用户名: 密码: 验证码:
低品位氧化铅锌矿硫化—浮选工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国铅锌矿资源丰富,但其中大部分为成分复杂的硫化矿和难选的低品位复杂氧化铅锌矿。低品位氧化铅锌矿因其成分复杂而无法用常规的选矿和冶炼技术有效回收矿石中的有价金属。为提高资源综合利用率,研究开发适合于处理该类物料的高效工艺具有重要的现实意义。
     本论文以低品位氧化铅锌矿为原料,在查阅大量文献,对比多种处理方法的基础之上首次提出了低品位氧化铅锌矿的水热硫化-浮选工艺和硫化焙烧-浮选工艺,并对其中的关键技术进行了理论和试验研究。
     对常见氧化物(MO)与硫化剂(S2或FeS2)及添加剂(C或Fe)等发生反应生成金属硫化物(MS)的热力学进行了计算,并绘制了其硫化反应的△G。-T(273K≤T≤1273K)图,分析了低品位氧化铅锌矿转变为硫化矿的可能性。并采用X射线衍射和化学物相分析等方法确定了氧化铅锌矿中铅和锌的主要硫化反应方程式。
     选取具有代表性的ZnO(001)面和PbO(100)面和CaO(001)基面,采用基于第一性原理的密度泛函数方法(DFT),应用CASTEP量子化学计算软件,针对硫化过程中铅锌及脉石分解产物CaO和硫的反应,进行了ZnO(001)面、PbO(100)及CaO(001)面对S的吸附结构优化和能量计算。结果表明三种氧化物都可以和S发生相互作用,但是发生作用时,都是氧化物中的O优先和S发生吸附,然后才是金属离子与S发生吸附,三种氧化物中,最易和S发生吸附反应的是PbO,其次为CaO,ZnO对S的吸附作用较差。
     对低品位氧化锌矿和硫化剂在高压釜内的水热硫化工艺条件(硫化时间、温度、粒度、硫化剂用量、液固比等)对硫化率的影响进行研究。得出最佳水热硫化条件为:温度180℃、时间180mmin、物料粒度为小于74μm占80%、硫磺用量为理论量的1.2倍、液固比为1.2:1。
     在最佳水热硫化条件下,氧化锌矿中锌的硫化率为76.58%。对最佳水热硫化条件下的硫化物料进行选矿药剂、工艺流程及其它选矿前预处理等的探索性试验,在此基础上确定其浮选工艺流程。闭路试验中取得浮选指标为:铅精矿含铅16.82%,回收率40.35%;锌精矿含锌22.45%,回收率69.31%
     对低品位氧化铅锌矿和硫化剂在管式炉内中温(350℃-800℃)条件下的硫化焙烧工艺参数(硫化时间、温度、硫化剂用量,物料粒度等)对硫化率的影响进行了研究。得到最佳硫化焙烧工艺参数为:反应温度750℃、硫化时间120mmin、硫磺用量为理论用量的1.0倍,物料粒度小于74μm。在该条件下进行最优条件试验,铅的硫化率可稳定在97%以上,锌的硫化率可稳定在94%以上。
     对最优硫化焙烧条件下处理后的物料,用最优浮选流程进行浮选,取得闭路浮选指标为:精矿含锌为37.17%,回收率为86.62%;含铅9.40%,回收率为74.42%。
     比较水热硫化-浮选工艺的小型闭路浮选指标和硫化焙烧-浮选工艺的浮选指标,确定硫化焙烧-浮选工艺为二者中的较佳工艺,并对此进行了10t/d的半工业试验。
     21个班的灰岩矿扩大连续性试验中,当给矿铅品位为1.04%,给矿锌品位7.81%时,精矿含铅3.56%,含锌25.74%;尾矿铅品位0.35%,锌品位为1.49%;精矿铅回收率为63.75%,精矿锌回收率为75.06%。15个班的砂岩型矿石扩大连续性浮选试验和连续性统计结果表明,当给矿铅品位1.03%,锌品位为6.63%时;精矿含铅4.33%,含锌29.12%;尾矿铅品位0.38%,锌品位为1.20%;精矿铅回收率为60.24%,精矿锌回收率为74.83%。19个班的混合矿石(砂:灰=1:1)扩大连续性浮选试验和连续性指标统计表明,当给矿铅品位1.06%,锌品位为7.52%时;精矿含铅4.59%,含锌31.74%;尾矿铅品位0.33%,锌品位为1.48%;精矿铅回收率为64.25%,精矿锌回收率为73.79%。
     灰岩、砂岩及混合矿共55个班的扩大连续性浮选试验和连续性统计结果表明,当给矿铅品位1.04%,锌品位为7.39%时;精矿含铅4.07%,含锌28.15%;尾矿铅品位0.34%,锌品位为1.40%;精矿铅回收率为63.81%,精矿锌回收率为74.60%。
There is abundant resources of lead and zinc in China, but mostly are sulphide ore with complicated composition and refractory low grade lead-zinc oxide ore. It can't be effective recovery of valuable metals with conventional beneficiation and metallurgical methods from this low grade lead-zinc oxide ore because of its complicated composition. To improve the comprehensive utilization of resources, the development of high efficiency technology to treat such ores has important practical significance.
     It takes low grade lead-zinc oxide ore as materials in experiments. The new technology of hydrometallurgy and pyrometallurgy for treating low grade lead-zinc oxide ore by hydrothermal vulcanization-flotation and vulcanization roasting-flotation are proposed, and the theory and experiment of key process were investigated.
     The thermodynamics to reaction of oxides and vulcanizing agent sulfur (or pyrite) with additives carbon (or powder iron) was calculated, the possibility of oxide ore transforms into sulfide mine was analyzed by theΔGθ-T diagrams. The main vulcanization reactions were established by the technology of XRD and chemical phase analysis.
     Select the representative surfaces of ZnO (001), PbO (100) and CaO (001) as adsorption surfaces, CASTEP software was used to carry out structure optimization and energy calculation of adsorbing sulfur atoms on surfaces of ZnO (001), PbO (100) and CaO (001). The results of calculation show that the oxides (ZnO, PbO and CaO) can adsorb the sulfur atoms, but the Oxygen atoms in oxides take precedence over the metal ions in the oxides to adsorb sulfur. In these oxides, the PbO is most easily to adsorb the sulfur atoms, then is the CaO, the third is ZnO.
     The effects of hydrothermal vulcanization time, temperature, particle size, curing agent dosage, liquid-solid ratio on sulfidation rate were studied, the optimum test conditions obtained as follows:temperature is 180℃, time is 180min、particle size is -200 mesh, the dosage of sulfur is 1.2 times of theoretical dose, liquid-solid ratio is 1.2:1.
     Under these conditions, the highest sulfidation rate of zinc is 76.58%. The flotation process was choosed by exploratory test of flotation reagent, process and pretreatment before flotation. In the Closed-circuit flotation test, lead concentrate obtained contents 16.82% lead, the recovery of lead is 40.35%, zinc concentrate obtained contents 22.45% zinc, the recovery of zinc is 69.31%.
     The effects of sulfidation roasting time, temperature, particle size, curing agent dosage on sulfidation rate were researched in tubular resistance furnace, the optimum test conditions obtained as follows:temperature is 750℃, time is 120min、particle size is -200 mesh, the dosage of sulfur is 1.0 times of theoretical dose. Under these conditions, the sulfidation rate of zinc is above 94%, the sulfidation rate of lead is above 97%.
     In the closed-circuit flotation test, the mixed concentrate obtained contents 37.17% zinc with recovery of 86.62% and contents 9.40% lead with recovery of 74.42%.
     Choiced the process of vulcanization roasting-flotation as the better technology by comparing the laboratory test flotation indices of hydrothermal vulcanization-flotation and vulcanization roasting-flotation, and the pilot test was carried out with process of vulcanization roasting-flotation, test scale is 10t/d.
     The pilot test was carried on limestone ore for 21 shifts, when feed grade of lead is 1.03% and zinc is 7.81%, the flotation concentrate contents 3.56% lead with 63.75% recovery and 25.74% zinc with 75.06% recovery, the tailing contents 0.35% lead and 1.49% zinc. The pilot test was carried on sandstone ore for 15 shifts, when feed grade of lead is 1.04% and zinc is 6.63%, the flotation concentrate contents 4.33% lead with 60.24% recovery and 29.12% zinc with 74.83% recovery, the tailing contents 0.38% lead and 1.20% zinc. The pilot test was carried on mixed ore (mass ration of limestone to sandstone is 1:1) for 19 shifts, when feed grade of lead is 1.06% and zinc is 7.52%, the flotation concentrate contents 4.59% lead with 64.25% recovery and 31.74% zinc with 73.79% recovery, the tailing contents 0.33% lead and 1.40% zinc.
     Cumulative indices of 55 shifts with limestone, sandstone and mixed ore show that when feed grade of lead is 1.04% and zinc is 7.39%, the flotation concentrate contents 4.07% lead with 63.81% recovery and 28.15% zinc with 74.60% recovery, the tailing contents 0.34% lead and 1.40% zinc.
引文
[1]陈国发.重金属冶金学[M].北京:冶金工业出版社,2006,79.
    [2]刘新锦,朱亚先,高飞.无机元素化学[M].北京:科学技术出版社,2005,208-209.
    [3]董英,王吉坤,冯桂林.常用有色金属资源开发与加工[M].北京:冶金工业出版社,2005,3-4.
    [4]王曾隽,张庆芳,等.元素化学下册[M].北京:高等教育出版社,1996,444-449.
    [5]杨大锦,朱华山,陈加希,等.湿法提锌工艺和技术[M].北京:冶金出版社,2006.
    [6]史丽丽.2003年铅锌形势回顾[J].世界有色金属,2004,(5):30-31.
    [7]世界铜铝铅锌供需平衡概况[J].世界有色金属,2008,(10):58-59.
    [8]吴荣庆,张燕如,张安宁.铅锌资源供需形势分析及市场前景预测[J].江西地质,2007,31(1):59-63.
    [9]冯君从,张长海.2005铅锌工业发展分析报告[J].中国铅锌锡锑,2007,(5):36-49.
    [10]刘敏.2004年国际铅锌金属趋势回顾,环球视角.
    [11]铅锌冶金学委员会.铅锌冶金学[M].北京:科学出版社,2003,17-19.
    [12]张乐和,铅锌冶炼新技术[M].湖南科学技术出版社,2006,6-7.
    [13]杨大锦,廖元双,徐亚飞,等.锌冶金工艺概述[J].云南冶金,2002,(6):22-26.
    [14]彭容秋.重金属冶金学[M].长沙:中南大学出版社,2003.
    [15]杨显万,邱定蕃.湿法冶金[M].北京:冶金工业出版社,1998.
    [16]陈家镛,杨守志.湿发冶金研究与发展[M].北京:冶金工业出版社,1998.
    [17]梅光贵等.湿发炼锌学[M].长沙:中南大学出版社,2001.
    [18]魏昶,王吉坤.湿法炼锌理论与应用[M].昆明:云南科技出版社,2003.
    [19]易文.锌浸出渣挥发窑生产工艺与节能[J].有色冶金节能,2000,(1):11-14.
    [20]欧阳智武.提高锌挥发窑产能的生产实践[J].湖南有色金属,2007,23(3):16-19.
    [21]李永刚,俞小花,杨大锦.炉渣中铅锌还原挥发的研究[J].材料研究与应用,2008,2(1):63-65.
    [22]欧阳智武.提高锌浸出渣挥发率的基本原理和实践[J].株冶科技,2000,28(1):5-8.
    [23]赵巨宏,金忠.高温高酸浸出-黄钾铁矾工艺改进实践[J].甘肃冶金,25:79-80.
    [24]邹学功.黄钾铁矾除铁理论分析[J].冶金丛刊,1998,(6):18-20.
    [25]魏福春.湿法炼锌黄钾铁矾除铁中和剂的研究[J].中国有色冶金,2008,(1):21-23.
    [26]王顺才,张豫.热酸浸出黄钾铁矾工艺的生产实践[J].有色冶炼,2001,(2):19-22.
    [27]袁铁锤,高亮,宁顺明,等.黄钾铁矾法处理含铟高铁锌精矿[J].有色金属(冶炼部分),2008,(1):11-14.
    [28]马荣骏.热酸浸出针铁矿除铁湿法炼锌中萃取法回收铟[J].湿法冶金,1997,(62):58-61.
    [29]邓永贵,陈启元,尹周澜,等.湿法炼锌浸出液针铁矿法除铁晶种的制备[J].中国有色金属学报,2008,(18):27-31.
    [30]赵永,蒋开喜,王德全,等.用针铁矿法从锌焙烧烟尘的热酸浸出液中除铁[J].有色金属(冶炼部分),2005,(5):13-15.
    [31]M J Collins.Starting up the Sherritt Znic Pressure Leach Process at Hudson Bay. JOM[J].1994, (4):51-57.
    [32]Nathalie Leclerc Eric Meux.Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy[J].2003,70(1-3):175-183.
    [33]Chen H-K.Yang C-Y.A study on the preparation of zinc ferrite. Scandinavan journal of metallurgy [J].2001,30(4):238-241.
    [34]夏光祥,方兆衍.高铁闪锌矿精矿直接浸出新工艺研究[J].有色冶金(冶炼部分),2001,(3):8-10.
    [35]王吉坤,周廷熙,吴锦梅.高铁闪锌矿精矿加压浸出半工业试验研究[J].中国工程科学,2005,(1):60-64.
    [36]郎家重.国外锌冶炼工艺开发状况[J],有色矿冶,1994,(4):30-32.
    [37]石绍渊,张广积.硫化锌矿的生物浸出[J].国外金属矿选矿,2002,(2):12-19.
    [38]贺治国,胡岳华,胡维新,等.细菌浸出硫化矿物技术的现状与进展[J].矿产保护与利用,2002,(5):41-45.
    [39]裘荣庆.微生物冶金的应用和研究现状[J].有色金属(冶炼部分),1994,(1):23-26.
    [40]李值.细菌浸出及其应用[J].环境保护,1996,(1):19-23.
    [41]李定芝.生物技术在矿物选冶中的应用[J].世界采矿快报,1996,(20):17-19.
    [42]邱定蕃.澳大利亚DEXTEC冶金公司矿浆电解新工艺试验.北京矿冶研究总院,1982.
    [43]邱定蕃.矿浆电解[M].北京:冶金工业出版社,1999.
    [44]杨显万,张英杰.矿浆电解原理[M].北京:冶金工业出版社,2000.
    [45]李时晨,朱玉芹.回转窑高温还原挥发处理难选低品位氧化锌矿[J].云南冶金(县乡矿业版),1992(4):13-17.
    [46]梁杰,王华.低品位氧化铅锌矿的烟化富集工艺[J].有色金属(冶炼部分),2005,(4):5-7.
    [47]孙月强.回转窑处理氧化锌矿研究[J].工程设计与研究,2000,(108):4-26.
    [48]刘特明,陈德喜,胡丕成.电炉炼锌工艺实践与探讨[J].有色冶炼,1998,(5):11-16.
    [49]郭兴忠,张丙怀,阳海彬,等.氧化锌矿火法处理新工艺-铁浴熔融还原法[J].有色冶炼,2002,(2):18-22.
    [50]熊秦.真空冶炼氧化锌矿生产工艺[P].中国:200610010704.2,2006年2月.
    [51]蓝卓越,胡岳华,黎唯中.低品位氧化锌矿硫酸浸出工艺研究[J].矿冶工程,2002,22(3):63-65.
    [52]杨大锦,谢刚,贾云芝,等.低品位氧化锌矿堆浸实验研究[J].过程工程学报,2006,6(1):59-62.
    [53]覃文庆,唐双华,厉超.高硅低品位氧化锌矿的酸浸动力学[J].矿业工程,2008,28(1):62-66.
    [54]麦振海.低品位高硅氧化锌矿加压浸出试验研究[D].昆明:昆明理工大学,2006.
    [55]冯志雄.高硅高铁低品位氧化锌矿锌的酸氨浸出方法[P].中国:200410077241.2,2005年6月.
    [56]张元福,梁杰,李谦.氨盐处理氧化锌矿的研究[J].贵州工业大学学报(自然科学版),2002,31(1):37-41.
    [57]杨声海,李英念,巨少华,等.用NH4Cl溶液浸出氧化锌矿[J].湿法冶金,2006, 25(4): 179-183.
    [58]张保平,唐谟堂.NH4-Cl2NH3-2H2O体系浸出氧化锌矿[J].中南工业大学学报,2001,32(5):483-486.
    [59]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南工业大学学报(自然科学版),2003,34(6):619-623.
    [60]王瑞祥,唐谟堂.NH3-NH4Cl-H2O体系浸出低品位氧化锌矿制取电锌[J].过程工程学报,2008,8(1):119-122.
    [61]刘亚川,刘述平,李博,等.低品位氧化锌矿的氨-铵盐浸出研究[J].矿产综合利用,2008, (2):3-5.
    [62]彭清静,黄诚.氨浸法菱锌矿制活性氧化锌[J].化学世界,1996,294-296.
    [63]冯林永,沈庆峰,谢克强.等.块状低品位氧化锌矿浸出新技术研究[J].矿冶工程,2008,28(4):69-72.
    [64]冯林永,杨显万,沈庆峰,等.低品位氧化锌粉矿制粒及碱性浸出[J].有色金属(冶炼部分),2008,(3):12-16.
    [65]赵由才,刘清,易天晟.一种用氧化锌矿和锌灰渣生产锌精矿和铅精矿的方法[P].中国:200610027346.6,2006年6月.
    [66]胡汉,朱云.难选氧化锌矿氨浸的热力学[J].云南冶金,2004,33(1):28-32.
    [67]李志华,薛怀生,姚耀春.兰坪难选氧化锌矿氨浸动力学[J].云南冶金,2003,23(4): 21-23.
    [68]WANG Rui-xiang, TANG Mo-tang, YANG Sheng-hai. Leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system[J], J. Cent. South Univ. Technol,2008, (15):679-683.
    [69]赵中伟,贾希俊,陈爱良,等.碱浸氧化锌矿中硅的浸出动力学[J].江西有色金属,2008,22(4):31-34.
    [70]刘三军,欧乐明,冯其明.氧化锌矿的碱法浸出研究[J].矿产保护与利用,2004,(4):39-44.
    [71]刘三军,欧乐明,冯其明,等.低品位氧化锌矿石的碱法浸出[J].湿法冶金,2005,24(1):23-25.
    [72]张玉梅,李洁,陈启元,等.超声波辐射对低品位氧化锌矿氨浸行为的影响[J],2009,19(5):960-966.
    [73]马启坤,李晓阳,陈世明,等.一种处理低品位氧化锌矿的方法[P].中国: 02133784.5,2003年4月.
    [74]舒毓璋.氧化锌矿处理技术的进展[J].中国铅锌锡锑,2006,12(3):32-34.
    [75]QIN Wen-qing, LAN Zhou-yue, LI Wei-zhong. Recovery of zinc from low-grade zinc oxide ores by solvent extraction[J]. J. CENT. SOUTH UNIV. TECHNOL.,2003,10 (2):98-102.
    [76]沈庆峰,杨显万,舒毓璋,等.用溶剂萃取法从氧化锌矿浸出渣中回收锌[J].中国有色冶金,2006,(5):24-27.
    [77]杨龙.溶剂萃取-传统湿法炼锌工艺联合处理氧化锌矿[J].中国有色冶金,2007, (4):16-19.
    [78]杨显万,舒毓璋,杨龙,等.回收锌浸出渣中夹带锌的湿法工艺[P].中国:200610010819,2006年4月.
    [79]舒毓璋,宝国峰,张琦,杨龙.氧化锌的浸出工艺[P].中国:02133663.6,2002年8月.
    [80]舒毓璋,宝国峰,张琦,杨龙.硫化锌精矿焙砂与氧化锌矿联合浸出工艺[P].中国:02133662.8,2002年8月.
    [81]舒毓璋,杨龙.有机溶剂萃锌与湿法炼锌的联合工艺[P].中国:200610010938,2006年6月.
    [82]段秀梅,罗琳.氧化锌矿浮选研究现状评述[J].矿冶,2000,9(4):47-51.
    [83]张俊辉.浅谈氧化铅锌矿的浮选现状[J].四川有色金属,2004,(4):13-18.
    [84]《选矿手册》委员会.选矿手册[M].北京:2005年,365-370.
    [85]朱建光.2007年浮选药剂的进展[J].国外金属选矿,2008,(4):3-11.
    [86]邱允武,周怡玫,汤小军,等.新型螯合捕收剂E-5浮选氧化锌的研究[J].有色金属(选矿部分),2007,(4):43-46.
    [87]罗仙平,严志明,陈华强.会理锌矿尾矿中氧化锌的综合回收[J].金属矿山,2008(8):86-89.
    [88]A-M·马拉比尼.浮选螯合剂[J].国外金属矿选矿,2007, (11):8-14.
    [89]汪伦,冷娥,毕兆鸿.有机螯合剂在氧化锌矿浮选中的应用研究[J].昆明理工大学学报,1998,23(2):25-28.
    [90]吴卫国,孙传尧,朱永揩.五种有机螯合剂活化菱锌矿作用机理研究[J].矿冶,2007,16(1):16-20.
    [91]刘鸿儒,赵景云,朱建光.4R-10、6R-X系列药剂浮选氧化铅锌矿试验[J].江 西有色金属,1992,6(1):23-27.
    [92]谭欣,李长根.以CF为捕收剂氧化铅锌矿浮选新方法[J].有色金属,2002,54(4):86-94.
    [93]王仁东,杨小峰,邓毅.氧化锌矿全泥浮选新药剂工业试验研究[J].有色金属(冶炼部分),2008,(3):46-48.
    [94]毛素荣,杨晓军,何剑,等.氧化锌矿浮选现状及研究进展[J].国外金属矿选矿,2007,(4):4-6.
    [95]赵景云,朱建光.水杨羟肟酸浮选菱锌矿和硫酸铅试验[J].有色金属,1991,43(4):27-32.
    [96]陈经华,孙传尧.白铅矿浮选体系中硫化钠作用机理研究[J].国外金属矿选矿,2006, (2):19-20.
    [97]魏宗武,陈建华,穆枭.白铅矿在黄药体系中的浮选行为研究[J],湖南有色金属,2007,23(1):7-9.
    [98]魏宗武,陈晔.黄药体系中白铅矿的浮选行为研究[J].2008,22(1):19-21.
    [99]王福良,孙传尧.利用分子力学分析黄药捕收剂浮选未活化白铅矿的浮选行为[J].国外金属矿选矿,2008, (6):25-28.
    [100]王福良,罗思岗,孙传尧.利用分子力学分析黄药浮选未活化菱锌矿的浮选行为[J].有色金属(选矿部分),2008,(4):43-47.
    [101]朱永楷,孙传尧,吴卫国.含(硫)脲基膦酸酯对白铅矿、方解石和石英的捕收性能[J].金属矿山,2006, (12):22-25.
    [102]朱永楷,孙传尧,吴卫国.一种新型捕收剂对白铅矿和方解石与石英的捕收性能[J].有色金属,2006,58(3):77-80.
    [103]S·H·霍谢尼,等.用阳离子和阴离子混合捕收剂浮选菱锌矿的物理化学研究[J].国外金属矿选矿,2007, (10):14-16.
    [104]S·H·霍谢尼,等.用十二胺和油酸浮选菱锌矿的吸附研究[J].国外金属矿选矿,2006, (12):27-32.
    [105]S·H·霍谢尼,等.用戊基钾黄药和己硫醇浮选菱锌矿[J].国外金属矿选矿,2007, (3):32-36.
    [106]张曙光,李晓阳,张杰.兰坪难选氧化铅锌矿浮选工艺研究[J].云南冶金,2005,149(5):11-13.
    [107]罗仙平,严群,谢明辉,等.某氧化铅锌矿浮选工艺试验研究[J].有色金属(选 矿部分),2005,(1):7-10.
    [108]唐双华,覃文庆,何名飞,等.氧化锌矿硫化-胺法浮选及浸出研究[J].湖南有色金属,2007,23(3):5-7.
    [109]陈锦全,周德炎,巍宗武,等.高铁泥化氧化铅锌矿的浮选试验研究[J].矿业研究与开发,2007,27(5):50-52.
    [110]李江涛,刘全军,库建刚,等.某氧化锌矿浮选试验研究[J].有色金属(选矿部分),2007,(2):23-25.
    [111]张心平,邵广全,吴沛然,等.氧化铅锌矿石低温浮选工艺研究[J].矿冶,2003,(1):21-26.
    [112]王仁东,李振典,杨小峰.云南某氧化铅矿的浮选试验研究[J].矿产保护与利用,2009, (2):30-32.
    [113]陈建华,龙秋容,金锐,等.云南兰坪氧化铅矿强化分散浮选试验研究[J].金属矿山,2008, (9):51-54.
    [114]v·鲁格诺夫.氧化铅锌矿石选矿新工艺研究[J].国外金属矿选矿,2001,(2):25-28.
    [115]Jun Wang, Qiwu Zhang, Fumio Saito. Improvement in the floatability of CuO by dry grinding with sulfur[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,3 (2):494-497.
    [116]Jun Wang, Jinfeng Lu, Qiwu Zhang, and Fumio Saito[J]. Ind. Eng. Chem. Res. 2003, (42):5813-5818.
    [117]黎海雁,韩勇.化学选矿[M].长沙:中南工业大学出版社.1989,1-2.
    [118]周廷熙,徐晓军.有色金属矿产资源的开发及加工技术选矿部分[M].昆明:云南科技出版社.2000,118.
    [119]杨耀宗.再论金属元素的赋存状态与矿石的加工工艺[J].云南冶金(县乡矿业版),1990,(6):10-11.
    [120]杨耀宗.论汤丹氧化铜矿的工艺类型[J].云南冶金,1995,(4):20-22.
    [121]杨耀宗.东川铜矿床中的黝铜矿族矿物研究[J].云南冶金,1992,(5):22-25.
    [122]杨耀宗,王宗荣,金继祥.处理难选氧化铜矿石新工艺-氨浸硫化沉淀浮选法和水热硫化浮选法的研究[J].云南冶金,1989,(1):18-21.
    [123]钱荣耀.水热硫化法及氨浸硫化沉淀法处理氧化铜矿石过程中铜物相及矿相的研究[J].1990,(6):24-26.
    [124]A.C.切尔尼亚科.化学选矿[M].郑飞.北京:中国建筑工业出版社,1982.166-167.
    [125]宋宁,刘纯鹏.黄铜矿加硫焙烧提铜新工艺[J].有色金属,2005,57(2):84-87.
    [126]宋宁.黄铜矿硫化焙烧相变反应动力学研究[J].昆明理工大学学报,2002,27(2):5-8.
    [127]宋宁,严继康,杜景红.黄铜矿硫化焙烧相变浸出的研究[J].有色金属(冶炼部分),2005,(3):10-13.
    [128]宋宁,杜景红,杨斌,等.加硫焙烧黄铜矿的溶浸过程及其动力学分析[J].有色金属,2006,58(2):67-70.
    [129]R.PADILLA, M.RODRIGUEZ, and M.C. RUIZ. Sulfidation of Chalcopyrite with Elemental Sulfur[J]. METALLURGICAL AND MATERIALS TRANSACTIONS B,2003, (34B):15-23.
    [130]R. PADILLA, E. OLIVARES, M.C. RUIZ. Kinetics of the Sulfidation of Chalcopyrite with Gaseous Sulfur[J]. METALLURGICAL AND MATERIALS TRANSACTIONS B,2003, (34B):61-68.
    [131]R. PADILLA, P. ZAMBRANO, and M.C RUIZ. Leaching of Sulfidized Chalcopyrite with H2SO4-NaCl-O2[J]. METALLURGICAL AND MATERIALS TRANSACTIONS B,2003, (34B):153-159.
    [132]R. Padilla, D. Vega, and M.C. Ruiz. Pressure leaching of sulfidized chalcopyrite in sulfuric acid-oxygen media[J]. Hydrometallurgy,2007, (86):80-88.
    [133]R. Padilla, P. Pavez, M.C. Ruiz. Kinetics of copper dissolution from sulfidized chalcopyrite at high pressures in H2SO4-O2[J]. Hydrometallurgy,2008 (91): 113-120.
    [134]冉银华,杨玉珠,内蒙某氧化锌矿的选矿研究[J],云南冶金,2000,29(5):10-13.
    [135]周中定,湖北兴山某氧化锌矿石选矿试验研究[J],中南冶金地质,1997,(2):69-71.
    [136]赫马拉,等.矿物电极控制浮选[J].国外金属矿选矿,1999,(3):6-8.
    [137]梁英教,车荫昌.无机热力学手册[M],沈阳:东北大学出版社,1993,83-110.
    [138]叶大伦,胡建华.实用无机物热力学数据手册[M],北京:冶金工业出版社, 2002.
    [139]傅崇说.有色冶金原理[M],北京:冶金工业出版社,2005,37.
    [140]严辉,杨巍,宋雪梅,等.第一原理方法在材料科学中的应用[J].北京业大学学报,2004,30(2):210.
    [141]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社,1958.
    [142]赵成大.固体量子化学-材料化学的理论基础(第二版)[M].北京:高等教育出版社,2003.
    [143]陈秀敏.三效催化剂中双原子金属簇与NO、CO相互作用的量子化学研究[D].昆明:云南大学,2001.
    [144]H. Thomas, The calculation of atomic fields, Proc. Camb. Phil. Soc.1927,23, 542.
    [145]E. Fermi, Un metodo statistico per la determinazione di alcune priorieta dellatome, Accad.Naz. Lincei 1927,6,602.
    [146]H.Thomas, Proc.Camb.Phil.Soc.23,542,1927.
    [147]E.Fermi,Accad. Naz,Lincei,6,602,1927.
    [148]阎守胜.现代固体物理学导论[M].北京:北京大学出版社,2008.
    [149]吴代鸣.固体物理基础[M].北京:高等教育出版社,2007.
    [150]李正中.固体理论[M].北京:高等教育出版社,2002.
    [151]赵成大.固体量子化学-材料化学的理论基础(第一版)[M].北京:高等教育出版社,1997.
    [152]Francis G, P. and Payne M. C. Finite Basis Set Corrections to Total Energy Pseudopotemial Calculations. Journal of Physics-Condensed Matter,1990, 2(19):4395-4404.
    [153]Shuyi Wei, Zhiguo Wang, Zongxian Yang. First-principles studies on the Au surfactant on polar ZnO surfaces. Physics Letters A [J].2007, (363):327-331.
    [154]J. Wang, B. Hokkanen, U. Burghaus. Adsorption of CO2 on pristine Zn-ZnO(0001) and defected Zn-ZnO(0001):A thermal desorption spectroscopy study. Surface Science [J].2005,577:158-166
    [155]S. Irrera, D. Costa, P. Marcus. DFT periodic study of adsorption of glycine on the (0001) surface of zinc terminated ZnO. Journal of Molecular Structure:THEOCHEM[J].2009.
    [156]Y.F. Mei, G.G. Siu a, Ricky K.Y. Fu. Room-temperature electrosynthesized ZnO thin film with strong (0 0 2) orientation and its optical properties. Applied Surface Science[J].2006,252:2973-2977.
    [157]Masashi Ohyama, Hiromitsu Kozuka, Toshinobu Yoko. Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films[J].1997,306:78-85.
    [158]M.A. Tagliente, M. Massaro. Strain-driven (002) preferred orientation of ZnO nanoparticles in ion-implanted silica. Nuclear Instruments and Methods in Physics Research B[J].2008,266:1055-1061.
    [159]朱兴文,李勇强,陆液,等.(101)取向Li掺杂ZnO薄膜光学性能的研究[J].无机材料学报,2007,22(2):360-363.
    [160]刘卫平,吴秀玲,孟大维.等.a-2Pb02型Ti02电子结构的第一性原理计算[J].矿物岩石,2008,28(3):14-18.
    [161]徐凌,唐超群,戴磊,等.N掺杂锐钛矿Ti02电子结构的第一性原理研究[J].物理学报,2007,56(2):1048-1053.
    [162]S. Abdel Aal, W.S. Abdel Halim, A.S. Shalabi. Cl2 adsorption on supported alkali metals and on the MgO and CaO (001) supports:A DFT study. Solid State Communications[J].2008,148:464-468.
    [163]L.N. Kantorovich, M.J. Gillan. The energetics of N2O dissociation on CaO(OOl). Surface Science[J].1997,376:169-176.
    [164]Guo Xin, Pengfei Zhao, Chuguang Zheng. Theoretical study of different speciation of mercury adsorption on CaO (001) surface. Proceedings of the Combustion Institute[J].2009,32:2693-2699.
    [165]Ye Denga, Ou-He Jiaa, Xiang-Rong Chena. Phase transition and elastic constants of CaO from first-principle calculations. Physica B[J] 2007, 392:229-232.
    [166]B.B. Karki, J. Crain, J. Geophys. Res.1998,103:1245.
    [167]付云龙.开放骨架金属硫酸盐的水热合成研究[M].北京:科学出版社2008,1-2.
    [168]马世昌.基础化学反应[M].西安:陕西科学技术出版社,2003,257.
    [169]朱国才,陈家镛.碱性介质中元素硫歧化产物浸金的研究[J].有色金属(冶炼部分),1996,(1):36-39.
    [170]邓彤,陈家镛.相转移催化元素硫的歧化反应[J].无机化学,1987(10):128-131.
    [171]周富臣,王生辉,易英,等.常用数理统计方法及应用实例[M].北京:中国计量出版社,2006,311-366.
    [172]卢寿慈.矿物浮选原理[M].北京:冶金工业出版社,1987.
    [173]选矿手册编辑委员会.选矿手册第三卷第二分册[M].北京:冶金工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700