly imprinted polymers selective to peptides and proteins-the epitope approach, Biochim. Bioph. Acta, 2001, 1544: 255~266
    [67] Venton D L, Gudipati E, Influence of protein on polysiloxane polymer formation, evidence for induction of complementary protein-polymer interactions, Biochim. Bioph. Acta, 1995, 1250: 126~136
    [68] Nicholls I A, Thermodynamic consideration for the design of and ligand recognition by molecularly imprinted polymers, Chem. Lett., 1995, 11: 1035~1036
    [69] Ariga k, Kunitake T, Molecular recognition at air-water and related interfaces: complementary hydrogen bonding and multisite interaction, Accounts Chem. Res., 1998, 31:371~378
    [70]陆书来,成国祥,蔡志江等.蛋白质模板印迹法制备纳米"孔穴"结构特异性生物材料.中国医学科学院学报, 2003, 25(5): 640-644
    [71] Hjerten S J, Liao J L, Nakazato K, Gels mimicking antibodies in their selective recognition of protein, Chromatography, 1997, 44: 227~234
    [72] Liao J L, Wang Y, Hjerten S, A novel support with artificially created recognition for the selective removal of proteins and for affinity chromatography, Chromatography, 1996, 42: 259~262
    [73] Guo, T. Y.; Xia, Y. Q.; Wang, J.; Song, et al, Chitosan beads as molecularly imprinted polymer matrix for selective seperation of proteins. Biomaterials 2005, 26, 5737-5745.
    [74] Guo, T. Y.; Xia, Y. Q.; Hao, G. J.; et al, Adsorptive seperation of hemoglobin by molecularly imprinted polymers. Biomaterials 2004, 25, 5905-5912.
    [75] Wulff, G. Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies. Angew. Chem., Int. Ed. Engl. 1995, 34, 1812-1832.
    [76] Ahmed, H. Principles and Reactions of Protein Extraction, Purification and Characterization, 1st ed.; CRC Press: London, 2004; p 387.
    [77] A. A. Vaidya, B. S. Lele, M. G. Kulkarni, et al, Creating a macromolecular receptor by affinity imprinting. J. Appl. Polym. Sci. 2001, 81, 1075-1083.
    [78] Pang, X.; Cheng, G.; Lu, S.; et al, Synthesis of polyacrylamide gel beads with electrostatic functional groups for the molecular imprinting of bovine serum albumin. Anal. Bioanal. Chem. 2006, 384, 225-230.
    [79] Huang, J.; Zhang, J.; Zhang, J.; et al, Template imprinting DAPhoteric polymer for the recognition of proteins. J. Appl. Polym. Sci. 2005, 95, 358-361.
    [80] Ou, S. H.; Wu, M. C.; Chou, T. C.; et al, Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme. Anal. Chim. Acta 2004, 504, 163-166.
    [81] Ou, S. H.; Chou, T. C.; Liu, C. C. Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme. Molecularly Imprinted Polymer Science and Technology, 2nd International Workshop on Molecular Imprinting, La Grande Motte, France, September 15-19, 2002, p 13.
    [82] Gill, I.; Ballesteros, A. Bioencapsulation within synthetic polymers (Part 2): Non sol-gel protein-polymer biocomposites. Trends Biotechnol. 2000, 18, 469-479.
    [83] Gill, I.; Ballesteros, A. Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulation biologicals. Trends Biotechnol. 2000, 18, 282-296.
    [84] Venton, D. L.; Gudipati, E. Influence of protein on polysiloxane polymer formation-Evidence for induction of complementary protein-polymer interactions. Biochim. Biophys. Acta 1995, 1250, 126-136.
    [85] Venton, D. L.; Gudipati, E. Entrapment of enzymes using organofunctionalized polysiloxane copolymers. Biochim. Biophys. Acta 1995, 1250, 117-125.
    [86] Glad M, Narrlow O, Sellergren B, et al, Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica, J Chromatogr, 1985, 347:11~23
    [87]周艳梅,徐文国,童爱军.硅胶表面牛血清白蛋白质分子印迹聚合物的制备及分子识别性能.分析化学, 2006, 34(11): 1551-1554
    [88] Shiomi, T.; Matsui, M.; Mizukami, F.; et al, A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials 2005, 26, 5564-5571.
    [89] Hirayama K, Burow M, Synthesis of polymer-coated silica particles with specfic recognition sites for glucose oxidase by the molecular imprinting technique, Chem Lett, 1998, 8: 731~732
    [90] Burow, M.; Minoura, N. Molecular imprinting: Synthesis of polymer particles with antibody-like binding characteristics for glucose oxidase. Biochem. Biophys. Res. Commun. 1996, 227, 419-422.
    [91] Hirayama, K.; Kameoka, K. Synthesis of polymer particles with specific binding sites for lysozyme by a molecular imprinting technique and its application to a quartz crystal microbalance sensor. Bunseki Kagaku 2000, 49, 29-33.
    [92] Hirayama, K.; Sakai, Y.; Kameoka, K. Synthesis of polymer particles with specific lysozyme recognition sites by a molecular imprinting technique. J. Appl. Polym. Sci. 2001, 81, 3378-3387.
    [93] Mallik S J, Plunkett S D, Dhal P K, et al, Towards materials for the specific recognition and separation of proteins, New J Chem, 1994, 18(3): 299~304
    [94] Kempe M, Glad M, Mosbach K, An approach towards surface imprinting using the enzyme ribonuclease A biorecognition and affinity technology, Journal of Molecular Recognition, 1995, 8(1-2): 35~38
    [95]陆书来,分子印迹聚合物磁性复合微球的制备及其特性研究, [博士学位论文],天津大学, 2002
    [96]庞兴收,蛋白质印迹软湿凝胶聚合物微球的研究, [博士学位论文],天津大学, 2005
    [97] Xingshou Pang and Guoxiang Cheng, The Protein-Imprinted Polymer Materials,in Robert K. Bregg, Polymer Research Developments, Nova Science Publishers, Inc, New York, 2006, ISBN: 1-59454-742-4, (chapter 5):91-106
    [98] Shi H, Tsai W-B, Ferrari S, et al, Template imprinted nanostructural surfaces for protein recognition, Nature, 1999, 398: 593~597
    [99] Shi, Huaiqiu ,Ratner, Buddy D.Template recognition of protein-imprinted polymer surfaces. Student Research Award in the Doctoral Degree Candidate Category, 25th Annual Meeting of the Society for Biomaterials, Providence, RI, April 28–May 2, 1999
    [100] Ratner, B. D. The engineering of biomaterials exhibiting recognition and specificity. J. Mol. Recognit. 1996, 9, 617-625.
    [101] Ratner, B. D.; Shi, H. Q. Recognition templates for biomaterials with engineered bioreactivity. Curr. Opin. Solid State Mater. Sci. 1999, 4, 395-402.
    [102] Rachkov A, Minoura N, Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized the epitope approach, Journal of Chromatography, 2000, 889:111~118
    [103] Rachkov, A.; Hu, M. J.; Bulgarevich, E.; Matsumoto, T.; Minoura, N. Molecularly imprinted polymers prepared in aqueous solution selective for Sar(1), Ala(8) angiotensin II. Anal. Chim. Acta 2004, 504, 191-197.
    [104] Huang, C. S.; Aspira Biosystems, Burlington, CA; Compositions and methods for capturing, isolating, detecting, analyzing and quantifying macromolecules. U.S. Patent 6,979,573, 2005.
    [105] Hirayama, K.; Sakai, Y.; Kameoka, K. Synthesis of polymer particles with specific lysozyme recognition sites by a molecular imprinting technique. J. Appl. Polym. Sci. 2001, 81, 3378-3387.
    [106] Dar-Fu Tai, Chung-Yin Lin, Tzong-Zeng Wu, et al, Recognition of Dengue Virus Protein Using Epitope-Mediated Molecularly Imprinted Film. Anal. Chem. 2005, 77, 5140-5143
    [107] Piletsky, S.A., Piletska, E.V., Chen, B., et al, Application of artificial adrenergic receptor in enzyme-linked assay forβ-agonists determination. Anal. Chem. 2000, 72 (18), 4381–4385.
    [108] Piletsky, S.A., Piletska, E.V., Bossi, A., et al, 2001. Substitution of antibodies and receptors with molecularly imprinted polymer in enzyme-linked and fluorescent assays. Biosens. Bioelectron. 16 (9–12), 701–707.
    [109] Ramanaviciene, A.; Ramanavicius, A. Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins. Biosens. Bioelectron. 2004, 20, 1076-1082.
    [110] Shi, H. Q.; Ratner, B. D. Template recognition of protein-imprinted polymer surfaces. J. Biomed. Mater. Res. 2000, 49, 1-11.
    [111] Rick, J.; Chou, T. C. Enthalpy changes associated with protein binding to thin films. Biosens. Bioelectron. 2005, 20, 1878-1883.
    [112] Rick, J.; Chou, T. C. Using protein templates to direct the formation of thin-film polymer surfaces. Biosens. Bioelectron. 2006, 22, 544–549.
    [113] Rick, J.; Chou, T. C. Imprinting unique motifs formed from protein-protein associations. Anal. Chim. Acta 2005, 542, 26-31.
    [114] Bossi A, Piletsky S A, Piletska E V, et al, Surface-grafted molecularly imprinted polymers for protein recognition, Analytical Chemistry, 2001, 73: 5281~5286
    [115] Chou, J.; Rick, J.; Chou, T. C. C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach. Anal. Chim. Acta 2005, 542, 20-25.
    [116] Dhruv, H.; Pepalla, R.; Taveras, M.; et al, Protein insertion and patterning of PEG bearing Langmuir monolayers. Biotechnol. Prog. 2006, 22, 150-155.
    [117] Britt, D. W.; Jogikalmath, G.; Hlady, V. Protein Interactions with Monolayers at the Air/Water Interface. In Biopolymer at Interfaces II; Malmsten, M., Ed.; Dekker: New York, 2002.
    [118] Du, X.; Hlady, V.; Britt, D. W. Langmuir monolayer approaches to molecular recognition through molecular imprinting. Biosens. Bioelectron. 2005, 20, 2053-2060.
    [119] Turner, N. W.; Wright, B. E.; Dhruv, H.; et al, Protein imprinting in langmuir monolayers, Proceedings of Biosensors 2006, Toronto, Canada, May 10-12, 2006; p 068.
    [120] Britt, D. W.; Mo¨bius, D.; Hlady, V. Ferritin rebinding to multicomponent monolayers: Influence of lipid charge density, miscibility and fluidity. Phys. Chem. Chem. Phys. 2000, 20, 4594-4599.
    [121] Pack, D.; Arnold, F. H. Langmuir monolayer characterization of metal-chelating lipids for protein targeting to membranes. Chem. Phys. Lipids 1997, 86, 135-152.
    [122] Bondurant, B.; Last, J. A.; Waggoner, T. A.; et al, Optical and scanning probe analysis of glycolipid reorganization upon concanavalin A binding to mannose-coated lipid bilayers. Langmuir 2003, 19, 1829-1837.
    [123] May, S.; Harries, D.; Ben-Shaul, A. Lipid demixing and proteinprotein interactions in the rebinding of charged proteins on mixed membranes. Biophys. J. 2000, 79, 1747-1760.
    [124] Simon, S. Peptide-lipid interactions. Current Topics in Membranes; Elsevier: Amsterdam, 2002; p 52.
    [125] Litvin, A. L.; Samuelson, L. A.; Charych, D. H.; et al, Influence of supramolecular template organisation on mineralisation. J. Phys. Chem. 1995, 100, 17708-17708.
    [126] Gidalevitz, D.; Weissbuch, I.; Kjaer, K.; et al, Design of two dimensional crystals as models for probing the structure of solid-liquid interface. J. Am. Chem. Soc. 1994, 116, 3271-3278.
    [127] Nicholas W. Turner, Bryon E. Wright, Vladimir Hlady, et al, Formation of protein molecular imprints within Langmuir monolayers: A quartz crystal icrobalance study. Journal of Colloid and Interface Science 308 (2007) 71–80
    [128] Hung-Yin Lin, Chung-Yi Hsu, James L. et al, The microcontact imprinting of proteins: The effect of cross-linking monomers for lysozyme, ribonuclease A and myoglobin. Biosensors and Bioelectronics 22 (2006) 534–543
    [129] Karmalkar, R. N.; Kulkarni, M. G.; Mashelkar, R. A. Molecularly imprinted hydrogels exhibit chymotrypsin-like activity. Macromolecules 1996, 29, 1366-1368.
    [130] Parmpi, P.; Kofinas, P. Biomimetic glucose recognition using molecularly imprinted polymer hydrogels. Biomaterials 2004, 25, 1969-1973.
    [131] Wizeman, W. J.; Kofinas, P. Molecularly imprinted polymer hydrogels displaying isomerically resolved glucose binding. Biomaterials 2001, 22, 1485-91.
    [132] Watanabe, M.; Akahoshi, T.; Tabata, Y.; et al, Molecular specific swelling change of hydrogels in accordance with the concentration of guest molecules. J. Am. Chem. Soc. 1998, 120, 5577-5578.
    [133] Reddy, S. Hydrogels for Molecular Imprinting of Proteins. http://www.survey.ac.uk/SBMS/ACADEMICS_homepage/reddy_sub/MIP.html [July 9, 2006].
    [134] Peppas, N. A.; Huang, Y.; Torres-Lugo, M.; et al, Physiocochemical foundations and structural design of hydrogels in medicine and biology. Annu. ReV. Biomed. Eng. 2000, 2, 9-29.
    [135] Peppas, N. A. Intelligent biomaterials in protein delivery, molecular imprinting and micropatterning. Proc. Controlled Release Soc. 2002, 29.
    [136]雷建都谭天伟壳聚糖血红蛋白质分子印迹介质的制备及优化化学通报2002, 4, 265-268
    [137] Tian Ying GUO, Yong Qing XIA, Guang Jie HAO, et al, Chemically Modified Chitosan Beads as Molecularly Imprinted Polymer Matrix for Adsorptive Separation of Proteins. Chinese Chemical Letters 2004,15,1339-1341
    [138] Y.-Q. Xia, T.-Y. Guo, M.-D. Song, B.-H. Zhang, B.-L. Zhang, Biomacromolecules 2005, 6, 2601-2606
    [139] D. Tong, Cs. Hetemyi, Zs. Bikadi, et al, The use of cyclodextrins as chiral selectors. Chromatographia 2001, 54, 59-S77.
    [140] Shulai Lu, Guoxiang Cheng, Xingshou Pang. Protein-Imprinted Soft-Wet Gel Composite Microspheres with Magnetic Susceptibility. II. Characteristics. Journal of Applied Polymer Science. 2006, 99, 2401-2407
    [141]Xingshou Pang, Guoxiang Cheng, Rensheng Li, Shulai Lu, Yihua Zhang. Bovine serum albumin-imprinted polyacrylamide gel beads prepared via inverse-phase seed suspension polymerization. Analytica Chimica Acta 550 (2005) 13–17
    [142]孙瑞丰,罗晖,于慧敏等人血红蛋白质分子印迹聚合物的制备及分子识别性能过程工程学报2005,15,341-344
    [143] Daniel M. Hawkins, Derek Stevenson, Subrayal M. Reddya,. Investigation of protein imprinting in hydrogel-based molecularly imprinted polymers (Hydro MIP). Analytica Chimica Acta. 2005, 542, 61–65
    [144] Go?khan Demirel, Go?kc.en O?zc.etin, Eylem Turan, et al, pH/Temperature-Sensitive Imprinted Ionic Poly(N-tert-butylacrylamide-co-acrylamide/maleic acid) Hydrogels for Bovine Serum Albumin, Macromol. Biosci. 2005, (5) 1032-1037
    [145] Linden D. Bolisaya, James N. Culverb, Peter Kofinasa. Molecularly imprinted polymers for tobacco mosaic virus recognition. Biomaterials 2006, 27, 4165–4168
    [146] Hwang Ch-Ch, Lee W-Ch, Chromatographic characteristics of cholesterol imprinted polymers prepared by covalent and non-covalent imprinting methods, Journal of Chromatography A, 2002, 962: 69~78
    [147] Vallano P T, Remcho V T, Highly selective separations by capillary electrochromatography: molecular imprint polymer sorbents,Journal of Chromatography A, 2000, 887: 125~135
    [148] Theodoridis G, Manesiotis P, Selective solid-phase extraction sorbent for caffeine made by molecular imprinting,Journal of Chromatography A, 2002, 948: 163~169
    [149] Matsui J, Nicholls I A, Takeuchi T, et al, Metal ion mediated recognition in molecularly imprinted polymers, Analytica Chimica Acta, 1996, 335: 71-77
    [150] Nicholas W. Turner, Christopher W. Jeans, Keith R. Brain, et al, From 3D to 2D: A Review of the Molecular Imprinting of Proteins, Biotechnol. Prog. 2006, 22, 1474-1489
    [151] Perka C,Spltzer RS,Liadenhayn K,et a1.Matrix—mixed culture:new methodology for chondrocyte culture and preparation of cartilage transplants.J. Biomed. Mater. Res., 2000, 49(3): 305-311
    [152]程晋生.海藻酸盐和明胶/海藻酸钠混合凝胶,明胶科学与技术,2004,24: 169-177
    [153] Ye L, Mosbach K. Molecularly imprinted microspheres as antibody binding mimics. React. Funct. Polym., 2001, 48(1-3): 149~157
    [154] Dickert F L, Besenbock H, Tortschanoff M. Molecular imprinting through van der Waals interactions: Fluorescence detection of PAHs in water. Adv. Mater., 1998, 10(20): 149~151
    [155] Draget KI, Skjak-Brak G, Christensen BE, et al, Swelling and partial solubilization of alginic acid gel beads in acidic buffer. Carbohydr. Polym., 1996, 29: 209-215
    [156]张凤菊,乳液及蛋白质双模板印迹法海藻酸盐基微球的研究, [博士学位论文],天津大学, 2006
    [157]天津大学无机化学教研室,无机化学(第二版),北京:高等教育出版社,1992: 419~421
    [158] Zittle C A, Rebinding studies of enzymes and other proteins, Adv. Enzymol., 1953(14): 319~374
    [159]殷刚,詹劲羟基磷灰石对牛血清白蛋白重结合特性的研究,高等化学学报,2001, 22(5): 771~775
    [160]沈玉华,杨展澜等,水溶性BSA-羟基磷灰石-碳酸钙复合物的形成机理,光谱学与光谱分析,2000, 20(6): 781~784
    [161]薛中会,张兴堂,陈艳辉等,牛血清蛋白单层膜诱导形成网状结构的羟基磷灰石,无机化学学报,2004, 20(12): 1426~1428
    [162] Dai H L, Han Y C, Chen P, et al, Protein rebinding of calcium phosphate ceramics in vitro, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2005, 20: 255~259
    [163] Liu Y, Layrolle P, van Blitterswijk C A, et al, Biomimetic co-precipitation of calcium phosphate and bovine serum albumin on titanium-alloy, J. Biomed. Mater. Res., 2001, 57(3): 327~35
    [164] Liu Y, Hunziker E B, Randall N X, et al, Proteins incorporated into biomimetically prepared calcium phosphate coatings modulate their mechanical strength and dissolution rate, Biomaterials, 2003(24): 65~70
    [165] Ohta K, Monma H, Takahashi S, Rebinding characteristics of proteins on octacalcium phosphate by liquid chromatography, J. Ceram. Soc. Jpn., 1999 (107): 577~581
    [166] Ohta K, Monma H, Takahashi S, Rebinding characteristics of proteins on calcium phosphates using liquid chromatography, J. Biom. Mater. Res., 2001 (5): 409~414
    [167]韩慧芳,崔英德,蔡立彬,聚丙烯酸钠的合成及应用,日用化学工业,2003, 33: 36-39
    [168]黄良仙,安秋凤,丁红梅等,亚硫酸氢钠作链转移剂合成低分子量聚丙烯酸钠.化学研究, 2005, 16(2): 35~37
    [169]张晓云,燕颖香,合成中等分子量聚丙烯酸钠的研究.石油与天然气化工2005,31: 326-328
    [170]赵红坤,曾之平,高分子量聚丙烯酸钠合成工艺条件探讨[J].天然气化工,1997,22(4):39~42
    [171] Jae W C, Kyung I S, Characterization and properties of hybdd composites prepared from poly (vinylidene fluoride-tetrafluoroethylene) and SiO2, Polymer, 2001, 42: 727~736
    [172] Chris C, Chris H, E, Hybrid organic-inorganic membranes, Separation Purification Technology, 2001, 25: 181~193
    [173] Noboru M, Ken I F, Qi C, et a1. Apatim-forming ability and mechanical properties of PTMO-modified CaO-SiO2 hybrids prepared by sol-gel processing: effect of CaO and PTMO contents, Biomaterials, 2002, 23: 3033~3040
    [174]郭军,雷坚志,有机-无机杂化材料研究新进展,湖南科技学院学报,2005, 26(11): 89~93
    [175]邱泽浩,叶巧明,溶胶-凝胶法制备有机/无机杂化材料工艺及其应用,广州化学,2006, 31(1): 40~45
    [176] Ken K, Yoshitaka N, Takamasa N, et a1. An organic-inorganic hybrid scaffold for the culture of HepG2 cells in a bioreactor, Biomaterials, 2005, 26: 2509~2516
    [177] Yun-Kai Lu, Xiu-Ping Yan. An Imprinted Organic-Inorganic Hybrid Sorbent for Selective Separation of Cadmium from Aqueous Solution. Analytical Chemistry, 2004,76, 453-457
    [178] Feng Li, Hongquan Jiang, Shusheng Zhang. An ion-imprinted silica-supported organic–inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol–gel process for selective separation of cadmium(II) from aqueous solution. Talanta 71 (2007) 1487–1493
    [179] Genhua Wu, Zhuqing Wang, Jie Wang, Chiyang Hea. Hierarchically imprinted organic–inorganic hybrid sorbent for selective separation of mercury ion from aqueous solution. Analytica Chimica Acta 582 (2007) 304–310
    [180] Park J M, Muhoberac B B, Dubin P L, et al, Effects of protein charge heterogeneity in protein-polyelectrolyte complexation, Macromolecules, 1992, 25: 290~295
    [181] Huang R Y M, Pal R, Moon G T, Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol-water and isopropanol-water mixtures. J. Membrane Sci., 1999, 160: 101~113
    [182]黄建军,蛋白质印迹磷酸/海藻酸钙杂化微球的制备及特性研究, [硕士学位论文],天津大学, 2007
    [183] Hongping Ye, Simultaneous determination of protein aggregation, degradation, and absolute molecular weight by size exclusion chromatography–multiangle laser light scattering. Analytical Biochemistry, 2006 (356) 76–85
    [184] T. Arakawa, S.J. Prestrelski, W.C. Kenney, et al, Factors affecting short-term and long-term stabilities of proteins, Adv. Drug Deliv. Rev. 2001 (46) 307–326.
    [185] G. Unterhaslberger, C. Schmitt, C. Sanchez, et al, Heat denaturation and aggregation of b-lactoglobulin enriched WPI in the presence of arginine HCl, NaCl and guanidinium HCl at pH 4.0 and 7.0, Food Hydrocolloids, 2006 (20) 1006–1019
    [186] Welzel PB. Investigation of rebinding-induced structural changes of proteins at solid/liquid interfaces by differential scanning calorimetry. Thermochim. Act., 2002, 382(2), 175-188.
    [187] Mehmet Odaba?i, Ridvan Say, Adil Denizli, Molecular imprinted particles for lysozyme purification. Materials Science and Engineering C 2007 (27):90-99
    [188]张晓云,燕颖香,合成中等分子量聚丙烯酸钠的研究,石油与天然气化工2002, 326-328
    [189]张容,聚丙烯酸钠盐水溶液分子量测定探讨,丙烯酸化工1992, 4(1) 18-19
    [190] Zhang Feng Ju, Cheng Guo Xiang, Ying Xiao Guang. Emulsion and macromolecules templated alginate based polymer microspheres. React Funct Polym, 2006, 66: 712-719
    [191] S.K. Bajpai, Shubhra Sharma, Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions, Reactive & Functional Polymers 59 (2004) 129-140
    [192] Ju HK, Kim SY, Lee YM, pH-temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide), Polymer 2001;42:6851–7.
    [193] Choi YS, Hong SR, Lee YM, et al, Study on gelatincontaining articial skin. I. Preparation and characteristics of a novel gelatin-alginate sponge. Biomaterials 1999 (20) 409–17.
    [194] C. Tribet, I. Porcar, P. A. Bonnefont, et al, Association between Hydrophobically Modified Polyanions and Negatively Charged Bovine Serum Albumin. J. Phys. Chem. B 1998, 102, 1327-1333
    [195] Kenji Itoa, Jeffrey Chuangb, Carmen Alvarez-Lorenzoc, et al, Multiple point rebinding in a heteropolymer gel and the Tanaka approach to imprinting: experiment and theory, Prog. Polym. Sci. 28 (2003) 1489–1515

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700