用户名: 密码: 验证码:
固定化细胞移动床浸出高硫高铁低铜难选铜矿中铜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着富矿的不断开发,贫、杂、细矿的不断增多,生物湿法冶金的应用也越来越广,而在生物冶金领域,高效菌种的培育是影响浸出率的关键因素之一。本课题利用混合菌种对低品位硫化铜矿的浸出试验结果表明,利用不同菌种的不同特性使它们对元素硫、亚铁离子及其它的一些金属离子具有不同的作用效果,可以较大幅度地提高浸铜效果。
     本课题选用了氧化亚铁硫杆菌(Thiobacillus ferrooxidans简称T.f菌)和氧化硫硫杆菌(Thiobacillus thiooxidans简称T.t菌)联合浸出低品位高硫高铁铜矿。实验目的主要是研究该混合菌群在固定化条件下的浸矿效率和影响因子,首先通过在实验室中给予良好酸性环境,在自然培育的条件下形成浸矿微生物混合菌,然后利用T.f和T.t菌各自适合的液体培养基在各自适合的环境条件下进行扩大培养,分离纯化,反复转移培养,得到菌种纯化、活性较好的菌群,然后再通过T.f菌的氧化性能的测定试验及T.f和T.t菌的耐受性驯化进一步培养出活性,耐毒性更好的目的菌群。再经耐受性驯化,最后将经过耐受性驯化的目的菌种用自制生物载体作为固定细菌的载体,在自制的生物反应器里面进行硫化铜矿生物浸出试验,实验结果显示:(1)由固定混合菌的混合比例的不同条件试验结果可得出:T.f和T.t菌最佳混合比例为1:2;(2)由混合菌的固定与否条件试验结果中可得出,没有固定的混合菌浸出18d,铜的浸出率为28.56%,而固定了的混合菌浸出18d铜的浸出率达到45.23%,因此得出菌种的固定与否对生物浸出的效果影响是非常显著的;(3)从固定菌种种类的不同条件实验结果中可得出,混合细菌对矿样的铜浸出率达到了45.23%,要远远高于单一固定T.f菌或T.t菌对矿样中的铜浸出率,因此选用混合菌种对贫铜矿进行处理可以得到良好的浸出效果;(4)由矿浆浓度条件试验结果可以得出,在浸矿系统中,最佳矿浆浓度为10%;(5)由细菌接种量条件试验结果可得出,在该浸矿系统中,细菌接种量为10%为最佳细菌接种量;(6)由介质的pH值条件试验结果可得出,该矿石生物浸出的最佳浸矿酸度为pH=2;(7)由矿石粒度条件实验结果可得出,矿石粒度越小的浸出率越高,300μm的矿粒,浸出18d,浸出率为11.34%,150μm的矿石粒度浸出18d,浸出率达到28.76%,而75μm矿石粒度浸出18d后,其浸出率达到45.23%。最后得出T.f和T.t混合菌作用下最佳实验条件为:T.f和T.t菌混合比例为1:2,矿浆浓度为10%,细菌的接种量为10%,矿石粒度为75μm,pH为2。
     与此同时,研究了金属银离子对铜浸出效果的影响,将银离子加入到浸出系统中,当银离子浓度为5mg/L时,最优条件下浸出18天,浸出率提高到59.23%。这是因为在浸出溶液中加入Ag~+后,反应过程中生成的Ag_2S,通过催化作用可以快速强化硫化铜矿物的溶解,从而大大提高了硫化铜矿中铜的浸出率。
With the high-grade ores was mined, the lean ores and fine ores number are more and more.Consequently,the biological hydrometallurgy technology was widely applied for smelting the low grade ores.The high efficiencies bacteria is one of key factors in the biological hydrometallurgy.The conbined bacteria was applied for digesting the opper sulphide mineral in the topic,and the results showed that the different reactions were discovered among the different bacterias with the different characteristics and sulfur element,ferrous ion and other metal ions.Due to the cooperation relationship is exist among the bacteria for the different characteristics,so that the conbined bacterias is helpful for improving the leaching efficiency
     The T.f and T.t bacteria were chose and applied for extracing the low-grade copper sulphide mineral with high sulfur and high iron.The main aims of the topic were to investigate the efficiencies and influence factors on immobilized combinational bacteria of the T.f and the T.t bacteria for microbial leaching.Firstly,the aimed leaching microorganisms were cultivated under the acidic environment condition in the lab,and further formed combinational bacterias.And the T.f and T.t bacteria were amplified, purified and repeated training under the respective suitable cultivated conditions,the high efficiencies the T.f and T.t bacteria were abtained of good activity and purified.Then the oxidation ability of the T.f bacteria was testes and the durable ability of T.f and T.t bacteria was further developed,the high durable ability and activities leaching combinational bacteria population were achievedThen,the aimed bacteria was inoculated for the durable ability.Finally,the naturalized bacteria was immobilized onto the biocarrier self-produced and was carried out the experiment in a bioreactor self-produced.The experimental results showed that(1)he optimum combinational ratio was 1 to 2 of the T.f and T.t bacteria accordingly to the experimental results under the different situation;(2)Compared results showed that extraction ratio of the Cu2+ by the non-immobilized combinational bacteria was 28.6% within 18d,but extraction ratio of the Cu2+ by the immobilized combinational bacteria was 45.2% within the same time;(3)Compared to the single bacteria was immobilized, extraction ratio of the Cu2+ reached 45.2% in the immobilized combinational bacteria system,which was prior to the extraction ability of the single bacteria,it suggested that low-grade ore was treated using the combinational bacteria was feasible;(4) the best pulp concentrations of 10% in the leaching system based on the the pulp concentrations experiment;(5) the optimal concentration of cells inoculated of 10% in the leaching system based on the compared results on the pulp concentration experiment;(6)the optimal pH value of 10% in the leaching system;(7)The leaching rates and the ore sizes was positive relation,the leaching rates were 11.3%,28.8% and 45.2% as the ore sizes of 300μm,150μm and 75μm in 18d,respectively.In all,the optimal conditions for the immobilized leaching system with combinational bacterias were as follows:the pulp concentrations of 10%, the concentration of cells inoculated of 10%, the ore size of 75μm and pH of 2.In all,the optimal conditions for the immobilized leaching system with combinational bacterias were as follows:the combinational rate was 1:2 of the T.f and T.t bacteria,the pulp concentrations of 10%,the concentration of cells inoculated of 10%, the ore size of 75μm and pH of 2.
     In additon.The thesis also studied the effect of Cu~(2+) leaching efficiencies and the silver ion,the silver ion was added to the leaching system,when the silver ion concentration of 5mg/L,the leaching rate was increased by 59.23% within 18 days under optimal conditions.Because the silver ion can transform into Ag_2S which can catalyze the dissolve of the ore,and lead to the Cu~(2+) leaching rate of copper sulfides was accelerated.
引文
[1]招国栋,伍衡山,刘清等.浅论低品位铜矿的浸出技术及其发展趋势[J].西部探矿工程,2004,(2):65~66
    [2]东艳,张通.细菌浸出黄铜矿过程中黄铁矿的影响行为[J].内蒙古工业大学学报,1997,16(l):16~21
    [3]闫森,童雄.强化难处理硫化铜矿物微生物浸出过程的研究[J].国外金属矿选矿,2000,(11):13~18
    [4]地质部全国地质资料局编.铜[M].冶金工业出版社,1956
    [5]中南矿冶学院选矿教研组编.铜的选矿[M].冶金工业出版社,1960
    [6]纽因健.大力发展铜湿法冶金技术是“十五”我国铜工业技术进步的重要任务[J].有色金属,2002,54(3):2~10
    [7]杨红晓,周爱东,徐家振.生物浸出技术在铜工业中的应用[J].有色矿冶2003,19(5)15~18
    [8] Brierley J A,Brierley C L.Present and Future commercial applications of biohydrometallurgy [J]. Hydrometallurgy,2001(59):234
    [9]李宏煦.大宝山废铜矿细菌浸出铜的研究[J].矿产综合利用,2000(5);3133.
    [10]阮仁满,温健康,车小奎.紫金山铜矿细菌浸出研究[J].有色金属﹤季刊﹥,2000(4):159~162.
    [11] Nelson D L,Beck J V. Chalcocite oxidation and coupled carbon dioxide fixation by ferrooxidans [J].Science,1972,175:1124-1126
    [12] Tuovinen O H, Kelly D P. Studies on the gorwth of thiobacillus ferrooxidans.3. Influence of uranium, other metal ions and 2:4-dinitrophenol on ferrous iron oxidation and carbon dioxide fixation by cell suspensions [J]. Arch Mikrobiol JT-Archiv fur Mikrobiologie, 1974,95(2):165-180
    [13] Lewis A J, Miller J D A. Stannous and cuprous ion oxidation by Thiobacillus ferrooxidans[J].Canadian Journal of Microbiology, 1977,23(3):319-324
    [14] Lewis A J, Miller J D A . Stannous and cuprous ion oxidation by Thiobacillus ferrooxidans [J].Canadian Journal of Microbioloty,1997,23(3):319-324
    [15] Kelly D P,Tuovinen O H,Metabolism of inorganic sulphur compounds by thiobacillus ferrooxidans and some comparative studies on thiobacillus A2 and T.neapolitanus[J].Plant and Soil, 1995,43:77~93
    [16] Harrison A P . genomic and physiological diversity amongst strains of T.f and genomic comparison with T.t[J].Arch Microbiol,1982,131:68~76
    [17] Bassos M E C, Rowlings D E , Woods D R. Mixotrophic growth of a thiobacillus ferrooxidans strain [J]. Appl Envion Micro,1984,47(3):593~595
    [18] Dopson M, Baker-Austin C, Koppineedi P R, et al.Growth in sulfidic mineral environments:metal resistance mechanisms in acidophilic micro-organisms [J]. Microbiology JT-Microbiology (Reading England), 2003, 149(8):1959~1970
    [19]姚静,徐文静,李红玉.氧化亚铁硫杆菌驯化菌析的铜离子运输特性[J].中国有色金属学报,2005, 15(12): 2009~2015
    [20] Lizama H M, Suzuki I. Bacterial leaching of a sulphide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidan: Shake flash studies [J]. Biotechnol Bioeng, 1988, 32:110~116
    [21] Suzuki I, Lee D, Mackay B, et al, Effect of variousions, PH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans [J]. Appl Environ Microbiol JT-Applied and environmental microbiology,1999,65(11):5163~5168
    [22] Chen B Y, Liu X L, Zheng Y C ,etal .Dose-response assessment of metal toxicity upon indigenous Thiobacillus thiooxidans BCI[J].Process Biochemistry ,2004, 39:735~745
    [23]傅建华.硫化铜矿浸矿细菌超微结构与吸附机理及SFORase的纯化[D].长沙:中南大学,2004
    [24] Guay R, Silver M. Thiobacillus acdophilus sp nov : isolation and some physiological characteristics [J]. Canadian Journal of Microbiology, 1975,21(3):281~288
    [25] Norris P R, Kelly D P. Dissolution of pyrite (FeS2) by pure and mixed cultures of some acidophilic bacteria [J]. FEMS Microbiology Letters,1978,4(3):143~146
    [26] Tsuchiya H M, Trivedi N C. Schuler M L. Microbial mutualism in ore leaching [J].Biotechnology and Bioengineering ,1974,16:991~995
    [27] Barret J, Hughes M N.Karavaiko·Metal extraction by bacterial oxidation of minerals[J].New York Ellis Horwood, 1993
    [28] Hallberg K B, Linstrom E B.Characterization of thiobac-tillus caldus sp.nov.a moderately thermophilic acidophile [J]·Microbiology, 1994, 140: 3451~3456
    [29]邹平,杨家明,周兴龙,等.嗜热嗜酸菌生物浸出低品位原生硫化铜矿[J].有色金属,2003,55(2):21~24
    [30] Rawlings D E. Heavy metal mining using microbes [J]. Annu Rev Microbiol JT-Annual review of microbiology, 2002,56:65~91
    [31]刘汉钊.细菌浸出金属的理论和实践[J].湿法冶金,1987,(7):1~6
    [32] Helmut Tributsch . Direct versus indirect bioleaching [J].Hydrometallurgy, 2001,59:17~7185
    [33] Boon M. The mechanism of‘direct’bacterial oxidation of sulphide minerals [J]. Hydrometallurgy, 2001,62:67~70
    [34] Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching review part A:Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation[J]. Appl Microbiol Biotechnol JT-Applied microbiology and biotechnology, 2003, 63(3):239~248
    [35] Comustin et.al.Biotechnology and Bioengneering[J]. Minerals Engineering, 1992,39:1121~1127
    [36] Samposn M l, Phllips C V,Blake R C. Influence of the attachment of acidophlic bacteria during the oxidation of sulfides [J].Minerals Engineering, 2000,13:373~389
    [37] Shrihari J J M , Kumar R, Gandhi K S. Dissolution of particles of pyrite mineral by direct attachment of thiobacillus ferrooxidans [J]. Hydrometallurgy, 1995,37(2):175~187
    [38] Takakuwa S, Fujimori T, Iwasaki H. Some properties of cell-sulfur adhesion in Thiobacillus thiooxidans [J]. Journal of General Applied Microbiology, 1979, 25:21~29.30
    [39] Loosdrechr van M C M, Lyklema J. Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion[J].Applied and Environmental Microbiology,1987,53(8):1898~1901
    [40] Devasia P,Natarajan K A, Sathyanarayana D N,etal. Surface Chemistry of Thiobacillus ferrooxidans Relevant to Adhesion on Mineral Surfaces[J].Appl Environ Microbiol, 1993,59(12):3051~4055
    [41] Golovacheva R S. Attachment of Sulfobacillus thermosulfidooxidans cells to the surface of sulfide minerals[J]. Mikrobiologiia JT-Mikrobiogiia, 1979, 48(3): 528~533
    [42] Ohmura N, Tsugita K, Koizumi J I,et al. Sulfur-bindidng protein of flagella of Thiobacillus ferrooxidans[J].J Bacterial JT-Journal of bacteriology, 1996,178(19):5776~5780
    [43]王淀佐,李宏煦,阮仁满.硫化矿的生物冶金及其研究进展[J].矿冶,2002,11:8~12
    [44] Arbiter N,Fletcher A W,Copper hydrometallurgy evolution and milestones[J]. Mining Engineering 1994, 118~123
    [45] Readett D, Townson B.Practical aspects of copper solvent extraction from acidic leach liquors[J]. Mining Engineering ,1997,34(2)12~15
    [46] Bartos P J.SX-EW copper and the technology cysle[J]. Resources Policy 2002,28,85~94
    [47]王金祥.我国难浸金矿细菌氧化技术开发研究现状[J].湿法冶金,1997,No.l,l~6
    [48]李廷怠.俄罗斯难浸金矿的生物冶金技术贵金属[J].1998,No.l,54~56
    [49]杨洪英,巩恩普,陈刚等.难处理金矿细菌氧化工艺中和水的成分分析[J].东北大学学报(自然科学围版),2004,25(12):1173~1175
    [50]裘荣庆.微生物冶金的应用和研究现状[J].国外金属矿选矿,1994,No.8:44~49
    [51]刘汉钊,崔永刚,杨晓军等.矿产综合利用[J].1995,No.4:8~11
    [52]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998
    [53]王恩德编.环境资源中的微生物技术[M].北京:冶金工业出版社,1997
    [54]陈颖,邹秉杰,朱术会等.利用ATP扩增反应与生物发光法结合检测微量微生物[J].微生物学报,2009,49(6):825~830
    [55]李洪枚.细菌浸出含镍磁黄铁矿的研究现状与展望[J].湿法冶金,1999,No.3,8~12
    [56]雷云,贾云芝.细菌浸出硫化锌矿氧化动力学研究进展[J].有色金属,1999,No.4,80~82
    [57]周吉奎,钮因健.硫化矿生物冶金研究进展[J].金属矿山,2005,(4):24~30
    [58]童雄.微生物浸矿的理论与实践[M].冶金工业出版社,1997
    [59] Natarajan K A. Bioleaching of Sulphides under Applied Potentials [J]. Hydrometallurgy, 1992, 29(1-3): 161~172
    [60] Lawson E N, Nicholas C J,Pellat H.The toxic effects of chloride ions on Thiobacillus ferrooxidans[J]. Biohydrometallurgy Processing. 1995: 165~174
    [61] Kinnunen P H M, Puhakka J A.Chloride-promoted leaching of chalcopyrite concentrate by biologically-produced ferric ion[J]. Journal of Chemical Technology, 2004.79:830-834
    [62] Huber G,Stetter K O.Sulfolobus metallicus ,a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers[J]. Systematic and Applied Microbiology,1991,14:349~366
    [63] Gomez E, Ballester A, Gonzalez F.Leaching capacity of a new extremely thermophilic microorganism,Sulfolobus rivotincti[J].Hydrometallurgy 1999,52:349~366
    [64] Shiers D W, Blight K R, Ralph D E.Sodium sulphate and sodium chloride effects on batch culture of iron oxidising bacteria[J]. Hydrometallurgy 2005,80:75~82
    [65] Shiers D W, Blight K R, Ralph D E.Sodium sulphate and sodium chloride effects on batch culture of iron oxidising bacteria[J]. Hydrometallurgy 2005,80:75~82
    [66] Hu Y H, Qiu G Z, Wang J,Wang D Z,The effect of silver-bearing catalysts on bioleaching of chalcopyrite[J].Hydrometallurgy 2002,64:81~88
    [67] Gomez C, Blatquez M L, Bbllester A. Influence of various Factors in he bioleaching of a bulk concentrate with mesophilic microorganism in the presence of AG[J]. Hydrometallury, 1997, 45(2):271~287
    [68]刘晓荣,李宏煦,胡岳华等.生物浸矿的电化学催化[J].湿法冶金,2000,(3):22~27
    [69] SadnwskiZ,JazdzykE,KarasH.Bioleaching of copper ore flotation concentrates [J].Minerals Engineering,2003,16:51~53.
    [70] Mamos G,Monroy F, Christian M,et al.Occurences at mineralbacteria interfaceduring oxidation of arsenoppyrite by thiobacillus ferrooxidans [J].Biotechnology and Bioengineering,1995,46:13~21
    [71]李秀艳,周建民,魏德洲等.金属硫化物矿物生物浸出过程中Fe3+的作用[J].东北大学学报(自然科学版),2001,22(3):291~294.
    [72]周吉奎,钮因健.硫化矿生物冶金研究进展[J].金属矿山,2005,346(4):24-30
    [73]王家玲,李顺鹏,黄正.环境微生物学(第二版)[M].高等教育出版社,2004,382-393
    [74] Trevor R G, Manmohan B, Zhang Z B.Bacterial adhesion and biofilms on surfaces [J].Progress in Natural Science, 2008 (18):1049~1056
    [75]温建康,姚国成,陈勃伟等.溶液pH值对浸矿微生物活性及浸出速率的影响研究[J].稀有金属,2009,1:80~83
    [76] Arlca M Y,Kacar Y,Genc O.Entrapment of white rot fungus Trametes versicolor in Ca-alginate beads:preparation and biosorption kinetic analyisis for cadmium removal from an aqueous solution[J].Bioresouree Technology,2001,80(2):12l~129
    [77]余润兰,邱冠周,胡岳华.浸矿微生物/矿物界面的微观作用机制研究进展[J].湿法冶金,2008, 27(2):72~76
    [78]王中海,周源,钟洪鸣等.微生物浸矿技术发展现状[J].金属矿山,2007,374(8):4~6
    [79]方兆珩.生物氧化浸矿反应器的研究进展[J].黄金科学与技术, 2002, 10(6):1~7
    [80]闫志明,普红平,阳立平.生物固定化技术研究及应用评述[J].四川化工, 2004, 7(1): 12~15
    [81]俞俊棠.生物化学工程[M].化学工业出版社,1991
    [82]山根恒夫.生化反应工程[M].西北大学出版社,1992
    [83]闵小波,柴立元,钟海云等.氧化亚铁硫杆菌生长动力学参数[J]中国有色金属学报,2000,10(03):440~443
    [84] Donatie,Curutchet G,Pogliani C et a. Bioleaching of covellite using pureand mixed cultures of Thiobacillus ferrooxidans and Thiobacillus thiooxidans[J]. Process Biochemistry, 1996, 31(2):129~134
    [85]吕人豪,区嘉炜.酸煤矿水中氧化硫硫杆菌的分离及其特征[J].微生物学报,1964,10(4):467~475
    [86]童雄.微生物浸矿的理论与实践[M].北京:冶金工业出版社,1997
    [87]陈世官.生物浸出及其在有色冶金中的应用[J].上海有色金属,2000,21(3):137~146
    [88] Waksman S A. Microorganisms Concerned in the Oxidation of Sulfur in the Soil: I.Introductory [J].J Bacteriol, 1992, 7(2):231~238
    [89]邹平,杨家明,周兴龙等.嗜热嗜酸菌生物浸出低品位原生硫化铜矿[J].有色金属,2003,55(2):21~24
    [90]张传福,闵小波,柴立元等.氧化亚铁硫杆菌生长迟缓期的影响因素[J].中南工业大学学报(自然科学版),1999,30(5):489~492
    [91] Ehrlich H L, Brieriey CL.Microbial Mineral Recovery [M].R R Donnelley and Sons Company, 1990.1~25,79~105
    [92] Breed A W, Dempers CJN, Hansford G S. Studies on the bioleaching of refractory concentrates. In: The Journal of the South African Institute of Mining and Metallurgy[J]. 2000(November/December),389~397
    [93] Gericke M, Pinches A,van Rooyen J V. Bioleaching of a chalcopyrite concentrate using an extremely thermophilic culture[J].Mineral Process, 2001,62: 243~255
    [94]徐文静.氧化亚铁硫杆菌和氧化硫硫杆菌的混合培养及其浸铜机制的研究[D].甘肃省兰州市:兰州大学,2006
    [95] Waksman S A. Microorganisms Concerned in the Oxidation of Sulfur in the Soil: I. Introductory [J]. J Bacteriol, 1992,7(2):231~238
    [96]陈勃伟,温健康.生物冶金中混合菌的作用[J].金属矿山,2008,(4)
    [97] Nemati M, Lowenadler J, Harrison S T. Particle size effects in bioleaching of pyrite by acidophilic thermophile sulfolobus metallicus (BC) [J]. Appl Microbiol Biotechnol JT-Applied microbiology and biotechnology, 2000, 53(2): 196~203
    [98] Jack Barrrett ,Hughes M N, Karavaiko G L, Spencer P A.Metal extraction by bacterial oxidation of minerals[J]. Hydrometallurgy ,1993.115
    [99]张英杰,杨显万.硫化矿浸出过程的热力学[J],贵金属,1998,19(3):26~29
    [100]周吉奎,钮因健.硫化矿生物冶金研究进展[J].金属矿山,2005,(4):24~30
    [101]蒋汉派.湿法冶金过程物理化学[M].冶金工业出版社,1984
    [102]路殿坤,刘大星,蒋开喜等.硫化矿物细菌氧化机理研究进展[J].有色金属,2001,(1):2~6
    [103] Ahonen L,Tuorinen O H. Catalyzed Effects of Silver in the Microbiological Leaching of Finely Ground Chalcopyrite Containing Ore Materials in Shake Flasks [J] . Hydrometallurgy , 1993, 44(3): 219~236
    [104]邱冠周,王军,钟康年等.银催化铜矿石的细菌浸出[J].矿冶工程,1998,18(3):22~25]
    [106]北京师范大学,华中师范大学,南京师范大学无机化学教研室合编.无机化学下册,第二版[M].北京:高
    等教育出版社,1986
    [107]王致勇,董松琦.简明无机化学教程.高等教育出版社,1988.4
    [108]孙凤琴,杨佼庸.铜矿山残留硫化铜矿细菌浸出试验研究[J].矿冶,1996,No.l:63
    [109]张英杰,杨显万.贵金属[J].1998,19(8):26~29
    [110]Monod.The growth of bacterial cultures, Ann.Rev.Microbiol,1949,3:371~39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700