用户名: 密码: 验证码:
农村富营养化天然水体的人工湿地净化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过人工湿地对农村富营养化水体中污染物去除性能和规律进行的小试和中试试验,对湿地植物的生长特性及其吸收氮磷的特点、湿地基质微生物数量分别与碳源代谢等进行了较为系统和深入的研究,通过试验结果可以得到如下结论:
     4种类型湿地(香蒲水平潜流、风车草水平潜流、香蒲垂直潜流、风车草垂直潜流)对富营养化水体均具有较好的净化能力。在水力停留时间为3d,进水COD、总氮、总磷分别为45~110mg/l、1.5~5.2mg/l和0.22~1.54mg/l的条件下,出水COD能达到地表水Ⅳ类水标准(GB3838-2002),总氮除8月为Ⅳ类外其余均能达到Ⅲ类水标准,总磷除8、9月为Ⅲ~Ⅳ类外其余均能达到Ⅱ类水标准。在水华暴发的7、8、9月间湿地对浮游植物的去除效果良好,在进水叶绿素a浓度高达103.5mg/m~3~252.4mg/m~3时,湿地的去除率可达82.5%~99.2%之间。对污染物面积负荷与湿地面积去除率的研究表明,在处理这类低浓度富营养化水体时,4种类型的湿地对COD、总氮、总磷的面积去除率与污染物面积负荷在全年期间均呈良好的线性关系,显示了在处理低浓度水时良好的处理与适应能力。总体来说人工湿地能够有效地发挥净化农村富营养化水体的作用,出水能够达到较好的水质水平。
     在4种类型湿地去除效果中比较,在试验初期和第二年初春(3月),两种植物类型湿地中,无论是垂直潜流还是水平潜流,污染物各个指标香蒲湿地均略好于风车草,但在随试验进行到第一年10月至1月间,第二年4月后,风车草又略好于香蒲,显示植物生长发育周期不同对湿地处理效果影响较大。在两种流态湿地中比较,COD是水平潜流一直略好于垂直流;而总氮和氨氮在香蒲湿地中垂直流在秋冬季节要略好于水平潜流,其它时间相当,而风车草湿地中两种流态没有明显差别;总磷在香蒲湿地中垂直流在冬春要略差于水平潜流,风车草湿地两种流态差别不大。总体来看植物对去除效果的影响要大于流态的影响,但这种影响在处理这种低浓度富营养化水体上并不很明显。
     在水平潜流湿地中,从前向后植物高度和分生植株数量都呈递减趋势,而垂直潜流湿地中的植物株(丛)间差异不明显。收割后的植物地上生物量显示风车草地上部分株(丛)均生物量要远大于香蒲,不同单元间约为香蒲的1.51~3.01倍,水平潜流湿地前后植物地上部分生物量差异显著。对不同湿地植物NP元素进行测定,结果显示:风车草植物N元素含量远高于香蒲;不同单元植物地上部分N元素差异显著,在水平潜流湿地中从前向后N元素含量呈梯次递减,而P元素差异较小,垂直潜流湿地株(丛)间差异不显著且NP含量较水平潜流高。人工湿地处理低浓度富营养化水体时,植物更容易受到N元素缺乏胁迫影响,而P影响较小。比较人工湿地不同单元间植物地上部分吸收NP量,两种植物的水平潜流湿地中从前向后4个单元间吸收量差异均极为显著,从前向后显著递减,这种差异性与生物量或植物NP浓度相比而言,与生物量相关性更强,显示植物生长受到污染物浓度沿程降低(特别是N元素)的显著影响,而垂直潜流湿地中植物吸收量与水平潜流湿地最大的第一单元相当。研究植物地上部分吸收NP量对湿地总去除量的贡献可知:植物吸收的作用很大,反映了在处理低浓度富营养化水体时,植物吸收发挥了重要的作用,通过收割植物地上部分能将植物吸收的NP部分迁移出人工湿地,延长湿地使用年限。
     使用三维荧光扫描技术对溶解性有机物在湿地中的转化研究结果表明进水的三维荧光光谱可表征出4类溶解性有机物,在湿地净化过程中,这4类有机物表现出不同的趋势,表征受污染状况的2个常见类蛋白峰(类酪氨酸和类色氨酸)均出现降低的趋势,显示进水中部分溶解性有机物的被利用和削减,而2个类富里酸峰(可见光类富里酸和紫外类富里酸)则出现增加,证实了有机物在湿地中并不只是简单的被吸收利用,而是存在分解转化,这种转化更明显的表现在向不易被生物利用的腐殖化方向发展。在湿地垂直方向上,上层孔隙水中类蛋白峰较强,而下层孔隙水中类富里酸峰较强;在水平潜流湿地水平方向上前部类蛋白峰较强,而后部类富里酸峰较强,较易被利用的类蛋白峰强变化与微生物数量和碳源代谢活性大小趋势相符。
     在两种流态湿地中,细菌总数都是沿程逐渐降低,水平潜流湿地上层基质细菌总数要比中下层高约1个数量级,但细菌总数与各段污染物去除率之间没有明显相关性。Biolog测试得到的平均色度变化(AWCD)显示,就微生物群落对能源碳的代谢能力而言:在两种流态湿地样点中比较,不同季节下,微生物群落代谢能力有差异,在秋季,水平潜流湿地前部下层低于其它三点,微生物活性而垂直潜流上层较低于下层;在春季,较低的这两点都出现活性恢复。对Biolog测试数据进行不同类别碳源类型的代谢分析:各采样点对聚合物、糖类、羧酸和氨基酸4类碳源利用较好,但对胺类和酚类利用差异较大。对Biolog测试96h数据标准化后使用主成分分析,结果表明,无论是秋季还是春季,两种流态人工湿地床体不同部位样点均能被分开,显示样点间各自具有不同的碳源利用特性,各自对碳源具有不同的利用特性。根据Biolog测试的数据计算不同样点的碳源利用功能多样性指数显示:在不同季节不同流态的湿地中,各采样基质点丰度、均匀性、多样性指数均有差别,但丰度指数相差较小,一般为上层>下层;均匀性指数则显示,在秋季水平潜流湿地中,前部下层低于其它三点,在垂直潜流湿地中,上层较低于下层,该点显示了较强的碳源利用偏好,在春季,较低的这两点都出现显著升高;多样性指数变化趋势与丰度指数类似。
     对污染物在湿地床体空间沿程变化的研究表明污染物间变化规律各有差异。COD在水平潜流中无论暖季寒季均呈现沿程梯形递减规律,而垂直方向上从上向下是逐渐增加;而垂直潜流则没有表现出明显的沿程降低趋势,在寒季会出现1/2段点高于床体其它各点和出水的情况,但两种流态前1/4段去除均占主要贡献;总氮空间变化规律与COD类似,但垂直潜流在寒季从沿程1/2段开始变化很小;总磷与COD、总氮规律也相近,但垂直流在暖季从沿程1/2段开始基本没有变化,就COD、总氮、总磷而言,前1/4段均占去除的主导作用,而在风车草湿地中这一点表现的更加明显。在水平潜流中污染物浓度沿程削减与植物的生长特性(株高和分生植株数)及吸收NP量有较好的一致性,在水平方向上沿程变化与微生物数量也较为一致,但在湿地下层,与秋季微生物群落碳源代谢活性变化并不一致。在垂直潜流湿地中,污染物浓度沿程变化与微生物数量略为一致,与微生物群落碳源代谢活性春季趋势一致,但与秋季趋势并不一致。
     氨氮的空间变化规律与其它3个指标不一致,在水平潜流湿地中,暖寒季均表现为沿程1/4段增加较多,然后逐渐降低;在垂直潜流中暖季是在1/4段升高,然后在1/2段降低,然后又沿程升高一些,寒季则为在3/4段前沿程升高,后1/4段又降低的趋势,这与流态上的差别使得湿地中有机氮分解的规律存在差异有关。研究表明湿地对氨氮的去除并不理想,出水氨氮浓度高于进水的情况在一年中大部分时间内存在,由总氮和氨氮沿程变化可知,很可能进水中部分有机氮被截留后在厌氧条件下并没有得到全部去除,而是分解释放,有部分释放的氨氮没有被硝化—反硝化作用去除,而是随水流出。而通过溶解性有机物的研究可知,湿地沿程表征受污染程度的类蛋白荧光强度的削减可能正标示着类蛋白类有机物分解释放出氨氮。但全年湿地出水氨氮浓度月均值均小于0.57mg/l,基本达到Ⅱ类水标准,因此氨氮处理不理想并不影响出水水质。
     在小试试验结果基础上开展了应用高速泳动床—人工湿地复合系统工程实际处理富营养化水体,调水改善农村天然水体水质工程研究,结果表明高速泳动床能降低氨氮浓度、提高湿地进水溶解氧含量,强化后续湿地工艺去除能力。人工湿地对高速泳动床出水的去除效果较好,COD出水能达到地表水Ⅲ~Ⅳ类水标准,总氮出水能达到地表水Ⅳ类水标准,总磷出水能达到地表水Ⅱ类水标准,叶绿素a去除率由初期的75%左右提升到90%以上。湿地对氨氮的去除效果不理想,但出水均<1.0mg/l,能达到地表水Ⅲ类水标准。复合垂直潜流湿地在较高的负荷情况下(停留时间约少1/3),仍能达到与水平潜流湿地相当的去除效果,对总氮和氨氮去除率还略高于水平潜流湿地,显示了较强去除能力。总体来看,在300t/d的水量负荷下,高速泳动床—人工湿地联合工艺能显著改善补充进中心湖的调水水质,随着系统的进一步成熟(包括湿地植物的生长、基质微生物群落的发育成熟),整套系统的处理能力有望提高,能为增强中心湖水体交换,改善水质提供有力的支撑。
The study was based on constructed wetlands (CWs) in small-scale and pilot-scale reactors treating the rural eutrophic water. The treatment performance and mechanisms of CWs, growth character of plants, metabolic properties and functional diversity of the microbial communities in CWs were analyzed.
     Four types of CWs, Typha angustifolia/gravel bed horizontal subsurface flow constructed wetland(HFCW), Cyperus alternifolius/gravel bed HFCW, Typha angustifolia/gravel bed vertical subsurface flow constructed wetland(VFCW), Cyperus alternifolius/gravel bed VFCW, had good treatment performance. Under the condition that COD, TN and TP concentration of the influent were 45~110mg/l, 1.5~5.2mg/l and 0.22~1.54mg/l respectively on hydraulic rention time (HRT) of 3d, COD concentration of the effluent could gain the level of class IV of surface water quality according to GB3838-2002, TN concentration could meet the standard of classIII except class IV in August, TP concentration could stabilized at the level of class II except class III and IV in August and September. In the period of algal bloom(July, August and September), the removal rate of Chla in CWs was 82.5%~99.2% under the condition that the concentration of Chla was about 103.5mg/m~3~252.4mg/m~3. The area loading rates of COD, TN, TP were found linearly correlated with their removal rates. Compared to four types of CWs, removal rates of Cyperus alternifolius CWs were higher than that of Typha angustifolia CWs from October to January of the next year, but lower from May to September in both HFCWs and VFCWs. Between two flow patterns Typha angustifolia CWs, COD removal rate of HFCWs was higher than that of VFCWs in all times, but TN and NH_4~+-N removal rates were lower than that of VFCWs in autumn and winter, TP removal rates was higher than HFCWs in winter and spring. The contamination removal rates of contamination in two flow patterns Cyperus alternifolius CWs had no remarkable difference.
     The growth characters of plants were different among four types of CWs. Along the beds in HFCWs, the plant height and tillered plant number both sloped down. But in VFCWs, there were no remarkable difference. The aboveground biomass of Cyperus alternifolius was much more than that of Typha angustifolia. The concentration of nitrogen in Cyperus alternifolius was much higher than that in Typha angustifolia, but the concentration of phosphorus had no much variance. Among the difference cells in CWs, the variance of nitrogen concentration was more remarkable than phosphorus. The concentration of nitrogen distribution could be summarized as follow: hf-I > vf > hf- II > hf-III> hf-IV. It could be explained that the plant in CWs treating the rural eutrophic water was easier to be menaced by nitrogen not by phosphorus. The total nitrogen and phosphorus absorbed by plant aboveground biomass in different cells decreased along the beds in HFCWs. This variance was positively correlated with the aboveground biomass, while showed no apparent relationship with the concentration of nitrogen and phosphorus. According to the contributing of nitrogen and phosphorus about removal method analysis, it was found that plant uptake played very important role.
     In this study, researcher selected effective determination methods like dissolved organic carbon (DOC), UV-Visible absorption and Three-Dimensional Excitation Emission Matrix (3DEEM) analysis, to conduct a research on distribution and transport of dissolved organic matter (DOM) by CWs. There were four types of fluorescence peak in the influent spectrum of 3DEEMs, which were attributed by four kinds of DOM: visible fulvic acid-like, UV-fulvic acid-like, tryptophan-like and tyrosine-like. The positions of four types of fluorescence peak in the difference sampling interstitial water and effluent were similar. The protein-like fluorescence peaks (tryptophan-like peak and tyrosine-like peak) in interstitial water and effluent samples of CWs were observed weaker than that in influent samples. The fulvic acid-like fluorescence peaks (visible fulvic acid-like peak and UV-fulvic acid-like peak) in interstitial water and effluent samples of CWs were stronger than that in influent samples. It showed that DOM was not only utilized by the microorganisms and plants in CWs, but also transformed to other forms. In this study, DOM in influent was likely to transformed to fulvic acid-like matter which was a sort of stodgy food to microorganisms.
     The microbial experiment results revealed that the abundance of bacteria in four types of CWs substrates in top layer was larger than in middle and bottom layer. In HFCWs, the abundance of bacteria was higher in front end than after end. There were no apparent relationship between the abundance of microorganism in substrate and the removal efficiency of COD, TN and TP.
     The metabolic properties and functional diversity of the microbial community in four types of CWs were analyzed by the sole-carbon-source utilization profiles using ECO Biolog microplates. There were four sampling points in HFCWs substrate bed( upper forepart layer, lower forepart layer, upper back-end layer and lower back-end layer) and two sampling points in VFCWs substrate bed(upper layer and lower layer). The results showed that there was apparent difference among the microbial communities in different substrates, as well as in different seasons. In autumn, the variation of average well color development explained that the metabolic activity of lower forepart layer substrate microorganisms was remarkable lower than that of other three substrate microorganisms in HFCWs, as well as the activity of upper layer was lower than that of lower layer in VFCWs. But in the next spring, the activity of lower forepart layer in HFCWs and upper layer in VFCWs increased a lot. Among the 31 carbon sources, polymers, carbohydrates, carboxylic acids and amino acids had greater rates of color development for all substrates. But the metabolic capability of amines and phenolic compounds was much different. The results of principal component analysis showed the different structures and metabolic properties of different substrate microorganisms. The results of functional diversity indices showed that there was greater variance in different substrate microorganisms. In HFCWs at autumn, the significance of richness indices difference among four substrates was smallness. The diversity and evenness indices of lower forepart layer substrate microbial community were greater than that of other three substrate microbial community, as well as the the diversity and evenness indices of upper layer was lower than that of upper layer in VFCWs. At the next spring, the diversity and evenness indices of lower forepart layer substrate microbial community in HFCWs increased much more, as well as the upper layer substrate microbial community in VFCWs.
     The spacial distribution analysis of COD, TN and TP in the substrate showed that there were different characters at different pollutants.In HFCWs, regardless of seasons and plants, the concentration of COD, TN, TP decreased along the beds and increased from upper layer to lower layer. However in VFCWs, the concentration variance of COD was small and uncertain in all year. The concentration of TN decreased from upper layer to lower layer in warm seasons, but the concentration stabilized from 1/2 section to effluent in cold seasons. The concentration of TP decreased from upper layer to lower layer in cold seasons, but the concentration stabilized from 1/2 section to effluent in warm seasons. The removal rate of COD, TN and TP in the beginning 1/4 section was in the highest flight to the total removal.
     The special distribution of NH_4~+-N was not consistent with that of COD, TN and TP. The concentration of NH_4~+-N increased from influent to 1/4 sections in CWs and then decreased along the beds. But the concentration of effluent was higher than influent in the most time of a year. The removal of NH_4~+-N was weakness. The result showed that the concentration of NH_4~+-N in effluent was below 0.57mg/l (it could meet the level of class II of surface water quality according to GB3838-2002).
     The pilot-scale treating system carried out the compound system engineering applying BF bed-constructed wetlands based on small-scale test result. Result indicated that BF bed was able to reduce the concentration of ammonia nitrogen, improve water-entering resolving of oxygen contents of CWs influent. It had a good effect to strengthen the follow-up CWs purification. The pilot-scale CWs had better treatment performance to the BF bed effluent. COD concentration of the CWs effluent could meet the level of class III-IVof surface water quality according to GB3838-2002, TN concentration could get the standard of classIV, TP concentration could stabilized at the level of class II. The removal rate of Chla of CWs increased from 75% to 90% in the last half year. The removal effect of NH_4~+-N was not satisified. But the effluent concentration of NH_4~+-N was below 1.0mg/l (it could meet the level of class III of surface water quality according to GB3838-2002). Integrated vertical constructed wetlands (IVCWs) had a comparative purifying effect to HFCWs under higher loading situation (the HRT of IVCWs was 1/3 less than HFCWs). In a word, the BF bed-CWs purifying system could improve the quality of supplemental water under the loading of 300t/d. With the CWs being mature (the growth of wetlands plants, the maturity of the wetlands substrate microorganism community), the effect of purifying is hopeful to improve in the future.
引文
[1] 联合国教科文组织.世界水资源开发报告.2003:1-18.
    [2] 牛晗.城市水资源合理化开发利用[J].工程勘察,2005,4:23-27.
    [3] 国家环境保护总局.2006中国环境状况公报.2006:5-30.
    [4] 周怀东,彭文启,杜霞,黄火键.中国地表水水质评价[J].中国水利水电科学研究院学报.2004,4(2):255-264.
    [5] 国家环境保护总局.全国规模化畜禽养殖业污染情况调查及防治对策.中国环境科学出版社[M].2003:1-10.
    [6] 周立平.人工的自然之肾—人工湿地处理系统[J].环境导报.2003,22(5):6-7.
    [7] 陈伟烈.湿地利用及其保护[J].生物学通报.1996,31(7):1-4.
    [8] 姜翠玲,崔广柏.湿地对农业非点源污染的去除效应[J].农业环境科学学报,2002,21(5):471-473,476.
    [9] 王宝贞,王琳.水污染治理新技术[M].科学出版社.2004:159-168
    [10] 张虎成,田卫,俞穆清等.人工湿地生态系统处理污水研究进展[J].环境污染治理技术与设备.2004,5(2):11-15.
    [11] Brix H. Functions of macrophytes in constructed wetlands [J]. Water Sci. Technol., 1994,29(6): 71-78.
    [12] Hammer D. A. Constructed wetlands for wastewater treatment [M]. Michigan: Lewis Publishers Inc., 1989.
    [13] 梁继东,周启星,孙铁衍.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志.2003,22(2):49-55.
    [14] W.E.Scot. Engineered Wetlands Lead the Way [J]. Features Available Online.2004, 5(48):13-16.
    [15] R.L. Knight, R. H. Kadlec. Constructed Treatment Wetlands-A Global Technology [J]. Water 21.2000, (6): 57-58.
    [16] 张毅敏,张水春.利用人工湿地治理太湖流域小城镇生活污水可行性探讨[J].农业环境保护,1998,17(5):232-234.
    [17] 梁继东,周启星,孙铁衍.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2):49-55.
    [18] 陈韫真,叶纪良.深圳白泥坑、雁田人工湿地处理场[J].电力保护,1996,12(1):47-51.
    [19] 卢少勇,张彭义,余刚等.滇池王家庄湖滨带人工湿地农业径流中磷去除的干湿季节性规律[J].农业环境科学学报,2006,25(5):1313-1317.
    [20] 吴振斌,李谷,付贵萍等.基于人工湿地的循环水产养殖系统工艺设计及净化效能[J].农业工程学报,2006,22(1):129-133.
    [21] 向长生,祝万鹏,张彭义等.人工湿地在植物生长停滞期处理农田排灌余水的中试研究 [J].农业环境科学学报,2003,22(6):281-284.
    [22] 尹炜,李培军,叶闽等.复合潜流人工湿地处理城市地表径流研究[J].中国给水排水,2006,22(1):5-8.
    [23] Vymazal J. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience[J]. Ecol. Eng., 2002, 18 (5):633-646.
    [24] Brix H., Gas exchange through the soil-atmosphere interphase and through dead culms of Phragmites australis in a constructed reed bed receiving domestic sewage[J]. Water Res. 1990, (24): 259-266.
    [25] Brix H., Functions of macrophytes in constructed wetlands[J]. Water Sci. Technol. 1994(29):71-78.
    [26] Brix H., Do macrophytes play a role in constructed treatment wetlands[J]? Water Sci. Technol. 1997(35): 11-17.
    [27] Brix H., Gas exchange through the soil-atmosphere interphase and through dead culms of Phragmites anstralis in a constructed reed bed receiving domestic sewage[J]. Water Res. 1990,(24): 259-266.
    [28] Zhu T., Sikora F. J. Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands. In: Proceedings of Fourth International Conference Wetland Systems for Water Pollution Control. ICWS'94 Secretariat, Guangzhou,PR China, 1994.pp. 355-366.
    [29] U.S. Environmental Proctection Agency, Manual: Nitrogen Control [M]. EPA625R-93010. Environmental Protection Agency, Cincinnati, 1993
    [30] 张甲耀等.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究[J].环境科学学报,1999,19(3):323-327.
    [31] 梁威等.构建湿地基质微生物与净化效果相关分析[J].中国环境科学,2002,22(3):282-285
    [32] Vymazal, J. Types of constructed wetlands for wastewater treatment: their potential for nutrient removal.[M]. Backhuys Publishers, 2001.
    [33] Faulkner, S.P., Richardson, C.J. Physical and chemical characteristics of freshwater wetland soils. In: Hammer, D.A. (Ed.), Constructed Wetlands for Wastewater Treatment [M]. Lewis Publishers, Chelsea, Michigan, 1989.
    [34] Tanner C.C., Adams D.D., Downes M.T., Methane emissions from constructed wetlands treating agricultural wastewaters [J]. J. Environ. Qual. 1997(26): 1056-1062.
    [35] 范成新,相崎守弘.好氧和厌氧条件对霞浦湖沉积物水界面氮磷交换的影响[J].湖泊科学,1997,9(4):337-342.
    [36] 徐清,刘晓端,刘浏等.密云水库沉积物中磷释放的环境因子影响实验[J].岩矿测试,2005,24(1):19-22.
    [37] Vymazal, J. Removal of phosphorus via harvesting of emergent vegetation in constructed wetlands for wastewater treatment. In: Proceedings of Ninth International Conference Wetland Systems for Water Pollution Control, IWA and ASTEE, 2004, pp. 412-422.
    [38] Williams J., Bahgat M., May E., Food M. and Butler J. Mineralisation and removal in gravel bed hydroponic constructed wetland for wastewater treatment [J]. Wat. Sci. Tech. 1995, 32(3): 49-58.
    [39] O.Decamp, A.Warren. Investigation of E.coli. removal in various designs of subsurface flow wetlands used for wastewater treatment [J]. Ecological Engineering. 2000, 1: 293-299.
    [40] Everardo V., Bruce L., Suresh D.P. Transport and survival of bacterial and viral tracers through submerged-flow constructed wetland and sand-filter system [J]. Bioresource Technology 2003,(89) :49-56.
    [41] Mandi L., Bouhoum K. and Ouazzani N. Application of constructed wetlands for domestic wastewater treatment in an arid climate [J]. Water Sci. Technol. 1998.38(1): 379-387.
    [42] 梁威,吴振斌,周巧红等.复合垂直潜流构建湿地基质微生物类群及酶活性的空间分布[J].云南环境科学,2002,21(1):5-8.
    [43] 吴振斌,梁威,成水平等.复合垂直潜流构建湿地净化污水机制研究-Ⅰ.微生物类群和土壤酶[J].长江流域资源与环境,2002,11(2):179-183.
    [44] 梁威,吴振斌,周巧红等.构建湿地基质微生物类群与污水净化效果及其相关分析[J].中国环境科学,2002,22(3):282-285.
    [45] Martin C. D., Moshiri G. A. Nutrient reduction in an in-series constructed wetland system treating landfill leachate [J]. Water Science and Technology, 1994, 29(4): 267-272.
    [46] Hoppe H. G, Emerick L.C., Gocke K. Microbial decomposition in aquatic environments: combined processes of extra cellular activity and substrate uptake [J]. Applied Environmental Microbiology, 1988, 54: 784-790.
    [47] 李科得,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科学.1995,15(2):140-144.
    [48] 沈耀良,王宝贞.人工湿地系统的除污机理[J].江苏环境科技.1997,10(3):1-6.
    [49] 张鸿,陈光荣,吴振斌等.两种构建湿地中氮、磷净化率与细菌分布关系的初步研究[J].华中师范大学学报(自然科学版).1999,33(4):575-578.
    [50] 成水平,夏宜峥。香蒲、灯心草人工湿地的研究—Ⅲ.净化污水的机理[J].湖泊科学.1998,10(2):66-71.
    [51] 东秀珠,洪俊华.原核微生物的多样性[J].生物多样性.2001,9(1):18-24.
    [52] 陈晓蕾,张忠泽.微生物的ARDRA检测[J].微生物学杂志.1999,9(4):40-43.
    [53] Cooper VS, Lenski RE. The population genetics of ecological specialization in evolving Escherichia coli populations[J]. Nature, 2000, 407: 736-739.
    [54] Marsh TL, et al. Terminal restriction fragment length polymorphism analysis program, a web2based research tool for microbial community analysis [J]. Appl. Environ. Microbiol., 2000,66(8):3616-3620.
    [55] Niemi R.M.,Heiskanen I.,Wallenius K., et al. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J. Microbiol. Meth.,2001, 45:155-165.
    [56] 陈晓倩,殷浩文.微生物多样性分析方法的进展[J].上海环境科学.2003,22(3):213-218.
    [57] 钟文辉,蔡祖聪.土壤微生物多样性研究方法[J].应用生态学报.2004,15(5):899-904.
    [58] Elsas JD van,Duarte GF, Rosado AS, et al. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment [J]. J. Mcrobiol. Meth., 1998,32: 133-154.
    [59] Johnsen K, Nielsen P. Diversity of pseudomonas strains isolated with King's B and Gould'S1 agar determined by repetitive extragenic palindrome Polymerase chain reaction , 16S rDNA sequencing and fourier transform infrared spectroscopy characterization [J]. FEMS Microbiol. Lett., 1999, 173:155-162.
    [60] Olsen RA, Bakken LR. Viability of soil bacteria: Optimization of plate-counting technique and comparison between total counts and plate counts within different size groups [J]. Microbiol. Ecol., 1989,13: 59-74.
    [61] F(?)gri A, Torsvik VL, Goksoyr J. Bacterial and fungal activities in soil: separation of bacteria and fungi by a rapid fractionatedcentrifugation technique [J]. Soil Biol. Biochem., 1977, 9: 105-112.
    [62] Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification [J]. Can. J. Biochem Physiol, 1995,37: 911-917.
    [63] Zelles L, Bai Q Y. Fractionation of fatty acids derived from soil lipids by solid phase extraction and their quantitative analysis by GC-MS [J]. Soil Biol. Biochem, 1993,25: 495-507.
    [64] Moss C W. Gas-liquid chromatography as an analytical tool in microbiology [J]. J. Chromatogr. 1981,203: 337-347.
    [65] Frostegard AsA. Dynamics of a microbial community associated with manure hot spots as revealed by Phospholipid fatty acid analyses [J]. Appl.Environ. Microbiol, 1997, 63: 2224-2231.
    [66] Kassem Alef and Paolo Nannipieri. In: Methods in applied soil microbiology and biochemistry [M]. Academic Press London, 1995, pp.419.
    
    [67] Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiol Rev, 1995, 59: 143-169.
    [68] Oovreas L, Torsvik V. Microbial diversity and community structure in two different agricultural soil communities [J]. Microbiol Ecol, 1998,36: 303-315.
    [69] Ritz K, Griffiths BS. 1994. Potential application of a community hybridization technique for assessing changes in the population structure of soil microbial communities [J]. Soil Biol Biochem, 1994,26:963-971.
    [70] Sandaa RA, Torsvik V, Enger O, et al. Analysis of bacterial communities in heavy metal2contaminated soil at different levels of resolution [J]. FEMS Microbiol Ecol. 1999, 30: 237-251.
    [71] Rudolf I Amann. In situ identification of microorganisms by whole cell hybridization with rRNA targeted nucletic acid probes, In: Antoon D L et al.,(eds). Molecular Microbial Ecology Manual, Kluwer Academic Publishers Netherlands, 1995, 3.3.6: 1-15.
    [72] Muyzer G DGGE/ TGGE a method for identifying genes from natural ecosystems [J]. Current Opinion Microbiol, 1999,2: 317-322.
    [73] Niemi RM ,Heiskanen I ,Wallenius K, et al . Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia [J]. J. Microbiol Meth., 2001, 45: 155-165.
    [74] Borneman J, Skroch PW, O'Sullivan KM, et al. Molecular microbial diversity of an agricultural soil in Wisconsin [J]. A ppl Environ Microbiol., 1996,62: 1935-1943.
    [75] Dunbar J, Takala S, Barns SM, et al. Levels of bacterial community diversity in four arid soils compared by cultivation and 16s rRNA gene cloning [J]. Appl Environ Microbiol, 1999,65: 1662-1669.
    [76] Gelsomino A, Keijzer Wolters AC , Cacco G, et al . 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis [J]. J. Microbiol Meth., 1999,38: 1-15.
    [77] Heuer H ,Krsek M ,Baker P, et al. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel electrophoresis separation in denaturing gradients [J]. Appl. Environ Microbiol, 1997, 63:3233-3241.
    [78] 许光辉,郑洪元.土壤微生物分析方法[M].北京,农业出版社,1986.
    [79] 中国科学院南京土壤研究所微生物室.土壤微生物研究方法[M].北京,科学出版社,1985.
    [80] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in-situ detection of individual microbial cells without cultivation [J]. Microbiological Reviews, 1995, 59(1):143-169.
    [81] 白清云.土壤微生物群落结构的化学估价方法[J].农业环境保护,1997,16(6):252-256,265.
    [82] Garland J L , Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole carbon source utilization [J]. Appl.Environ.Microbiol. 1991, 57(8): 2351-2359.
    [83] 杨永华,姚健.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志,2000,20(2):23-25.
    [84] Choi K.H., Dobbs F.C., Comparison of two kinds of biolog microplates(GN and ECO) in their ability to distinguish among aquatic microbial communities [J]. Journal of Microbiological Methods. 1999,36(3): 203-213.
    [85] Hacker C.A., Griffiths B.S. Statistical analysis of the time-course of biolog substrate utilization [J]. Journal of Microbiological Methods. 1997, 30(1): 63-69.
    [86] De Fede K.L., Panaccione D.G, Sexstone A.J. Characterization of dilution enrichment cultures obtained from size-fractionated soil bacteria by BIOLOG(R) community-level physiological profiles and restriction analysis of 16S rRNA genes [J]. Soil Biologyand Biochemistry, 2001, 33 (11): 1555-1562.
    [87] De Fede K.L., Sexstone A.J. Differential response of size-fractionated soil bacteria in BIOLOG(R) microtitre plates [J]. Soil Biology and Biochemistry, 2001,33 (11): 1547-1554.
    [88] Kaiser S.K., Guckert J.B., Gledhill D.W., Comparison of activated sludge microbial communities using biologTM microplates [J]. Water Science and Technology, 1998, 37(425):57-63.
    [89] Grove J.A., Kautola H., Javadpour S. et al. Assessment of changes in the microorganism community in a biofilter [J]. Biochemical Engineering Journal, 2004, 18(2):111-114.
    [90] Engelen B, Meinken K, Wintzingerode F, et al. Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures [J]. Applied and Environmental Microbiology,1998, 64 (8) :2814-2821.
    [91] 叶央芳,闵航.代谢指纹评估苯噻草胺对水稻田微生物群落的短期影响[J].土壤学报,2006,43(2):287-294.
    [92] Fang C W, Radosevich M, Fuhrmann J J . Characterization of rhizosphere microbial community structure in five similar grass species using FAME and BIOLOG analyses [J]. Soil Biology and Biochemistry ,2001,33(425): 679-682.
    [93] 国家环保总局编.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [94] Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domain[J]. Linmol. and Oceanogr., 1981, 26(1): 43-53
    [95] Huovinen P. S, Penttfl H., Soimasuo M. R. Spectral attenuation of solar ultraviolet radiation in hnmic lakes in Central Finland[J]. Chemosphere, 2003, 51(3): 205-214
    [96] Buffle J., Delandoety P., Znmstein J., Haerdi W., Analysis and characterization of natural organic matters in freshwaters. I. Study of analytical techniques. Schoweiz Z. Hydrol. 1982,44:325-62
    [97] Nippon-Kagaku-Kai. Structure of organic compounds Ⅱ. Shin-Jikken-Kagaku-Kouza 13, Tokyo: Maruzen, 1977 (in Japanese)
    [98] Tambo N, Kamei T. Evaluation of extent ofhumicsubstance removal by coagulation. In: Suffet Ⅰ. H., MacCarthy P, editors. Aquatic humic substances: influence on fate and treatment of pollutants. Washington DC:American Chemical Society, 1989. 453-72
    [99] Chin Y. P., Aiken G, O' Loughlin E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humie substances[J]. Environmental Science&Technology, 1994,28(11): 1853-1858
    [100] Artinger R., Buckau G., Geyer S., et al. Characterization of groundwater humic substances: influence of sedimentary organic carbon[J]. Applied Geochemistry, 2000,15(1): 97-116
    [101] Artinger R., Buckau G., Geyer S., et al. Characterization of groundwater humic substances: influence of sedimentary organic carbon[J]. Applied Geochemistry, 2000,15(1): 97-116
    [102] De Haan H. Molecule-size distribution of soluble humic compounds from different natural waters. Freshwater Biol, 1972 (2): 235-241
    [103] Wu F. C., Tanoue E. Isolation and partial characterization of dissolved copper-complexing ligands in streamwaters[J]. Environmental Science & Technology, 2001 (35): 3646-3652
    [104] Leenheer J. A. , Creu6 J. P. Characterizing aquatic dissolved organic matter[J]. Environmental Science& Technology, 2003, 37(1): 19A-26A
    [105] Chen W., Westerhof P., Leenheer J. A. et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science& Technology, 2003, 37:5701-5710
    [106] Burdige D. J, Kline S. W., Chen W. Fluorescent dissolved organic matter in marine sediment pore waters. Marine Chemistry, 2004, 89:289-311
    [107] McKnight D. M., Boyer E. W., Westerhof P. K., et al. Spectrofluorometric characterization of dissolved organic mater for indication of precursor organic materials and aromaticiity[J]. Limnology & Oceanography, 2001, 46(1): .38-48
    [108] 傅平青,刘丛强,吴丰昌等.洱海沉积物孔隙水中溶解有机质的三维荧光光谱特征[J].第四纪研究,2004,24(6):695-700
    [109] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000
    [110] 赵明,蔡葵,赵征宇.微波消解塞曼火焰原子吸收法测定土壤中重金属元素的方法研究[J].土壤通报.2004,35(5):670-672.
    [111] 丁文捷,张凌云,刘波.微波消解/ICP-MAS测定原水管道中河壳菜体内的重金属[J].给水排水.2005,31(9):42-44.
    [112] 朱芳,刘翅,杨中艺.微波消解.原子荧光光谱法测定番茄不同部位中微量汞[J].分析测试学报.2005,24(1):89-92.
    [113] 吴建之,葛滢,王晓月.过硫酸钾氧化吸光光度法测定植物总氮[J].理化检验-化学分册.2000,36(4):166-167.
    [114] 蒋跃平,葛滢,岳春雷等.轻度富营养化水人工湿地处理系统中植物的特性[J].浙江大学学报(理学版),2005,32(3):319-324.
    [115] 付融冰.强化人工湿地对富营养化水体的修复及作用机理研究.博士论文.同济大学,2007
    [116] 廖新娣,骆世明,吴银宝,汪植三.风车草和香根草在人工湿地中迁移迁移养分能力的比较研究.2005,16(1):156-160.
    [117] Koottatep T., Polprasert C. Role of plant uptake on nitrogen removal in constructed wetlands located in the tropics[J]. Wat. Sci. Tech. 1997,36(12): 1-8.
    [118] Rogers K.H., Breen A. J., Chick A. J. Nitrogen removal in experimental wetland treatment systems: evidence for the role of aquatic plants[J]. Research Journal of the Water Pollution Control Federation. 1991,63(7):934-941.
    [119] Breen P. E. A mass balance method for assessing the potential of artifical wetlands for wastewater treatment[J]. Water Research. 1991,24(6):689-697.
    [120] Van Oostrom A.J., Cooper R. N. Meat processing effluent rreatment in surface-flow and gravel-bed constructed wetlands. Constructed wetlands in water pollution control[C]. Oxford: Pergmon Press. 1990:321-332.
    [121] Gersbeg R.M., Elkins B. V., Lyon S. R., Goldman C. R. Role of aquatic plants in wastewater treatment by artifical wetlands[J]. Water Research. 1986,20(3):363-368.
    [122] Tanner C. C. Plants as ecosystem engineers in subsurface-flow treatment wetlands[J]. Water Science and Technology.2001, 44(11):9-17.
    [123] Tanner C. C. Growth and nutrient dynamics of soft-stem bulrush in constructed wetlands treating nutrient-rich wastewater[J]. Wetlands Ecological Management.2001.9:49-73.
    [124] Tanner C. C. Clayton J. S. and Upsdell M. P. Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands Ⅱ. Removal of nitrogen and phosphorous[J]. Water Research. 1995,29:27-34.
    [125] Tanner C. C. Plants for constructed wetland treatment systems-a comparison of the growth and nutrient uptake of eight emergent species[J]. Ecological Engineering. 1996,7:59-83.
    [126] 蒋跃平,葛滢,岳春雷等.人工湿地中植物对氮磷去除的贡献[J].生态学报,2004,24(8):1718-1725.
    [127] Kim S. Y., Geary E M. The impact of biomass harvesting on phosphorus uptake by wetland plants[J]. Water Science and Technology.2001, 44(12):61-67.
    [128] Reed S. C., Cites R.W., Middlebrooks E.J. Natural systems for waste management and treatment[M]. 2nd Ed. McGraw Hill Inc. 1995.
    [129] 席劲瑛,胡洪营,姜健等.生物过滤塔中微生物群落的代谢特性[J].环境科学,2005,26(4):165-170
    [130] 杨元根,Paterson E.,Campbell C.Biolog方法在区分城市土壤与农村土壤微生物特性上的应用[J].土壤学报,2002,39(4):582-588.
    [131] 杨元根,Paterson E.,Campbell C.用微生物单一碳源利用方法探讨重金属在城市土壤中积累的环境效应[J].地球化学,2001,30(5):459-464.
    [132] Haack S.K., Garchow H., Klug M.J. et al. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns[J]. Appl. Environ. Microbial. 1995, 61 (4): 1458-1468.
    [133] Glimm E., Heuer H., Engelen B. et al. Statistical comparisons of community catabolic profiles [J]. J. Microbiological Methods, 1997, 30(1):71-80.
    [134] Magurran A. E. Ecological diversity and its measurement. Princeton, N.J.: Princeton University Press, 1988:141-162.
    [135] 张红,吕永龙,辛晓云等.杀虫剂类POPs对土壤中微生物群落多样性的影响[J].生态学报,2005,25(4):937-942
    [136] 宋铁红,尹军,崔玉波.不同进水方式人工湿地除污效率对比分析[J].安全与环境工程,2005,12(3):45-48.
    [137] 宋铁红,尹军,韩相奎等.间歇式潜流人工湿地中COD、NH_4-N动态变化特征[J].环境工程,2003,21(3):62-65.
    [138] Hackett C.A., Griffiths B.S. Statistical analysis of the time-course of Biolog substrate utilization [J]. J. Microbiological Methods, 1997, 30(1):63-69.
    [139] Garland J.L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization [J]. Soil Biol. Biochem., 1996,28(2):213-221.
    [140] Cooper P. A review of the design and performance of vertical-flow and hybrid reed bed treatment systems[J]. Water Science and Technology.1999,40 (3): 1-9.
    [141] Vymazal J., Brix H., Cooper P. et al. Constructed wetlands for wastewater treatment in Europe[M]. Backhuys Publishers,Leiden.The Netherlands. 1998.
    [142] 陈德强,吴振斌,成水平等.不同湿地组合工艺净化污水效果的比较[J].中国给水排水.2003,19(9):12-15
    [143] 付融冰,杨海真,顾国维等.人工湿地基质微生物状况与净化效果相关分析[J].环境科学研究.2005,18(6):44-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700