用户名: 密码: 验证码:
光引发制备星形聚丙烯酰胺及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常用驱油剂线形聚丙烯酰胺的抗剪切性能较差,通过改变聚合物分子结构可有效改善其抗剪切性。本文利用光引发自由基聚合制备得到了星形聚丙烯酰胺,并对其抗剪切性能、其他基本性质及使用性能进行了研究。
     本文首先以重均分子量分别为600、1800、3000和10000g/mol聚乙烯亚胺(PEI)为核,改性制得了四种硫杂蒽酮封端PEI水溶性大分子光引发剂,并通过元素分析、核磁共振氢谱、红外光谱和紫外光谱验证了目标产物的结构。其中元素分析结果显示四种引发剂所含光引发官能团(硫杂蒽酮基团)个数分别为4、12、22和67。另外合成了疏水单体十八烷基二甲基烯丙基氯化铵(C18DMAAC)和刚性单体N-叔辛基丙烯酰胺,并进行了表征。
     利用高压汞灯、滤波片和全石英玻璃反应槽自制得到了反应体积分别为20mL和200mL的光引发自由基聚合用反应装置;以硫杂蒽酮封端PEI为引发剂,在水溶液中通过光引发自由基聚合成功制备得到了不同支化程度的星形聚丙烯酰胺(SxPAM),并采用核磁氢谱、紫外光谱、静态光散射和原子力显微镜对反应产物的星形支化结构进行了验证;以支化因子对SxPAM的支化度进行了量化表征。
     通过研究各反应条件对聚合产物的影响,以油田实际应用指标中的抗Waring剪切性能为考核指标,得出符合研究目标要求聚合物的反应条件为:丙烯酰胺(AM)+C18DMAAC+N-叔辛基丙烯酰胺(C18DMAAC与AM的摩尔比在0.3-0.4%,刚性单体与AM的质量比为0.002%)混合溶液30%wt,硫杂蒽酮封端PEl1000u为光引发剂,其中硫杂蒽酮浓度为0.015-0.020mmol/L,通氮除氧后在30-35℃反应40min得到块状PAM,保温2h后80℃水解3h得到理论水解度为2835%的聚合物产物。
     首次利用“十字缝”拉伸剪切仪对不同聚合物的抗剪切性进行了对比研究,结果显示:随着聚丙烯酰胺支化度的增大,其抗拉伸剪切性能逐渐提高;随着溶液矿化度的增大,部分水解星形聚丙烯酰胺(SxHPAM)溶液的抗拉伸剪切性能逐渐下降,但仍比线形水解聚丙烯酰胺(LHPAM)好;随分子量的增大S67HPAM溶液的抗拉伸剪切性能逐渐下降,但当其粘均分子量超过1170万时,分子量对S67HPAM溶液抗机械降解性能影响较小;LHPAM分子量在950-1550万时,随着LHPAM分子量的增大,其溶液抗拉伸剪切性能变化不大;疏水改性聚丙烯酰胺S67PAM-0.3溶液的抗拉伸剪切性能受浓度和疏水单体含量影响较大,随着浓度的增大S67PAM-0.3溶液的抗拉伸剪切性能先升高后降低,随着疏水含量的增大S67PAM-y的抗拉伸剪切性能下降。
     对于聚丙烯酰胺(PAM)和部分水解聚丙烯酰胺(HPAM),剪切速率与聚合物溶液相对粘度降低比进行指数拟合后所得幂指数参数C1值可反应其抗拉伸剪切性能,C1越小,聚合物溶液的抗拉伸剪切性能越好;而对于疏水改性PAM可采用线性拟合所得K值来评价其抗拉伸剪切性能,K值越小,聚合物溶液的抗拉伸剪切性能越好。结合C1和C2可预测PAM和HPAM在不同剪切速率下粘度损失情况;利用K值可预测疏水改性PAM在不同剪切速率下粘度损失情况;SHPAM的剪切稳定性相对LHPAM更好的机理可能如下:一是SHPAM分子链所受最大剪切应力要小于LHPAM,二是SHPAM分子链断裂时断裂的部分只是支链。
     增比粘度性质研究表明PAM分子在水溶液中的构象随着其星形支化程度的增大而收缩,越来越接近球状;SxHPAM和星形疏水改性HPAM的特性粘数以S-B方程拟合结果最好。剪切速率在0.1-10000s-1时,蒸馏水中,HPAM的表观粘度随聚合物支化度的增大而增大;溶剂中NaCl的浓度在0.1mol/L到1mol/L时,不同支化度的HPAM的粘度相互非常接近,疏水改性聚丙烯酰胺SxPAM-0.3的表观粘度随支化度的增大而下降。线性粘弹性实验进一步揭示:扫描频率在0.05-1Hz时,HPAM溶液的弹性和粘性随聚合物的支化度先增大后降低;SxPAM-0.3溶液的弹性和粘性随聚合物支化度的增大而下降;65℃,地层水作溶剂时,1800mg/L的S67PAM-y,当其疏水单体含量大于等于0.2%后,弹性便始终占优;相同条件下,S67PAM-0.3溶液比现有常规疏水改性聚丙烯酰胺HAP具有更好的弹性。
     50-80℃时,模拟SZ36-1地层水中S67PAM-0.3室内溶解时间在80-100min之间;其浓度为1750mg/L时,65℃下初始粘度可>50mPa·s,经Waring剪切剪切后粘度>30mPa·s;同时65℃时S67PAM-0.3溶液90天除氧老化后粘度保留率为81.3%。这些结果表明自制S67PAM-0.3具有很强的实用性,可满足海上油田的实际要求指标。
     通过岩心流动实验发现,SHPAM的阻力系数和残余阻力系数均比LHPAM高;S67PAM-0.3的阻力系数比常用HAP的低,但其注入性能较好而且残余阻力系数也比常用HAP的高。模拟SZ36-1地层情况下,室内驱油实验表明1750mg/L的S67PAM-0.3可在水驱基础上提高采收率约15%。
As the regular oil displacement agent, the shear degradation resistance of linear poly acrylamide (PAM) is not good enough. The shear stability of PAM can be enhanced by change the molecular structure. In this paper, the star polyacrylamides (SxPAM) were synthesized by photopolymerization and the shear degradation resistance, some other properties and functional performance of these SxPAMs were investigated.
     Firstly, water-soluble thioxanthone-terminated poly(ehtylene imine)s (PEI600, PEI1800, PEI3000and PEI10000;600,1800,3000and10000are the weight-average molecular weights of the above PEIs, respectively) were synthesized to be as the macrophotoinitiators. These macrophotoinitiators were confirmed by elemental analysis,'H-NMR, FT-IR and UV spectra. Especially, the results of elemental analysis showed that there are4,12,22and67photoinitiated-agents (theioxanthone agent) in the four macrophotoinitiators, respectively.
     The effects of different reaction conditions on result of polymerization were studied. In order to meet the demand required by oilfield, the desired reaction condition was as follows:thioxanthone-terminated PEI10000was used as the initiator and its concentration was between0.015-0.020mmol/L; the mass fraction of comonomers was30%wt, the mol ratio of N,N-dimethyl-N-vinylnonadecan-1-ammonium chloride(C18DMAAC) to acrylamide was between0.3%and0.4%and the mass ratio of N-(2,4-dimethylpentan-2-yl) acrylamide to acrylamide was0.002%; the photopolymerization was carried out in a rectangular beaker by irradiating at30-35℃for40min; after the irradiation the mixture was put in the oven at40℃for2h and then was subject to hydrolysis at80℃for4h.
     In this paper, a new method to evaluate the shear stability of PAM was described. The flow-induced scission behaviour of different PAMs during planar elongational flow in a cross-slot flow cell was studied. The results showed that the shear stability of PAMs increased with the degree of branching of the PAMs and the shear stability of SxPAM decreased with the salt concentration in the solvent. However, at the same shear rate, the SPAMs exhibited superior shear stability in comparison to the linear PAMs in aqueous solutions.When the molecular mass of S67HPAM increases, its shear stability decreases at first then increasing molecular mass does not affect its shear strength. When the molecular mass of linear HP AM is between1.4×107and2.1×107, the increasing molecular mass also does not affect its shear stability. The shear stability of S67HPAM-0.3is mainly affected by its concentration and the content of C18DMAAC in polymer. Its shear stability first increases and then decreases along with increases of its concentration. In addition, its shear stability decreases with the content of C18DMAAC in S67HPAM-0.3.
     For PAM and HPAM, it was found that the reduction rate of relative viscosity exhibited an exponedntial dependence on shear rate, in which the coefficient C1can be used to quantitatively evaluate shear stability. The PAMs with better shear stability have smaller C1. For HPAM with C18DMAAC (hydrophobically modified acrylamide copolymer, HMPAM), the reduction rate of relative viscosity has a linear relationship with the shear rate and the coefficient K can be used to quantitatively evaluate shear stability.The HMPAMs with better shear stability also have smaller K. It can predict the reduction rate of relative viscosity of HPAMs and HMPAMs by using the C1and K, respectively. There are may be two reasons for the shear stability of SPAM is superior to LPAM. One is that the max shear stress endured by SPAM molecular is smaller than LPAM.The other is that the sacrificial scission of the branches can leads to only a minor decrease of molecular weight.
     Specific viscosity study showed that the conformation of PAM in water contracted with the increase of degree of branch of the PAM. The conformation of PAM with higher degree of branch was more spherical. The Schulz-Blaschke(S-B) more accurately describes the dilute solution properties of SxHPAM and star hydrophobically modified acrylamide copolymer. When the shear rate is between0.1and10000s-1, the apparent viscosity of HPAM solution in the distilled water increases with the degree of branch of the HMPAM. When the concentration of NaCl in the solvent is between0.1mol/L and lmol/L, the apparent viscosities of the HPAMs with different arms are closed to each other.The results of linear viscoelasticity test showed that when the frequency is0.05-1Hz, the elasticity and viscosity of the HPAM solution increases with its degree of branch firstly then decreases. Both the elasticity and viscosity of the SxPAM-0.3increase with its degree of branch. When1800mg/L S67PAM-y was dissolved in formation water at65℃, the polymer solution has a larger proportion of elastic component while the content of C18DMAAC is larger than0.2%. In the same condition, the elasticity of the S67PAM-0.3was much better than HAP.
     At50-80C, the solution time of S67PAM-0.3in brine (simulated formation water of SZ36-1oilfield) is between80-100min. When the concentration of S67PAM-0.3is1750mg/L, the apparent viscosities of the polymer solution before and after the stirring are more than50mpa.s and30mpa.s at65C. At the same time, at constant temperature of65℃and after aging test for90days, the apparent viscosity retention rate of the S67PAM-0.3solution is81.3. These results showed that the properties of S67PAM-0.3can meet the demand requested by oilfield completely.
     The result of core flow experiment showed that the resistance coefficient (RF) and residual resistance factor (RRF) of SHPAM are more than LHPAM. RF of S67PAM-0.3is smaller than regular hydrophobically modified acrylamide copolymer (HAP), but it can be injected easily and it's RRF much larger than HAP. The oil displacement experiment showed that using the S67PAM-0.3can get incremental oil recovery factors of15%.
引文
[1]张义江,程富利,王亚军.聚合物驱过程中系统降解因素的分析[J].油气田地面工程,1998,17(6):15-17
    [2]庞宗威,李建路,刘洪兵.“八五”三次采油成果汇编一化学驱油论文集(上册)[M],石油工业出版社,]998
    [3]李杰训,张伟,芦维年.聚合物溶液配注过程中的粘度损失[J].石油规划设计,2000,11(3):22-24
    [4]张淑敏,田金鹏.聚合物驱静态混合器现场适应性研究[J].油气田地面工程,1999,18(4):14-17
    [5]付大海,刘东升,李金玲.3DJ型注聚泵降解率偏高原因分析及泵阀改进[J].石油机械,2004,32(11):51-54
    [6]马宏伟,单晶,申秀丽.聚合物低剪切井下配注器的研制及应用[J].石油机械,2005,(8):33-34
    [7]钱思平.配注工艺对聚合物溶液的降解研究[D].中国地质大学硕士论文,2006
    [8]董焕思.大庆油田萨北开发区“九五”期间技术实践[M],石油工业出版社,2001
    [9]Taylor K C. Nasr-Ei-Din H A. Water-soluble hydrophobically associating polymers for improved oil recovery:A literature review[J]. Journal of Petroleum Science and Eengineering, 1998,19:265-280
    [10]Tam K C, Jenkins R D, Winnik M A. A structural model of hydrophobically modified urethane-ethoxylate (HEUR) associative polymers in shear flow[J]. Macromolecules,1998, 31:4149-4153
    [11]段明,胡星琪.疏水改性聚丙烯酰胺的合成[J].应用化学,2004.21(8):806-809
    [12]Gryte C C, Koroneos C, Agarwal A. Drag reduction characteristics of graft copolymers prepared by the gamma irradiation of poly(^xyethylene) in the presence of acrylic acid[J].Polymer Engineering and Science,1980.20:478-484
    [i3]罗健辉,卜若颖,王平美 驱油用抗盐聚合物KY-PAM的应用性能[J].油田化学,2002.19:64-68
    [14]Verstate G W, Graessly W W, Kresege E N. Hydrocarbon solutions of macromolecular polymers having an improved resistance to mechanical degradation[P]. US Pat 4620048, 1996
    [15]Deshmukh S R, Singh R P. Drag reduction efficiency, shear stability and biouegradation resistance of carboxymethy1 cellulose-based[J]. Journal of Applied Polymer Science.1987, 33:1963-1975
    [16]Agarwal U S, Mashelkar R A. On the stability of grafted polymer molecules in elongatinal flows[J]. Journal of Non-Newtonian Fluid Mechanics,1994,54:1-10
    [17]Kim O K, Little R C, Patterson R L, et al. Polymer structures and turbulent shear stability of drag reducing solutions[J]. Nature,1974,250:408-410
    [18]Xue L, Agarwal U S, Lemstra P J. Shear degradation resistance of star polymers during elongational flow[J]. Macromolecules,2005,38:8825-8834
    [19]冯晚双.星形和星形杂臂共聚物的合成、表征及其自组装[D].北京:中国科技大学,2002
    [20]Hong K, Uhrig D, Jimmy W. Living anionic polymerization[J]. Current Opinion in Solid State and Materials Science,1999,4 (6):531-538
    [21]Guan Z. Control of polymer topology through late-transition-metal catalysis[J]. J Polym Sci Part A:Polym Chem,2003,41 (14):3680-3692
    [22]Jankova K, Bednarek M, Hvilsted S. Star Polymers by ATRP of styrene and acrylates employing multifunctional initiators [J]. J Polym Sci A:Polym Chem,2005,43 (15):3748-3759
    [23]Otsu T, Yoshida M, Kuriyama A. Living radical polymerizations in homogeneous solution by using organic sulfides as photoiniferters[J]. Makromol Chem Rapid Commun,1982, 3:127-133
    [24]Otsu T, Yoshida M. Efficient synthesis of two or multi component block copolymers through living radical polymerization with polymeric photoiniferters[J]. Polymer Bulletin,1982,7: 197-203
    [25]Kennedy J P. Functional polymers by cationic techniques[J]. J Macromol Sci Chem,1979, 13:695-714
    [26]Solomon D H, Rizzardo E, Cacioli P. Polymerization process and polymers produced thereby[P]. US Patent 4581429,1986
    [27]Hawker C J, Bosman A W, Harth E. New polymer synthesis by nitroxid mediated living radical polymerization[J]. Chem Rev,2001,101:3661-3688
    [28]Kato M, Sawamoto M, Higashimura f. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenyiphosphine) ruthenium (Ⅱ) methylaluminum bis(2.6-di-tert-butylphenoxide) initiating system:possibility of living radical polymerization[J]. Macromolecules,1995,28:1721-1723
    [29]Wang J S, Matyjaszewski K. Controlled/"living" radical polymerization, atom transfer radical polymerization in the presence of transition-metal complexes[J]. J Am Chem Soc,1995, 117:5614-5615
    [30]Fieher H. The persistent radical effect:a principle for selective radical reactions and living radical polymerizations[J]. Chem Rev,2001,101:3581-3610
    [31]Matyjaszewski K, Patten T E., Xia J H. Controlled/"living" radical polymerization.kinetics of the homogeneous atom transfer radical polymerization of styrene[J]. J Am Chem Soc, 1997,119:674-680
    [32]Le T P, Moad G, Rizzardo E, et al. Polymerization with living characteristics[P]. WO 9801478,1998
    [33]Waterson C, Haddleton D M. Phenolic ester-based initiators for transition metal mediated living polymerization[J]. Polym Prep,1999,40:218-221
    [34]王艳君,王玉霞,曹同玉.高加成一断裂链转移活性自由基聚合[J].高分子通报,2003,3(3):57-61
    [35]De Brouwer, John G T F, Jo seph S, et al. Living radical polymerization in miniemulsion using reversible addition-fragmentation chain transfer[J]. Macromocules,2000,33: 9239-9246
    [36]Hawker C J, Vladimir C, Braslan R, et al. Development of a universal alkoxyamine for "living" free radical polymerizations[J]. J Am Chem Soc,1999,1213904-3920
    [37]Benoit D, Lokaj J, Vlcek P, et al. Synthesis of polystyrene-poly(2-(dimethylamino)ethyl methacrylate) block copolymers by stable free radical polymerization[J]. Macromocules, 1997.30:7644-7646
    [38]Matyjaszewski K. Xia J. Atom transfer radical polymerization[J]. Chem Rev,2001,101: 2921-2990
    [39]Wang J S, Greszta D, Matyjaszewski K. Star polymers synthesized via atom transfer radical polymerization[J]. Polym Mater Sci Eng.1995,73:416-417
    [40]Kasko A M, Heintz A M, Pugh C. The effect of molecular architecture on the thermotropic behavior of poly[11-(4'-cyanophenyl-4"-phenoxy) undecyl acrylate] and its relation to polydispersity[J]. Macromolecules,1998.31:256-271
    [41]Kasko A M, Heintz A M. Solution behavior of topological isomers of poly [11-(4'-cyanophenyl-4"-phenoxy) undecyl acrylate] prepared by atom transfer and conventional radical nnlymerizations[J]. Macromolecules,2004.37:4993 5001
    [42]Moschogianni P, Pispas S, Hadjichristidis N. Multifunctional ATRP initiator synthesis of four-arm star homopolymers of methyl methacrylate and graft copolymers of polystyrene and poly(t-butyl methacrylate)[J]. J Polym Sci A:Polym Chem,2001,39:650-655
    [43]Pyun J, Miller P J, Kicelbick G. Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/organic multifunctional initiators[J]. Polym Prepr,1999,40:454-455
    [44]Matyjaszewski K, Miller P J, Pyun J, et al. Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic organic multifunctional initiators[J]. Macromolecules,1999,32:6526-6535
    [45]Matyjaszewski K, Miller P J, Fossum E, et al. Synthesis of block, graft and star polymers from inorganic macroinitiators[J]. Appl Organomet Chem.1998,12:667-673
    [46]Matyjaszewski K, Qin S, Boyce J R, et al. Effect of initiation conditions on the uniformity of three-arm star molecular brushes[J]. Macromolecules,2003,36:1843-1849
    [47]Hedrick J L, Trollsas M, Hawker C J, et al. Dendrimer-like star block and amphiphilic copolymers by combination of ring opening and atom transfer radical polymerization[J]. Macromolecules,1998,31:8691-8705
    [48]Xia J, Zhang X, Matyjaszewski K. Synthesis of star-shaped polystyrene by atom transfer radical polymerization using an "arm first" approach [J]. Macromolecules,1999,32: 4482-4484
    [49]Zhang X, Xia J, Matyjaszewski K. End-functional poly (tert-butyl acrylate) star polymers by controlled radical polymerization[J]. Macromolecules,2000,33:2340-2345
    [50]Coessens V, Pyun J, Matyjaszewski K, et al. Functionalization of polymers prepared by ATRP using radical addition reactions[J]. Macromol Rapid Commun,2000,21:103-109
    [51]Asgarzadeh F, Ourdouillie P, Beyou E, et al. Synthesis of polymer networks by "living" free radical polymerization and end-linking processes [J]. Macromolecules,1999,32:6996-7002
    [52]Baek K, Kamigaito M, Sawamoto M. Synthesis of star-shaped copolymers with methyl methacrylate and n-butyl methacrylate by metal-catalyzed living radical polymerization:Block and random copolymer arms and microgel cores[J]. J Polym Sci A:Polym Chem,2002,40: 633-641
    [53]Angot S, Taton D, Gnanou Y, et al. Amphiphilic stars and dendrimer-like architectures based on poly(ethylene oxide) and polystyrene[J]. Macromolecules,2000,33:5418-5426
    [54]Francis R, Lepoittevin B, Gnanou Y. Toward an easy access to asymmetric stars and miktoarm stars by atom transfer radical polymerization [J]. Macromolecules,2002,35: 9001-9008
    [55]Guo Y, Pan C Y. Block and star block copolymers by mechanism transformation. IV. synthesis of S-(PSt)2(PDOP)2 miktoarm star copolymers by combination of ATRP and CROP[J]. J Polym Sci Part A:Polym Chem,2001.39:437-445
    [56]Guo Y. Pan C Y. Block and star block copolymers by mechanism transformation. VI. Synthesis and characterization of A4B4 miktoarm star copolymers consisting of polystyrene and polytetrahydrofuran prepared by cationic ring-opening polymerization and atom transfer radical polymerization [J]. J Polym Sci. Part A:Polym Chem,2001,39:2134-2142
    [57]Feng X, Pan C Y. Block and star block copolymers by mechanism transformation 7. synthesis of polytetrahydrofuran poly(1,3-dioxepane)/polystyrene ABC miktoarm star copolymers by combination of CROP and ATRP[J]. Macromolecules,2002,35:2084-2089
    [58]Li Y, Shi P, Pan C Y. Synthesis, characterization, and thermal behavior of h-shaped copolymers prepared by atom transfer radical polymerization [J]. Macromolecules,2004,37: 5190-5195
    [59]Chaffey-Millar H, Stenzel M H, Davis T P, et al. Design criteria for star polymer formation processes via living free radical polymerization [J]. Macromolecules,2006,39:6406-6419
    [60]Kowollic B C, Davis T P, Johan P A, et al. RAFTing down under:Tales of missing radicals, fancy architectures, and mysterious holes[J]. J Polym Sci Part A:Polym Chem,2002,41: 365-375
    [61]Coote M L, Krenske E H, Izgorodina E I. Is the addition-fragmentation step of the RAFT polymerisation process chain length dependent[J]. Macromol Rapid Commun,2006,27: 473-403
    [62]Feldermann A, Coote M L, Davis T P, et al. Consistent experimental and theoretical evidence for long-lived intermediate radicals in living free radical polymerization[J]. J Am Chem Soc, 2004,126:15915-15923
    [63]Jesberger M, Barner L, Stenzel M H, et al. Hyperbranched polymers as scaffolds for multifunctional reversible addition-fragmentation chain-transfer agents:A route to polystyrene-core-polyesters and polystyrene-block-poly (butylacrylate)-coz-e-polyesters [J]. J Polym Sci Part A:Polym Chem,2003,41:3847-3861
    [64]Hao X, Nilsson C, Jesberger M, et al. Dendrimers as scaffolds for multifunctional reversible addition-fragmentation chain transfer agents:Syntheses and polymerization[J]. J Polym Sci Part A:Polym Chem 2004,42:5877-5890
    [65]Darcos V, Dureault A, Taton T. et al. Synthesis of hybrid dendrimer-star polymers by the RAFT process [J].Chem Commun,2004,2110-2111
    [66]Lord H T, Quinn J F, Angus S D,et al. Microgel stars via reversible addition fragmentation chain transfer (RAFT) polymerization-a facile route to macroporous membranes, honeycomb patterned thin films and inverse opal substrates [J]. J Mater Chem,2003,13-2819-2824
    [67]Quinn J F, Chaplin R P, Davis T P. Facile synthesis of comb, star, and graft polymers via reversible addition-fragmentation chain transfer (RAFT) polymerization[J]. J Polym Sci Part A:Polym Chem,2002,40:2956-2966
    [68]Heise A, Diamanti S, Hedrick J L, Frank C W, Miller R D. Investigation of the initiation behavior of a dendritic 12-arm initiator in atom transfer radical polymerization[J]. Macromolecules,2001,34:3798-3801
    [69]Zheng Q, Pan C Y. Synthesis and characterization of dendrimer-star polymer using dithiobenzoate-terminated poly[propylene imine] dendrimer via reversible addition fragmentation transfer polymerization[J]. Macromolecules,2005,38:6841-6848
    [70]Zhao Y L, Shuai X T, Chen C F, Xi F. al.Synthesis and characterization of star -shaped poly(L-lactide)s initiated with hydroxyl-terminated poly(amidoamine) (PAMAM-OH) dendrimer[J]. Chem Mater,2003,15:2836-2843
    [71]Corrales T, Catalina F, Allen N S, Peinado C. Nover water soluble copolymers based on thioxanthone:photochemistry and photoinitiation activity[J]. Jounrnal of photochemistry and photobiology A:chemistry.2005,169,95-100
    [72]Jiang X S, Yin J. Dendritic macrophotoinitiatior containing thioxanthone and coinitiator amine[J]. Macromolecules,2004,37,7850-7853
    [73]Jiang X S, Wang W F, Xu H J, Yin J. Water-compatible dendritic macrophotoinitiator containing thioxanthone[J]. Jounrnal of photochemistry and photobiology A:chemistry.2006, 181,233-237
    [74]Jiang X S, Yin J. Water-soluble polymeric thioxanthone phtotoinitiator containing glucamine as coinitiator[J]. Macromol. Chem. Phys.,2008,209,1593-1600
    [75]Wen Y N, Jiang X S, Liu R, Yin J. Amphipathic hyperbranched polymeric thioxanthone photoinitiators(AHPTXs):syntesis, characterization and photoinitiated polymerization[J]. Polymer,2009,50,3917-3923
    [76]Temel G, Parali T, Tulu M, Arsu N. Photopolymerization of acrylamide with benzophenone/methylated-b-cyclodextrin inclusion complex in the presence of jeffamine based dendrimers as coinitiators in aqueous media[J]. Jounrnal of photochemistry and photobiology A:chemistry.2010,213,46-51
    [77]Catalina F, Tercero J M, Peinado C, Sastre R, Mateo, J L. Photochemistry and photopolymerization study on 2-acetoxy and methyl-2-acetoxy derivatives of thioxanthone as photoinitiators[J]. J Photochem Photobiol A:Chem,1989,50:249-258
    [78]Yang J W, Zeng Z H, Chen Y L. Amine-linked thioxanthones as water-compatible photoinitiators[J]. J Polym Sci Part A:Polym Chem,1998,36:2563-2570
    [79]郑焰.油气开采用缔合聚合物合成与溶液性能研究[D].西南石油大学.1999.p38
    [80]韩明明Ritter反应及产物水解合成叔胺基胺的工艺研究[D].南京理工大学.南京.2009,p40
    [81]Heise A, Hedrick J L., Frank C W, et al. Starlike block copolymers with amphiphilic arms as models for unimolecular micelles[J]. J Am Chem Soc,1999,121:8647-8648.
    [82]Heise A, Nguyen C, Malek R, Hedrick J L, et al. Starlike polymeric architectures by atom transfer radical polymerization; templates for the production of low dielectric constant thin Films[J]. Macromolecules,2000.23:2346-2354
    [83]Kim Y H, Ford W T, Mourey T H. Branched poly(styrene-b-tert-butyl acrylate) and poly(styrene-b-acrylic acid) by ATRP from a dendritic poly(propylene imine)(NH2)64 core[J] J Polym Sci A:Polym Chem,2007,45:4623-4634
    [84]Jesberger M, Barner L, Stenzel M H, et al. Hyperbranched polymers as scaffolds for multifunctional reversible addition-fragmentation chain-transfer agents:A route to polystyrene-core-polyesters and polystyrene-block-poly(butyl acrylate)-core-polyesters[J].J Polym Sci A:Polym Chem,2003,41:3847-3861
    [85]Hao X J, Nilsson C, Jesberger M, et al. Dendrimers as scaffolds for multifunctional reversible addition-fragmentation chain transfer agents:Syntheses and polymerization[J]. J Polym Sci A:Polym Chem,2004,42:5877-5890
    [86]Gorodyska G, Kiriy A. Reconformation and metallization of unimolecular micelles in controlled environment [J]. Nano Letters,2003,3:365-368
    [87]Kiriy A, Gorodyska G. Single molecules and associates of heteroarm star copolymer visualized by atomic force microscopy [J]. Macromolecules,2003,36:8704-8711
    [88]Kiriy A, Gorodyska G. Chemical contrasting in a single polymer molecule AFM experiment [J]. J Am Chem Soc,2003,125:11202-11203
    [89]Wyatt P J. Light scattering and the absolute characterization of macromolecules [J]. Anal Chim Acta,1993,272:1-40
    [90]Grcev, S, Schoenmakers, P, Iedima, P. Determination of molecular weight and size distribution and branching characteristics of PVAc by means of size exclusion chromatography/multi-angle laser light scattering (SEC/MALLS)[J]. Polymer,2004,45: 39-48.
    [91]De Gennes P G. Scaling Concepts in Polymer Physics [M], Cornell University Press:Ithaca, NY,1979, p78
    [92]应琦琮,钱人元.聚苯乙烯甲苯溶液第二维利系数的分子量依赖性[J].中国科学(B辑),1982,11·961-967
    [93]钱人元,应琦琮,Fetters L J星形支化聚苯乙烯某些溶液性质的研究[J].科学通报,1983,354-357
    [94]Ambler M R. Evaluation of differet branching functions used in the determination of random branching by GPC [J]. J Appl Polym Sci,1977,21:1655-1663
    [95]Podzimek, S. The use of GPC coupled with a multiangle laser light scattering photometer for the characterization of polymers. On the determination of molecular weight, size and branching[J]. J Appl Poly Sci,1994,54:91-103
    [96]Hirao A, Watanabe T. Precise synthesis and characterization of fourth-Generation dendrimer-like star-branched poly(methyl methacrylate)s and block copolymers by iterative methodology based on living anionic polymerization[J]. Macromolecules,2009,42:682-693
    [97]Yu Y L, DesLauriers P J, Rohlfing D C. SEC-MALS method for the determination of long-chain branching and long-chain branching distribution in polyethylene[J]. Polymer, 2005,46:5165-5182
    [98]Grcev S, Schoenmakers P, Iedema P. Determination of molecular weight and size distribution and branching characteristics of PVAc by means of size exclusion chromatography /multi-angle laser light scattering (SEC/MALLS)[J]. Polymer,2004,45:39-48
    [99]Sperling L H. Introduction to physical polymer science [M]. John Wiley & Sons Press: Hoboken, New Jersey,2006
    [100]Mah S, Koo D, Jeon H, et al. Photo-induced emulsion polymerization of vinyl acetate in the presence of poly(oxyethylene) nonyl phenyl ether ammonium sulfate, an anionic emulsifier(I)[J]. J Appl Polym Sci,2002,84:2425-2431
    [101]Mah S, Koo D, Jeon H, et al. Photo-induced emulsion polymerization of vinyl acetate in the presence of poly(oxyethylene) nonyl phenyl ether ammonium sulfate, a nonionic emulsifier(II)[J].J Appl Polym Sci,2002,86 (9):2153-2158
    [102]Rabin Y J. Viscosity of polyelectrolyte solutions:the generalized fuoss law [J]. Polym Sci Part C:Polym Lett,1988,26:397-399
    [103]Hess W, Klein R. Generalized hydrodynamics of systems of brownian particles[J]. Adv. Phys.1983,32:173-283
    [104]Sukpisan J, Kanatharana J, Sirivat A, Wang SQ. The specific viscosity of partially hydrolyzed polyacrylamide solutions:Effects of degree of hydrolysis, molecular weightsolvent quality and temperature[J].J Polym Sci Part B:Polym Phys,1998,36:743-752
    [105]马俊涛.疏水缔合型聚丙烯酰胺的合成与性能及其与离子型表面活性剂的相互作用[D].四川大学.成都.2002
    [106]李林辉.疏水缔合水溶性聚合物溶液微观结构与宏观流变性及表活剂的影响[D].西南石油大学.成都.2003
    [107]王立军.聚合物溶液弹性对捍高驱油效率的作用[D].大庆石油学院.大庆.2003
    [108]周长静.疏水缔合聚合物溶液的流变性及粘弹性研究[D].西南石油大学.成都.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700