用户名: 密码: 验证码:
废水同步生物脱氮除硫特性与效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业的发展,大量高浓度氨氮和硫酸盐有机污染废水排入自然水体导致全球水污染日益严重,废水除氮和脱硫问题逐渐成为污水处理领域研究的热点。研究出一套高效的生物脱氮除硫技术,改善现有的水环境,具有较高的理论价值和现实意义。
     本文将好氧硝化/厌氧硫酸盐还原-厌氧脱硫反硝化联合工艺应用于同步生物脱氮除硫:分别启动三种不同形式的反应器并对三个单元的运行影响因素、处理效能及反应机理进行了探讨;采用适合的操作参数优化运行各反应器;将独立稳定运行的三种反应器联合起来协调处理硫酸盐有机废水和氨氮废水,实现了氮、硫和碳的高效去除。
     以高负荷富集方式成功启动容积为2.26L的好氧硝化反应器,溶解氧为0.7mg/L、pH值为8~9、温度为35oC、进水氨氮不大于600mg/L利于反应器内亚硝化效果的稳定,为了保证整体处理工艺的协调运行,调整并优化好氧硝化反应器,氨氮去除率和亚硝酸盐生成率分别达98.8%和64.2%。
     用低负荷富集培养的方法成功启动容积为5.01L的厌氧硫酸盐还原生物膜反应器,进水pH值不小于7.5、水力停留时间为6.2~10.2h、进水硫酸盐为1500~1800mg/L、进水有机碳与硫酸盐之比大于0.45利于硫酸盐和有机碳的高效去除及出水高浓度硫化物的保持。优化运行厌氧硫酸盐还原反应器,硫酸盐和有机碳去除率分别达90.6%和87%,硫化物生成率可达91.5%。硫酸盐还原菌与产甲烷菌争夺共同的底物有机碳时,由于硫酸盐还原菌对有机碳有较高亲和力而在竞争中取胜。硫酸盐还原菌降解硫酸盐速率不符合Monod双曲饱和型曲线,而符合Hill变构模型的S型曲线。
     以低负荷富集培养方式成功启动容积为3.52L的厌氧脱硫反硝化生物膜反应器,进水亚硝酸盐为20~80mgN/L、有机碳小于100mg/L、葡萄糖为碳源、硫化物为200~300mg/L、无机碳为100~150mg/L、水力停留时间为9.5~2.67h利于硫化物向单质硫的转化以及各种污染物质的高效去除。进水中有硫酸盐和氨氮会降低硫化物和硝酸盐的去除率。亚硝酸盐对电子供体的竞争力大于硝酸盐。根据调整后预处理反应器出水中各物质的比例,调整脱硫反硝化反应器的运行,硫化物、有机碳、亚硝酸盐及硝酸盐的去除率分别达到95.9%、81.9%、99.9%和99.9%。
     在兼养脱硫反硝化反应器中,硫化物和有机碳均以硝酸盐和亚硝酸盐作为电子供体,最终转化为单质硫、二氧化碳和氮气。单质硫转化为硫酸盐的速率低于硫化物转化为单质硫的速率,因此单质硫在反应器内累积。有机碳和硫化物共同将高浓度的亚硝酸盐还原为氮气,降低了硫化物和亚硝酸盐对微生物的抑制,使反应容易进行。反应器底部填料附着微生物量和种类多于顶部,填料外层微生物量和种类多于内层,底部外层丝状菌、球菌和短杆菌为优势菌种,底部内层杆菌为优势菌种,顶部外层以球菌为优势菌种,顶部内层以长杆菌为优势菌种。反应器内不同部位填料上附着大量不同种类的微生物是脱硫反硝化反应器能够处理成分复杂的废水并取得较高污染物去除率的主要原因。
     将好氧硝化反应器、厌氧硫酸盐还原反应器和厌氧脱硫反硝化反应器按照工艺流程连接,氨氮、硫酸盐及有机碳去除率分别为99.8%、91.5%和97.5%。对进出反应系统的氮、硫和碳元素进行物料平衡计算,检测原因和微生物同化作用造成的氮、硫和碳元素误差分别为3.3%、5.4%和3.8%。
With the development of industry and agriculture, a great deal of wastewater containing either ammonium-nitrogen or sulfate and organic carbon has been discharged into nature waterbodies. The water pollution around the world is becoming serious. The removal of ammonium-nitrogen and sulfate has been one of the research hotspots in wastewater treatment. The development of the high-efficiency process for the simultaneous removal of ammonium-nitrogen and sulfate may lead to the amendment of the nature water environment, which has high theoretical value and realistic significance.
     The aerobic nitrification/anaerobic sulfate reduction-anaerobic desulfurization-denitrification process was introduced to the simultaneous removal of ammonium-nitrogen and sulfate in this research. Three different types of bioreactors were started up separately. Meantime, the impact factors, treatment efficiencies and reaction mechanisms to these three operating phases were discussed. And the operation of each bioreactor was optimized by adopting advantageous impact factors. Three independent bioreactors were finally connected to treat the wastewater containing either ammonium-nitrogen or sulfate and organic carbon, which actrualized the high removal of nitrogenous, sulfurous and carbonous compounds.
     The aerobic nitrification bioreactor of 2.26L was started up successfully by means of high-load enrichement. The dissolved oxgygen of 0.7mg/L, pH value of 8~9, temperature of 35oC, influent ammonium-nitrogen of no more than 600mg/L were beneficial to the stability of nitrification via nitrite. In order to maintain the harmonious performing of the whole process, the operation parameters were adjusted to optimize the aerobic nitrification bioreactor, while the removal efficiencies of ammonium-nitrogen and the generating efficiency of nitrite reached 98.8% and 64.2%, respectively.
     The anaerobic sulfate reduction biofilm reactor of 5.01L was started up successfully by means of low-load enrichment. The influent pH value of no less than 7.5, hydraulic retention time of 6.2~10.2h, sulfate of 1500~1800mg/L, mass ratio of influent organic carbon to sulfate of no less than 0.45 were advantageous to the high removals of sulfate and organic carbon with high generation of sulfide. The optimal operation of the anaerobic sulfate reduction biofilm reactor led to the sulfate and organic carbon removal efficiencies of 90.6% and 87% with the sulfide generating efficiency of 91.5%. Sufate Reducing Bacteria won in the competition for organic carbon with Methane Producing Bacteria, as it had higher affinity to organic carbon. The degradation velocity of sulfate by Sufate Reducing Bacteria was inconsistent with Monod hyperbolic saturation curve but consistent with Hill allosteric model of S-curve.
     The microorganisms for desulfurization-denitrification were successfully enriched in the anaerobic desulfurization-denitrification bioreactor of 3.52L at mixotrophic conditions. The influent nitrite of 20~80mgN/L, organic carbon of no more than 100mg/L, glucose as organic carbon source, sulfide of 200~300mg/L, inorganic carbon of 100~150mg/L and hydraulic retention time of 9.5~2.67h were advantageous to the oxidation of sulfide to element sulfur and high removals of contaminants. The sulfate and ammonium in the influent could decrease the removals of sulfide and nitrate. The competive power of nitrite to electron donors was higher than nitrate. The mixotrophic desulfurization-denitrification bioreactor was adjusted by the proportion of each substrate in the effluents from pretreatment bioreactors. The removal efficiencies of sulfide, organic carbon, nitrite and nitrate could reach 95.9%, 81.9%, 99.9% and 99.9%, respectively.
     The sulfide and organic carbon could be oxidized respectively to element sulfur and carbon dioxide, when their electrons were transfered to nitrate and nitrite. Meanwhile, the nitrate could be reduced to nitrite and the nitrite could be reduced to nitrogen gas. The rate of element sulfur convertion to sulfate was lower than the rate of sulfide conversion to element sulfur. Therefore, the element sulfur would be accumulated in the bioreactor. The degradation of sulfide and nitrite to element sulfur and nitrogen gas decreased the inhibition on the microorganisms, which made it easy for the microorganisms to carry out the mixotrophic desulfurization-denitrification. The quantities and species of the microorganisms attached on the media at lower layer were more than the upper layer. And the quantities and species of the microorganisms attached on the media at outer layer were more than the inner layer. On the outer layer of the media at the lower layer, the filamentous bacteria, coccus and brevibacterium predominated. On the inner layer of the media at lower layer, the bacillus was the dominant bacteria. The coccus predominated on the outer layer of the media at upper layer, while the the long bacilli was the dominant bacteria on the inner layer of the media at upper layer. The more species and higher quantities of the microorganisms attached on the media were advantageous for the denitrification-desulfurization process to treat wastewater with complicated characteristics and obtain high removals of contaminants.
     According to the aerobic nitrification/anaerobic sulfate reduction -anaerobic desulfurization-denitrification process, each single bioreactor was connected. The removal efficiencies of ammonium-nitrogen, sulfate and organic carbon were around 99.8%, 91.5% and 97.5%, respectively. The mass balance calculation of nitrogen, sulfur and carbon in the process was carried out. The measurement occation error and microorganisms anabolism led to the nitrogen, sulfur and carbon disappearance of 3.3%, 5.4% and 3.8%, respectively.
引文
1 Z. Wang, C. J. Banks. Treatment of a High-strength Sulphate-rich Alkaline Leachate Using an Anaerobic Filter. Waste Management. 2007,27(3):359~366
    2 A. C. Rodrigues, M. Boroski, N. S. Shimada, J. C. Garcia, J. Nozaki, N. Hioka. Treatment of Paper Pulp and Paper Mill Wastewater by Coagulation–flocculation Followed by Heterogeneous Photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry. 2008,194:1~10
    3 J. Wang, M. C. Long, Z. J. Zhang, L. N. Chi, X. L. Qiao, H. X. Zhu, Z. F. Zhang. Removal of Organic Compounds during Treating Printing and Dyeing Wastewater of Different Process Units. Chemosphere. 2008,71:195~202
    4王浩源,缪应祺.高浓度硫酸盐废水治理技术的研究.环境导报. 2001,1:22~25
    5 G. Nyamadzawo, F. Mapanda, P. Nyamugafata, M. Wuta, J. Nyamangara. Short-term Impact of Sulphate Mine Dump Rehabilitation on the Quality of Surrounding Groundwater and River Water in Mazowe District, Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C. 2007,32:1376~1383
    6 F. Mapanda, G. Nyamadzawo, J. Nyamangara, M. Wuta. Effects of Discharging Acid-mine Drainage into Evaporation Ponds Lined with Cclay on Chemical Quality of the Surrounding Soil and Water. Physics and Chemistry of the Earth, Parts A/B/C. 2007,32:1366~1375
    7 L. Philip, M. A. Deshuddes. Sulfur Dioxide Treatment from Flue Gases Using a Biotrickling Filter-bioreactor System. Environmental Science and Technology. 2003,37(9):1978~1982
    8 K. R. Sharma, Z. Yua, D. Haas, G. Hamilton, S. Corrie, J. Keller. Dynamics and Dynamic Modelling of H2S Production in Sewer Systems. Water Research. doi:10.1016/j.watres.2008.02.013
    9 H. Gai, Y. Jiang, Y. Qian, A. Kraslawski. Conceptual Design and Retrofitting of the Coal-gasification Wastewater Treatment Process. Chemical Engineering Journal. 2008,1:84~94
    10 Q. X. Yang, M. Yang, S. J. Zhang, W. Z. Lv. Treatment of Wastewater from a Monosodium Glutamate Manufacturing Plant Using Successive Yeast and Activated Sludge Systems. Process Biochemestry. 2005,40:2483~2488
    11 A. D. Guardia, C. Petiot, D. Rogeau, C. Druilhe. Influence of Aeration Rate on Nitrogen Dynamics during Composting. Water Management. 2008, 28:575~587
    12 D. Karadag, S. Tok, E. Akgul, M. Turan, M. Ozturk, A. Demir. Ammonium Removal from Sanitary Landfill Leachate Using Natural G?rdes Clinoptilolite. Journal of Hazardous Materials. 2008,153:60~66
    13 J. Tony, L. P. David. Removal of Sulfate and Heavy Metals by Sulfate Reducing Bacteria in Short-term Bench Scale Upflow Anaerobic Packed Bed Reactor Runs. Water Research. 2003,37(14):3379~3389
    14 T. J. Hurse, J. Keller. Performance of a Substratum-irradiated Photosynthetic Biofilm Reactor for the Removal of Sulfide from Wastewater. Biotechnology and Bioengineering. 2004,87(1):14~23
    15 T. J. Hurse, J. Keller. Effects of Acetate and Propionate on the Performance of a Photosynthetic Biofilm Reactor for Sulfide Removal. Biotechnology and Bioengineering. 2005,89(2):178~187
    16 F. Peter, V. Venkatraghavan. Coupled Anaerobic/Aerobic Treatment of High-Sulfate Wastewater with Sulfate Reduction and Biological Sulfide Oxidation. Water Science and Technology. 1996,34(5~6):359~366
    17 F. P. Vandenende, A. M. Laverman, H. V. Gemerden. Coexistence of Aerobic Chemotrophic and Anaerobic Phototrophic Sulfur Bacteria under Oxygen Limitation. FEMS Microbiology Ecology. 1996,19(3):141~151
    18 I. Ferrera, R. Massana, E. O. Casamayor, V. Balague, O. Sanchez, C. Pedros-Alio, J. Mas. High-diversity Biofilm for the Oxidation of Sulfide-Containing Effluents. Applied Microbiology and Biotechnology. 2004,64(5):726~734
    19李清雪,葛振玉,张娟.生物接触氧化法处理含硫矿井废水的研究.煤炭工程. 2006,3:67~69
    20 O. Mizuno, H. Takagi, T. Noike. Biological Sulfate Removal in Acidogenic Bioreactor with an Ultrafiltration Membrane System. Water Science and Technology. 1998,38(4~5):513~520
    21吴爱兵,孔繁钰,胡海修,胡云,肖勇.膜技术在含油废水处理中的应用及研究现状. 2003,5(4):35~37
    22施志超,徐立新.膜分离技术在制浆废液回收中的应用. 2004,4:29~33
    23 H. Schenk, M. Wiemann, W. Hegemann. Improvement of Anaerobic Treatment of Tannery Beamhouse Wastewater by an Integrated Sulphide Elimination Process. Water Science and Technology. 1999,40(1):245~252
    24 P. N. L. Lens, R. Klijn, J. B. Lier, G. Lettinga. Effect of Specific Gas Loading Rate on Thermophilic (55 degrees oC) Acidifying (pH 6) and Sulfate Reducing Granular Sludge Reactors. Water Research. 2003,37(5):1033~1047
    25周伟丽,王妍春,今井刚,浮田正夫.高硫酸盐难降解废水高温厌氧处理中限量曝气的应用及影响.环境科学. 2006,27(7):1340~1344
    26苏冰琴,李亚新.硫酸盐生物还原和重金属的去除.工业水处理. 2005, 25(9):1~4
    27 R. Sierra-Alvarez, S. Karri, S. Freeman, J. A. Field. Biological Treatment of Heavy Metals in Acid Mine Drainage Using Sulfate Reducing Bioreactors. Water Science and Technology. 2006,54(2):179~185
    28 A. H. Kaksonen, J. J. Plumb, W. J. Robertson, M. Riekkola-Vanhanen, P. D. Franzmann, J. A. Puhakka. The Performance, Kinetics and Microbiology of Sulfidogenic Fluidized-bed Treatment of Acidic Metal- and Sulfate-Containing Wastewater. Hydrometallurgy. 2006,83(1~4):204~213
    29 V. Antonio, R. Martha, V. S. Tania, G. S. Armando, R. Sergio. Evaluation of Feed COD/Sulfate Ratio as a Control Criterion for the Biological Hydrogen Sulfide Production and Lead Precipitation. Journal of Hazardous Materials. 2008,151:407~413
    30 T. Renze. Biological Sulphate Reduction Using Gas-lift Reactor Fed with Hydrogen and Carbon Dioxide as Energy and Carbon Source. Biotechnology and Bioengineering. 1994,44(5):586~594
    31 W. Kuo, T. Shu. Biological Pre-treatment of Wastewater Containing Sulfate Using Anaerobic Immobilized Cells. Journal of Hazardous Materials. 2004, 113:147~155
    32 M. H. R. Z. Damianovic, I. Sakamoto, E. Foresti. Biofilm Adaptation to Sulfate Reduction in Anaerobic Immobilized Biomass Reactors Sujected to Different COD/Sulfate Ratios. Water Science and Technology. 2006, 54(2):119~126
    33 T. Yamashita, R. Yamamoto-Ikemoto, E. Sakurai. Treatment of Dye Works Wastewater Using Anaerobic-oxic Biological Filter Reactor Packed with Carbon Fibre and Aerated with Micro-bubbles. Water Science and Technology. 2006,53(11):151~161
    34 O. Mizuno, T. Noike. The Behavior of Sulfate-reducing Bacteria in Acidogenic Phase of Anaerobic Digestion. Water Research. 1998, 32(5):1626~1634
    35 A. M. Briones, B. J. Daugherty, L. T. Angenent, K. D. Rausch, M. E. Tumbleson, L. Raskin. Microbial Diversity and Dynamics in Multi- and Single-compartment Anaerobic Bioreactors Processing Sulfate-rich Waste Streams. Environmental Microbiology. 2007,9(1):93~106
    36张奎,刘海成.产酸脱硫反应器中COD/SO42-比对硫酸盐去除率的影响.科学技术与工程. 2007,7(6):1671~1819
    37韦朝海,王文祥,吴超飞.射流循环厌氧流化床两相厌氧处理高浓度硫酸盐有机废水.化工学报. 2007,58(1):205~211
    38 I. Kabdasli, O. Tünay, D. Orhon. Sulfate Removal from Indigo Dyeing Textile Wastewaters. Water Science and Technology. 1995,32(12):21~27
    39 L. D. Alves, M. C. Cammarota, F. P. D. Franca. Reduction on the Anaerobic Biological Activity Inhibition Caused by Heavy Metals and Sulphates in Effluents through Chemical Precipitation with Soda and Lime. Environmental Technology. 2006,27(12):1391~1400
    40李林涛,江永蒙,郭毅定.高硫酸盐矿井水综合处理产业化技术研究.煤田地质与勘探. 1999,27(6):51~53
    41 R. S. Gartner, F. G. Wilhelm, G. J. Witkamp, M. Wessling. Regeneration of Mixed Solvent by Electrodialysis: Selective Removal of Chloride and Sulfate. Journal of Membrane Science. 2005,250(1~2):113~133
    42 J. F. Koprivnjak, E. M. Perdue, P. H. Pfromm. Coupling Reverse Osmosis with Electrodialysis to Isolate Natural Organic Matter from Fresh Waters. Water Research. 2006,40(18):3385~3392
    43 Y. M. Chao, T. M. Liang. A Feasibility Study of Industrial Wastewater Recovery Using Electrodialysis Reversal. Desalination. 2008, 221:433~439
    44 M. Murugananthan, R. G. Bhaskar, S. Prabhakar. Removal of Sulfide, Sulfate and Sulfite Ions by Electro Coagulation. Journal of Hazardous Materials.2004,B109:37~44
    45雷灵琰,张雁秋,赵跃民.生物脱氮技术研究的新进展.江苏环境科技. 2003,16(3):43~46
    46 W. Zeng, Y. Z. Peng, S. Y. Wang. A Two-stage SBR Process for Removal of Organic Substrate and Nitrogen via Nitrite-type Nitrification-denitrification. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering. 2004,39(8):2229~2239
    47 G. Tallec, J. Garnier, M. Gousailles. Nitrogen Removal in a Wastewater Treatment Plant through Biofilters: Nitrous Oxide Emissions during Nitrification and Denitrification. Bioprocess and Biosystems Engineering. 2006,29(5~6):323~333
    48 R. Boopathy, C. Bonvillain, Q. Fontenot, M. Kilgen. Biological Treatment of Low-salinity Shrimp Aquaculture Wastewater Using Sequencing Batch Reactor. International Biodeterioration and Biodegradation. 2007,59 (1):16~19
    49 G. T. Daigger, H. X. Littleton. Orbal氧化沟同时硝化/反硝化及生物除磷的机理研究.中国给水排水.1999,15(3):1~7
    50 K. Pochana, J. Keller. Study of Factors Affecting Simultaneous Nitrification and Denitrification(SND). Water Science and Technology. 1999,39(6):61~68
    51 G. F. Nakhla, A. Lugowski, A. Sverdlikov, G. Scherbina, K. Babcock. Simultaneous Nitrification-denitrification and Clarification in a Pseudoliquified Activated Sludge System. Water Environment Research. 2005,77(1):98~112
    52 L. Chu, X. Zhang, F. Yang, X. Li. Treatment of Domestic Wastewater by Using a Microaerobic Membrane Bioreactor. Desalination. 2006,189:181~192
    53 Y. C. Chiu, L. L. Lee, C. N. Chang, A. C. Chao. Control of Carbon and Ammonium Ratio for Simultaneous Nitrification and Denitrification in a Sequencing Batch Bioreactor. International Biodeterioration and Biodegradation. 2007,59(1):1~7
    54林涛,操家顺,钱艳.新型的脱氮工艺—SHARON工艺.环境污染与防治. 2003,25(3):164~166
    55 S. Y. Wang, D. W. Gao, Y. Z. Peng, P. Wang, Q. Yang. Alternating Shortcut - 126 -Nitrification-denitrification for Nitrogen Removal from Soybean Wastewater by SBR with Real-time Control. Journal of Environmental Science-China. 2004,16(3):380~383
    56 G. Ciudad, O. Rubilar, P. Munoz, G. Ruiz, R. Chamy, C. Vergara, D. Jeison. Partial Nitrification of High Ammonia Concentration Wastewater as a Part of a Shortcut Biological Nitrogen Removal Process. Process Biochemistry. 2005,40(5):1715~1719
    57 J. Chung, W. Bae, Y. W. Lee, B. E. Rittmann. Shortcut Biological Nitrogen Removal in Hybrid Biofilm/Suspended Growth Reactors. Process Biochemistry. 2007,42(3):320~328
    58沈耀良,赵丹,黄勇.废水生物脱氮新技术-氨的厌氧氧化.苏州城建环保学院学报. 2002,15(1):19~24
    59 A. A. Graaf, P. Bruijn, L. A. Robertson, M. S. M. Jetten, G. Kuenen. Metabolic Pathway of Anaerobic Ammonium Oxidation on the Base of 15N Studies in a Fluidized Bed Reactor. Microbiology. 1997,143:2415~2421
    60 M. S. M. Jetten, M. Strous, K. T. Pas-schoonen, J. Schalk, U. G. J. M. Dongen, A. A. Graaf, S. Logemann, G. Muyzer, M. C. M. Loosdrecht, J. G. Kuenen. The Anaerobic Oxidation of Ammonium. FEMS Microbiology Reviews. 1998,22(5):421~437
    61 C. Trigo, J. L. Campos, J. M. Garrido, R. Mendez. Start-up of the Anammox Process in a Membrane Bioreactor. Journal of Biotechnology. 2006,126 (4):475~487
    62 H. P. Chuang, A. Ohashi, H. Imachi, M. Tandukar, H. Harada. Effective Partial Nitrification to Nitrite by Down-flow Hanging Sponge Reactor under Limited Oxygen Condition. Water Research. 2007,41(2):295~302
    63 H. W. Zhao, D. S. Mavinic, W. K. Oldhalm, F. A. Koch. Controlling Factors for Simultaneous Nitrification and Denitrification in a Two–stage Intermittent Aeration Process Treating Domestic Sewage. Water Research. 1999,33(4):961~970
    64 H. Yoo, K. Ahn, H. Lee, K. Lee, Y. Kwak, K. Song. Nitrogen Removal from Synthetic Wastewater by Simultaneous Nitrification and Denitrification via Nitrite in an Intermittently-aerated Reactor. Water Research. 1999, 33(1):145~154
    65吕锡武,李峰,稻森悠平,水落元之.氨氮废水处理过程中的好氧反硝化研究.给水排水. 2000,26(4):17~20
    66 S. G. Xie, X. J. Zhang, Z. S. Wang. Temperature Effect on Aerobic Denitrification and Nitrification. Journal of Environmental Science-China.2003,15(5):669~673
    67 Y. Otani, K. Hasegawak. Comparison of Aerobic Denitrifying Activity among Three Cultural Species with Various Carbon Sources. Water Science and Technology. 2004,50(8):15~22
    68许春华,周琪.高效藻类塘的研究与应用.环境保护. 2001,8:41~43
    69王晓波,曹爱国,刘永松.活性污泥—藻类共生间歇法处理城市污水中的氮磷.湘潭大学自然科学学报. 1996,18(1):7~77
    70 G. Sun, K. R.Gray, A. J. Biddlestone, D. J. Cooper. Treatment of Agricultural Wastewater in a Combined Tidal Flow-down-flow Reed Bed System. Water Science and Technology. 1999, 40(3):139~146
    71 C. M. Weedon. Compact Vertical Flow Constructed Wetland Systems-first Two Years' Performance. Water Science and Technology. 2003,48(5):15~23
    72 J. Chang, C. L. Yue, Y. Ge, Y. M. Zhu. Treatment of Polluted Creek Water by Multifunctional Constructed Wetland in China's Subtropical Region. Fresenius Environmental Bulletin. 2004,13(6):545~549
    73 M. R. Burchell, R. W. Skaggs, C. R. Lee, S. Broome, G. M. Chescheir, J. Osborne. Substrate Organic Matter to Improve Nitrate Removal in Surface-flow Constructed Wetlands. Journal of Environmental Quality. 2007, 36(1):194~207
    74何少华,黄仕元,金必慧.沸石在水和废水处理中的应用.矿业工程. 2004,2(1):24~27
    75 S. Aiyuk, H. Xu, A. Haandel, W. Verstraete. Removal of Ammonium Nitrogen from Pretreated Domestic Sewage Using a Natural Ion Exchanger. Environment Technology. 2004,25(11):1312~1330
    76 Y. F. Wang, F. Lin, W. Q. Pang. Removal of Ammonium Ions from Wastewater Using Modified Zeolites. Fresenius Environmental Bulletin. 2007,16(1):24~28
    77 A. Thornton, P. Pearce, S. A. Parsons. Ammonium Removal from Digested Ssludge Liquors Using Ion Exchange. Water Research. 2007,41(2):433~439
    78 F. Kargi, M. Y. Pamukoglu. Adsorbent Supplemented Biological Treatment of Pre-treated Landfill Leachate by Fed-batch Operation. Bioresource Technology. 2004,94(3):285~291
    79祁贵生,刘有智,王建伟,焦纬洲.超重力法吹脱氨氮废水技术应用研究.煤化工. 2007,1:61~63
    80张胜田,江希流,林玉锁,郭庆,安立超.吹脱-沸石吸附法处理荧光粉生产废水研究.环境工程学报. 2007,1(2):29~33
    81 C. Tünay, G. E. Zengin, I. Kabdasli, O. Karahan. Performance of Magnesium Ammonium Phosphate Precipitation and Its Effect on Biological Treatability of Leather Tanning Industry Wastewaters. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering. 2004,39(7):1891~1902
    82 J. J. Lee, C. U. Choi, M. J. Lee, I. H. Chung, D. S. Kim. A Study of NH3-N and P Refixation by Struvite Formation in Hybrid Anaerobic Reactor. Water Science and Technology. 2004,49(5-6):207~214
    83 E. Gain, S. Laborie, P. Viers, M. Rakib, G. Durand, D. Hartmann. Ammonium Nitrate Wastewater Treatment by Coupled Membrane Electrolysis and Electrodialysis. Journal of Applied Electrochemistry. 2002,32(9):969~975
    84 A. M. A. Ben, M. Rakib, S. Laborie, P. Viers, G. Durand. Coupling of Bipolar Membrane Electrodialysis and Ammonia Stripping for Direct Treatment of Wastewaters Containing Ammonium Nitrate. Journal of Membrane Science. 2004,244(1~2):89~86
    85杨晓奕,蒋展鹏,潘咸峰.膜法处理高浓度氨氮废水的研究.水处理技术. 2003,29(2):85~88
    86王鹏,刘伟藻,方汉平.垃圾渗滤液中NH3-N的电化学氧化.中国环境科学. 2000,20(4):289~291
    87 N. N. Rao, K. M. Somasekhar, S. N. Kaul, L. Szpyrkowucz. Electrochemical Oxidation of Tannery Wastewater. Journal of Chemical Technology and Biotecnology. 2001,76(11):1124~1131
    88 I. Ihara, K. Kanamura, E. Shimada, T. Watanabe. High Gradient Magnetic Separation Combined with Electrocoagulation and Electrochemical Oxidation for the Treatment of Landfill Leachate. IEEE Transactions onApplied Superconductivity. 2004,14(2):1558~1560
    89 Y. Wang, J. Qu, R. Wu, P. Lei. The Electrocatalytic Reduction of Nitrate in Water on Pd/Sn-Modified Activated Carbon Fiber Electrode. Water Research. 2006,40:1224~1232
    90许国强,曾光明,殷志伟,张剑锋.氨氮废水处理技术现状及发展.湖南有色金属. 2002,18(2):29~33
    91宁平,曾凡勇,胡学伟.中高浓度氨氮废水综合处理.有色金属. 2003, 55:130~132
    92 Y. Li, R. Zhang, H. S. Li, D. M. Dong, L. Liu, G. H. Liu, H. L. Liu. Catalytic Wet Air Oxidation of Ammonia in Landfill Leachates in the Presence of Co/Bi Catalyst. Chinese Journal of Chinese Universities-Chinese. 2005,26(3):430~435
    93 J. Qina, A. Ken-ichi. Catalytic Wet Air Oxidation of Ammonia over Alumina Supported Metals. Applied Catalysis B: Environmental. 1998, 16:261~268
    94 L. Oliviero, J. Barbier, D. Duprez. Wet Air Oxidation of Nitrogen-containing Organic Compounds and Ammonia in Aqueous Media. Applied Catalysis B-Environmental. 2003,40(3):163~184
    95 Y. Li, L. Liu, G. H. Huang, L. Zhu. Ammonia Removal in the Catalytic Wet Air Oxygen Process of Landfill Leachates with Co/Bi Catalyst. Water Science and Technology. 2006,54(8):147~154
    96 G. Qin, C. C. K. Liu, N. H. Richman, J. E. T. Moncur. Aquaculture Wastewater Treatment and Reuse by Wind-driven Reverse Osmosis Membrane Technology: a Pilot Study on Coconut Island, Hawaii. Aquacultural Engineering. 2005,32(3~4):365~378
    97 A. Bodalo, J. L. Gomez, E. Gomez, G. Leon, M. Tejera. Ammonium Removal from Aqueous Solutions by Reverse Osmosis Using Cellulose Acetate Membranes. Desalination. 2005,184(1~3):149~155
    98徐永平,陈东辉,徐红秋.膜法处理氯化铵废水的试验研究.工业水处理. 2005,25(2):29~30
    99 S. M. C. Ritchie, D. Bhattacharyya. Membrane-based Hybrid Processes for High Water Recovery and Selective Inorganic Pollutant Separation. Journal of Hazardous Materials. 2002,92(1):21~32
    100 H. J. Lee, S. J. Oh, S. H. Moon. Recovery of Ammonium Sulfate fromFermentation Waste by Electrodialysis. Water Research. 2003,37:1091~1099
    101 I. Siminiceanu, I. L. Cotet. The Electrodialysis of Ammonium Sulphate Solutions. Revista De Chimie. 2005,56(2):141~143
    102 G. Percheron, N. Bernet, R. Moletta. Interactions between Methanogenic and Nitrate Reducing Bacteria during the Anaerobic Digestion of an Industrial Sulfate Rich Wastewater. FEMS Microbiology Ecology. 1999,29:341~350
    103 A. Wiessner, U. Kappelmeyer, P. Kuschk, M. K?stner. Sulphate Reduction and the Removal of Carbon and Ammonia in a Laboratory-scale Constructed Wetland. Water Research. 2005,39:4643~4650
    104 A. Neori, M. D. Krom, J. Rijn. Biogeochemical Processes in Intensive Zero-effluent Marine Fish Culture with Recirculating Aerobic and Anaerobic Biofilters. Journal of Experimental Marine Biology and Ecology. 2007, 349:235~247
    105 S. Otte, J. G. Kuenen, L. P. Nielsen, H. W. Paerl, J. Zopfi, H. N. Schulz, A. Teske, B. Strotmann, V. A. Gallardo, B. B. Jorgensen. Nitrogen, Carbon, and Sulfur Metabolism in Natural Thioploca Samples. Applied and Environmental Microbiology. 1999, 65(7):3148~3157
    106 D. Gevertz, A. J. Telang, G. V. Gary, E. Jenneman. Isolation and Characterization of Strains CVO and FWKO B, Two Novel Nitrate-reducing, Sulfide-oxidizing Bacteria Isolated from Oil Field Brine. Applied and Environmental Microbiology. 2000, 66(6):2491~2501
    107 S. E. Oh, Y. B. Yoo, J. C. Young, I. S. Kim. Effect of Organics on Sulfur-utilizing Autotrophic Denitrification under Mixotrophic Conditions. Journal of Biotechnology. 2001,92:1~8
    108 J. Am, M. Bum, S. Kim, Y. Ahn, I. S. Kim, P. L. Bishop. Assessment of Characteristics of Biofilm Formed on Autotrophic Denitrification. Journal of Microbiology and Biotechnology. 2005,15(3):455~460
    109 T. C. Zhang, D. G. Lampe. Sulfur: Limestone Autotrophic Denitrification Process for Treatment of Nitrate-contaminated Water: Batch Experiments. Water Research. 1999,33(3):599~608
    110 H. S. Moon, K. H. Ahn, S. Lee, K. Nam, J. Y. Kim. Use of Autotrophic Sulfur-oxidizers to Remove Nitrate from Bank Filtrate in a Permeable Reactive Barrier System. Environmental Pollution. 2004,129:499~507
    111 H. R. Kim, I. S. Lee, J. H. Bae. Performance of a Sulphur-utilizing Fluidized Bed Reactor for Post-denitrification. Process Biochemistry. 2004, 39:1591~1597
    112 S. A. Reyes, B. C. Ricardo, S. Margarita, G. Jorge, R. F. Elias, J. A. Field. Chemolithotrophic Denitrification with Elemental Sulfur for Groundwater Treatment. Water Research. 2007,41:1253~1262
    113 R. Nugroho, H. Takanashi, M. Hirata, T. Hano. Denitrification of Industrial Wastewater with Sulfur and Limestone Packed Column. Water Science and Technology. 2002,46(11~12):99~104
    114 K. Hasegawa, K. Shimizu, K. Hanaki. Nitrate Removal with Low N2O Emission by Application of Sulfur Denitrification in Actual Agricultural Field. Water Science and Technology. 2004,50(8):145~151
    115 S. Gadekar, M. Nemati, G. A. Hill. Batch and Continuous Biooxidation of Sulphide by Thiomicrospira sp. CVO: Reaction Kinetics and Stoichiometry. Water Research. 2006,40:2436~2446
    116 A. J. Wang, D. Z. Du, N. Q. Ren, X. Cheng, C. S. Liu. Tentative Study on a New Way of Simultaneous Desulfurization and Denitrification. Chinese Journal of Chemical Engineering. 2005,13(3):422~425
    117 Q. Mahmood, P. Zheng , J. Cai, D. Wu, B. Hu, J. Li. Anoxic Sulfide Biooxidation Using Nitrite as Electron Acceptor. Journal of Hazardous Materials. 2007,147:249~256
    118 R. Sierra-Alvarez, F. Guerrero, P. Rowlette, S. Freeman, J. A. Field. Comparison of Chemo-, Hetero- and Mixotrophic Denitrification in Laboratory-scale UASBs. Water Science and Technology. 2005,52(1~2):337~342
    119 B. Krishnakumar, V. B. Manilal. Bacterial Oxidation of Sulphide under Denitrifying Conditions. Biotechnology Letters. 1999,21:437~440
    120 D. U. Lee, I. S. Lee, Y. D. Choi, J. H. Bae. Effects of External Carbon Source and Empty Bed Contact Time on Simultaneous Heterotrophic and Sulfur-utilizing Autotrophic Denitrification. Process Biochemistry. 2001, 36:1215~1224
    121 S. E. Oh, K. S. Kim, H. C. Choi, J. Cho, I. S. Kim. Kinetics and Physiological Characteristics of Autotrophic Dentrification by DenitrifyingSulfur Bacteria. Water Science and Technology. 2000,42(3~4):59~68
    122 S. E. Oh, M. S. Bum, Y. B. Yoo, A. Zubair, I. S. Kim. Nitrate Removal by Simultaneous Sulfur Utilizing Autotrophic and Heterotrophic Denitrification under Different Organics and Alkalinity Conditions: Batch Experiments. Water Science and Technology . 2002,47(1):237~244
    123 R. B. Cardoso, R. Sierra-Alvarez, P. Rowlette, E.R. Flores, J. Gomez, J. A. Field. Sulfide Oxidation under Chemolithoautotrophic Denitrifying Conditions. Biotechnology and Bioengineering. 2006,95(6):1148~1157
    124 E. W. Kim, J. H. Bae. Alkalinity Requirements and the Possibility of Simultaneous Heterotrophic Denitrification during Sulfur-utilizing Autotrophic Denitrification. Water Science and Technology. 2000,42:233~238
    125 P. J. Gommers, W. Buleveld, F. J. Zuiderwijk, J. G. Kuenen. Simultaneous Sulfide and Acetate Oxidation in a Denitrifying Fluidized Bed Reactor-II. Measurements of Activities and Conversion. Water Research. 1988,22(9):1085~1092
    126 R. A. Jesús, R. F. Elías, G. Jorge. Simultaneous Biological Removal of Nitrogen, Carbon and Sulfur by Denitrification. Water Research. 2004,38:3313~3321
    127 S. Kalyuzhnyi, M. Gladchenko, A. Mulder, B. Versprille. DEAMOX—New Biological Nitrogen Removal Process Based on Anaerobic Ammonia Oxidation Coupled to Sulphide-driven Conversion of Nitrate into Nitrite. Water Research. 2006,40:3637~3645
    128 R. C. Brunet, L. J. GarciaGil. Sulfide-induced Dissimilatory Nitrate Reduction to Ammonia in Anaerobic Freshwater Sediments. FEMS Microbiology. 1996,21(2):131~138
    129 S. G. Sommer, G. Mathanpaal, G. T. Dass. A Simple Biofilter for Treatment of Pig Slurry in Malaysia. Environmental Technology. 2005,26(3):303~312
    130 I. Vazquez, J. Rodrigue, E. Maranon, L. Castrillon, Y. Fernandez. Simultaneous Removal of Phenol, Ammonium and Thiocyanate from Coke Wastewater by Aerobic Biodegradation. Journal of Hazardous Materials. 2006,137(3):1773~1780
    131 S. Chen, J. Liu. Landfill Leachate Treatment by MBR: Performance andMolecular Weight Distribution of Organic Contaminant. Chinese Science Bulletin. 2006,51(23):2831~2838
    132 I. S. Chang, B. H. Kim. Effect of Sulfate Reduction Activity on Biological Treatment of Hexavalent Chromium [Cr(VI)] Contaminated Electroplating Wastewater Under Sulfate-rich Condition. Chemosphere. 2007,68(2):218~226
    133 M. L. Nguyen, C. C. Tanner. Ammonium Removal from Wastewaters Using Natural New Zealand Zeolites. New Zealand Journal of Agricultural Research. 1998,41(3):427~446
    134 K.C. Hall, D. S. Baldwin, G. N. Rees, A. J. Richardson. Distribution of Inland Wetlands with Sulfidic Sediments in the Murray-darling Basin, Australia. Science of the Total Environment. 2006,370(1):235~244
    135 J. Puigagut, H. Salvadó, J. García. Short-term Harmful Effects of Ammonia Nitrogen on Activated Sludge Microfauna. Water Research. 2005,39:4397~4404
    136 T. Müller, B. Walter, A. Wirtz, A. Burkovski. Ammonium Toxicity in Bacteria. Current Microbiology. 2006,52:400~406
    137王桂芝.分光光度法测定矿石和土壤中单质硫.冶金分析. 1998,18(3):52~53
    138郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.科学出版社, 2004:56~57
    139 U. Wiesmann. Biological Nitrogen Removal from Wastewater. Advances in Biochemical Engineering/Biotechnology. 1994,51:113~154
    140孙振世,柯强,陈英旭. SBR生物脱氮机理及其影响因素.中国沼气. 2001,19(2):16~19
    141 B. Nicolas, D. Peng, D. Jean-Philippe, M. René. Nitrification at Low Oxygen Concentration in Biofilm Reactor. Journal of Environmental Engineering. 2001,127(3):266~271
    142 A. Anthonisen, R. Loehr, T. Prakasam, E. Srinath. Inhibition of Nitrification by Ammonia and Nitrous Acid. Journal of Water Pollution Control Fed. 1975, 48(5):835~852
    143 G. Ruiz, D. Jeison, R. Chamy. Nitrification with High Nitrite Accumulation for the Treatment of Wastewater with High Ammonia Concentration. Water Research. 2003,37:1371~1377
    144刘俊新,王秀蘅.高浓度氨氮废水亚硝酸型与硝酸型脱氮的比较研究.工业用水与废水. 2002,33(3):1~4
    145杨宗政,王顾平,刘静文.好氧序批式MBR处理高浓度废水.中国给水排水. 2005,21(3):53~56
    146李红岩,高孟春,杨敏,潘峰,王宝泉,王丹.组合膜生物反应器处理高浓度氨氮废水.环境科学. 2002,23(5):62~66
    147张小里,陈志昕,刘海洪,郭生武,陈开勋.环境因素对硫酸盐还原菌生长的影响.中国腐蚀与防护学报. 2000,20(4):224~229
    148刘广民,任南琪.产酸-硫酸盐还原系统中产酸菌的发酵类型及其与SRB的协同作用.环境科学学报. 2004,24(5):782~788
    149王爱杰,任南琪.产酸脱硫反应器中影响硫酸盐还原的关键因素研究.哈尔滨工业大学学报. 2002,34(4):445~450
    150蔡晶,芮铭先,芮尊元. H/O生化处理系统中硫酸盐的转化规律.环境保护. 2001,20(10):19~20,23
    151张奎,刘海成.产酸脱硫反应器中COD/SO42-比对硫酸盐去除率的影响研究.科学技术与工程. 2007,7(6):1119~1121
    152冯颖,康勇,张忠国.硫酸盐生物还原体系的主要影响因素研究.水处理技术. 2005,31(3):25~29
    153 A. J. Silva, M. B. Varesche, E. Foresti, M. Zaiat. Sulphate Removal from Industrial Wastewater Using a Packed-bed Anaerobic Reactor. Process Biochemistry. 2002,37:927~935
    154 M. T. Alvarez, T. Pozzo, B. Mattiasson. Enhancement of Sulphide Production in Anaerobic Packed Bed Bench-scale Biofilm Reactors by Sulphate Reducing Bacteria. Biotechnology Letters. 2006,28:175~181
    155 C. Y. Lin, C. H. Chang, F. Y. Chang. Sensitivity of Anaerobic Sludge Biogranule to Sulfur Compounds. Biotechnology Letters. 1999,21:421~423
    156 W. C. C. Kuo, T. Y. Shu. Biological Pre-treatment of Wastewater Containing Sulfate Using Anaerobic Immobilized Cells. Journal of Hazardous Materials. 2004,113:147~155
    157 E. Chio, J. M. Rim. Competition and Inhibition of Sulfate Reducers and Methane Producers in Anaerobic Treatment. Water Science and Technology. 1991,23:1259~1264
    158万海清,苏仕军,朱家骅,万雪松,葛长海.硫酸盐还原菌的生长影响因子及脱硫性能的研究.高校化工学报. 2004,18(2):218~223
    159 F. Widdel. Biology of Anaerobic Microorganisms. John Wiley and Sons. 1988:15~16
    160 F. Widdel, F. Bak. The Prokaryotes: a Handbook on the Biology of Bacteria:Ecophysiology, Isolation, Identification, Applications. Spring Verlag, 1992:36~37
    161竺建荣,胡继萃,顾夏声.硫酸盐还原作用对厌氧消化过程的影响与控制.中国沼气. 1993,11(1):13~18
    162 J. R. Postgate. The Sulphate Reducing Bacteria. Cambridge University Press, 1984:21~23
    163贺延龄.废水的厌氧生物处理.中国轻工业出版社, 1998:427~446
    164缪应祺.废水生物脱硫机理及技术.化学工业出版社, 2004:135~136
    165 M. A. Reiz. Effect of Hydrogen Sulfide on Growth of Sulfate Reducing Bacteria. Biotechnology and Bioengineering. 1992,40(5):593~600
    166藏荣春,夏凤毅.微生物动力学模型.化学工业出版社, 2004:67~73
    167安东·莫泽尔.生物工艺技术学动力学及反应器.湖南科学技术出版社, 1994:254~259
    168 J. C. Akunna, C. Bizeau, R. Moletta. Nitrate and Nitrite Reductions with Anaerobic Sludge Using Various Carbon Sources: Glucose, Glycerol, Acetic Acid, Lactic Acid and Methanol. Water Research.1983,27(8):55~8
    169 J. G. Kuenen. Growth Yields and Maintenance Energy Requriement in Thiobacillus Species under Energy Limitation. Archives of Microbiology. 1979,122:183~188
    170 A. Matin. Organic Nutrition of Chemolithotrophic Bacteria. Annual Review of Microbiology. 1978,32:433~468
    171刘宏芳,汪梅芳,许立铭.脱氮硫杆菌生长特性及其对SRB生长的影响.微生物学通报. 2003,30(3):46~49
    172 G. Mcgomas, K. L. Sublette. Characterization of a Novel Biocatalvst for Sulfide Oxidation. Biotechnology Progress. 2001,17:439~446
    173邢嘉,叶向德,高榕,王志盈.硫酸盐还原对活性污泥沉降性能的影响.中国给水排水. 2007,23:92~95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700