用户名: 密码: 验证码:
棕油生产废水零排放技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油棕是一种高产热带油料作物,主产于马来西亚和印度尼西亚等地。从油棕的果实——鲜果穗中提取棕油的过程包括杀青、脱果、蒸煮、榨油、沉淀、澄清和真空干燥等工序,每加工1吨鲜果穗需水1.5 m3,其中约50%以废水形式排放。棕油生产废水(POME)呈深褐色,粘稠,具有低pH、高盐、有机物和悬浮物含量高等特征。除少量被直接施于农田灌溉和用作动物饲料外,通常采用脱水、干燥、蒸发、絮凝、气浮、超滤以及生物法等处理POME。马来西亚最常见的棕油废水处理方法是厌氧塘/兼氧塘/好氧塘工艺,约有85%的棕油生产厂采用该处理流程。但其缺点是水力停留时间(HRT)太长,一般要20 d以上,所以占地面积也大。为缩短处理所需时间,同时减少占地,研究人员提出了脱水、干燥、蒸发等物化工艺,并比较了各种新型高效厌氧反应器如厌氧滤器、厌氧流化床、厌氧折流板反应器、上流式厌氧污泥床反应器(UASB)等处理POME的实际效果。
     本文以马来西亚某棕油厂生产废水为研究对象,提出了产酸产甲烷一体化高效厌氧反应器(AnaEG)+好氧内循环生物膜反应器(BioAX)+超滤(UF)+反渗透(RO)的棕油废水处理及零排放新工艺,通过对处理系统中各单元过程的独立研究和联合运行测试,对所提出的新工艺作出全面评价。论文主要分四大部分:⑴AnaEG反应器启动和运行;⑵BioAX反应器启动和运行;⑶好氧出水的脱色研究,包括混凝脱色和吸附脱色;⑷厌氧+好氧+膜分离工艺联合运行。本研究主要结论如下:
     在起初150 d的运行期间内,AnaEG反应器进水COD从5000 mg/L逐步提升到35000 mg/L,反应器中pH一直稳定在6.98-7.53范围内,未发现VFA积累现象,出水COD始终低于2500 mg/L,平均COD去除率高达92.5%,表明厌氧反应器在转化POME中的有机物方面具有很高的效率;厌氧颗粒污泥的活性较好,平均产甲烷活性为0.488 gCOD CH4/(gVSS·d);产气中甲烷含量约为70%;厌氧出水VFA以乙酸为主,占总VFA的2/3以上。
     BioAX反应器在进水COD和SS分别为6000和1758 mg/L条件下,出水浓度分别为4532和476 mg/L,去除率分别为19%和73%;出水中未检出NH3-N。
     好氧出水的脱色实验结果:(1)絮凝剂FeCl3:最佳投药量为500 mg/L,pH对色度去除影响甚微,色度去除率为40%;(2)絮凝剂PAC:最佳投药量为700 mg/L,最佳pH为5.0,色度去除率高达90%;(3)絮凝剂FeSO4:最佳投药量为800 mg/L,最佳pH为10.0,色度去除率91%;(4)粉末活性炭最佳投加量为20 mg/L,最佳吸附时间为30 min,最佳pH为6.0,色度去除率91%。
     AnaEG+BioAX+UF+RO联合工艺处理POME结果表明,UF单元对浊度和色度的去除率比较高,分别达到了96.4%和68.8%,但是对其他四项指标(COD、TOC、BOD5和电导率)去除效果不明显; COD、TOC、BOD5和电导率等指标的降低主要是在RO单元完成的,去除率分别达到了97.1%、99.3%、90.6%和93.4%;经过UF+RO处理后,好氧出水中全部有机物和绝大部分盐分已被去除,产水无色透明;参比工业锅炉水质标准发现,RO产水需经软化处理才能满足锅炉补给水水质要求。
     UF+RO膜清洗方法:首先清水正冲,冲刷去残留在膜单元中的POME废水;然后用含1%(w/w)NaOH和0.6%(w/w)NaClO的化学清洗液清洗25 min;最后用清水再次对膜单元进行清洗,直至出水pH呈中性,清洗后UF和RO的通量恢复率分别为95.3%和91.7%。
Oil palm (elaeis guineensis) is one of the most versatile crops in the tropical region, notably in Malaysia and Indonesia. The extraction of palm oil from the fruit of elaeis guineensis involves a number of processing procedures: sterilization、stripping、digestion、pressing、classification、purification and vacuum drying. In the extraction process, large quantities of water are required. It is estimated that about 1.5 m3 of water are needed to process one ton of fresh fruit bunch (FFB), half of this amount ends up as palm oil mill effluent (POME). The raw POME is a thick brown liquid and characterized by low pH、high biological and chemical oxygen demand、high salt and suspended solids. As a result, the discharge of palm oil mill effluent has the potential to severely pollute the receiving waterways.
     Besides immediate utilization such as crop irrigation and using as animal fodder, many methods have been developed to control POME pollution, including decanting and drying、evaporation、coagulation、flotation、ultrafiltration and various aerobic and anaerobic biodegradation technologies. Today about 85% of POME treatment is based on anaerobic/facultative/aerobic pond system by Malaysian palm oil mills, which is characterized by long hydraulic retention time (HRT), often in an excess of 20 days, necessitating large areas of land or digesters. To shorten the treatment time, lessen the land required, besides physico-chemical methods such as decanting and drying, evaporation, coagulation, high rate reactors such as anaerobic filter, anaerobic fluidized bed reactor, anaerobic baffled reactor, UASB and other hybrid reactors are put forward and evaluated in treating POME.
     In the paper, palm oil mill effluent (POME) from Sungal Burung palm oil mill in Malaysia was treated by a technical flow combined by AnaEG+BioAX+UF+RO, after the foundation research on each step in the system, the performance of the overall sequential system was evaluated. The paper can be divided into four parts:⑴startup and operation of AnaEG reactor;⑵startup and operation of aerobic inner-circulation biofilm reactor——BioAX;⑶decoloring treatment of discharge from aerobic reactor, including coagulation and adsorption decoloring;⑷combination operation of the overall treating system. The main results are listed below:
     During the 150 days’start-up duration, influent COD of AnaEG was increased stepwise from 5000 to 35000 mg/L, pH in reactor was stable which was in the range of 6.98-7.53, VFA accumulation was not happened, effluent COD was less than 2500 mg/L all the while, the average COD removal efficiency was as high as 92.5%, indicating that AnaEG was in good condition in digesting and transforming the organic compound in POME; the activity of anaerobic granular sludge was good, and the average methane producing activity was 0.488 gCOD/(gVSS·d); methane content in biogas produced was 70% (n/n), acetic acid was the main VFA in effluent from AnaEG, about 2/3 of the total VFA.
     When aerobic biofilm reactor——BioAX was in steady-state during operation stage, influent COD concentration was 6000 mg/L, pH in reactor was 8.4-8.8, salts concentration was 6000-8000 mg/L, the average removal efficiency of COD and SS was 19.07%, respectively, no NH3-N was detected in the aerobic effluent.
     Decolorizing experimental results of aerobic effluent by coagulation and adsorption: (1) flocculant FeCl3: the optimum dosage was 500 mg/L, pH had no influence on color removal, and the optimal color removal rate was 40%; (2) flocculant PAC: the optimum dosage and pH were 700 mg/L and 5.0, respectively, and the optimal color removal rate was 90%; (3) flocculant FeSO4: the optimum dosage and pH were 800 mg/L and 10.0, respectively, and the optimal color removal efficiency was 91%; (4) Results got from adsorption using powdered activated carbon indicated that the optimum dosage、adsorption time and pH were 20 mg/L、30 min and 6.0, respectively, and the optimal color removal rate was 91%.
     Experimental results of combination operation of the overall treating system---AnaEG+BioAX+UF+RO: UF membrane was very efficient in removing turbidity and color from aerobic effluent, the removal efficiency were 96.4% and 68.8%, respectively, but it exhibited inefficient in removing COD、TOC、BOD and electrical conductivity, they were mainly got rid of by RO membrane, and the removal rate were 97.1%、99.3%、90.6% and 93.4%, respectively; After filtrated by UF and RO membrane, all organic compound and most of the salts were removed from aerobic effluent, and RO permeate was colorless and transparent. Further comparison of the characteristics of RO permeate with the boiler feed water standard indicated that the RO permeate should be softened before it was to be used as the boiler feed water.
     Membrane cleaning: the membrane were first circulated with clean water to flush out POME remaining in membranes, and then circulated with chemical solution mixed by 1% (w/w) NaOH and 0.6% (w/w) NaClO for 25 min, finally, the membrane rinsed again with clean water until a neutral pH was achieved. The flux after cleaning was 95.3% and 91.7% of the initial flux value for the UF and RO, respectively.
引文
[1]张华茂,浅议棕榈油,中国检验检疫,1996,09:42-43.
    [2] Department of Environment,Malaysia,Industrial processes and the environment, Crude Palm Oil Industry, handbook No. 3, 1999.
    [3]姚伯龙,蒋敏海,棕榈油和棕榈仁油的地位和现状,食品与机械2001,06:4-5.
    [4]程黔,2006年棕榈油市场回顾及展望,粮食与油脂, 2007,03:35-37.
    [5]鲁志成,沙宪洲, Vincent, Siew,棕榈油干法分提的工艺实践与研究,中国油脂,2005,06:31-33.
    [6]郭少海,王兴国,廖少华,卢鑫,刘国全,棕榈油干式分提工艺结晶回温的原因及解决办法,中国油脂,2007,32(3):64-67.
    [7]徐斌,王宏平,章国武,隔膜压滤机在棕榈油干法分提中的应用,中国油脂,2004,29 (05):27-28.
    [8]陈文麟,姚华民,宋新毛,叶大宝,范生安,棕榈油生产工艺及设施配置,中国商办工业,2000,03:52-53.
    [9]金青哲,黄诗洪,周胜利,棕榈油在我国煎炸食品中应用,粮食与油脂,2006,03:15-16.
    [10]李安民,谭体升,马杰,李普选,程祖华,郭立,谈谈我国棕榈油消费及其加工技术的开发,粮油加工,2007,04:13-15.
    [11] Yee P.L., Hassan M.A., Shirai Y., Wakisaka M., Karim M.I.A., Continuous production of organic acids from palm oil mill effluent with sludge recycle by the freezing-thawing method, Journal of Chemical Engineering of Japan, 2003, 36 (6): 707-710.
    [12] Hassan M.A., Shirai Y., Kusubayashi N., Karim M.I.A., Nakanishi K., Hashimoto K., Effect of organic acid profiles during anaerobic treatment of palm oil mill effluent on the production of polyhydroxyalkanoates by Rhodobacter Sphaeroides, Journal of Fermentation and Bioengineering, 1996, 82 (2): 151-156.
    [13] Hassan M.A., Shirai Y., Kusubayashi N., Karim M.I.A., Nakanishi K., Hashimoto K., The production of polyhydroxyalkanoate from anaerobically treated palm oil mill effluent by Rhodobacter sphaeroides, Journal of Fermentation andBioengineering, 1997, 83 (5): 485-488.
    [14] Vijayaraghavan K., Ahmad D., Biohydrogen generation from palm oil mill effluent using anaerobic contact filter, International Journal of Hydrogen Energy, 2006, 31 (10): 1284-1291.
    [15] Tanisho S., Shimazaki T., Hydrogen production from palm oil mill effluent by fermentation, Catalysts and Catalysis, 2007, 49 (4): 276-279.
    [16] Yacob S., Hassan M.A., Shirai Y., Wakisaka M., Subash S., Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment, Science of Total Environment, 2006, 366 (1): 187-196.
    [17] Chin K.K., Lee S.W., Mohammad H.H., A Study of palm oil mill effluent treatment using a pond system, Water Science and Technology, 1996, 34 (11): 119-123.
    [18]张自杰,排水工程(下),第三版,北京,中国建筑工业出版社, 1996.
    [19] Ahmad A.L., Ismail S., Ibrahim N., Bhatia S., Removal of suspended solids and residual oil from palm oil mill effluent, Journal of Chemical Technology and Biotechnology, 2003, 78 (9): 971-978.
    [20] Abdul Karim M.I., Hie L.L., The use of coagulating and polymeric flocculating agents in the treatment of palm oil mill effluent (POME), Biological Wastes 1987, 22 (3): 209-218.
    [21] Ng W.J., Goh A.C.C., Tay J.H., Palm oil mill effluent (POME) treatment-----an assessment of coagulants used to aid liquid-solid separation, Biological Wastes, 1987, 21 (4): 237-248.
    [22] Vijayaraghavan K., Ahmad D., Endut E.M., Effect of coagulation on palm oil mill effluent and subsequent treatment of coagulated sludge by anaerobic digestion, Journal of Chemical Technology and Biotechnology, 2006, 81(10): 1652-1660.
    [23] Ahmad A.L., Sumathi S., Hameed B.H., Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC, Chemical Engineering Journal, 2006, 118 (1-2): 99-105.
    [24] Ahmad A.L., Ismail S., Bhatia S., Optimization of coagulation-flocculation process for palm oil mill effluent using response surface methodology, Environmental Science and Technology, 2005, 39 (8): 2828-2834.
    [25]高廷耀,顾国维,水污染控制工程,北京,高等教育出版社, 1999.
    [26] Fakhru'l-razi A, Noor M.J.M.M., Treatment of palm oil mill effluent (POME) with the membrane anaerobic system (MAS), Water Science and Technology, 1999, 39 (10-11): 159-163.
    [27] Ahmad A.L., Ismail S., Bhatia S., Water recycling from palm oil mill effluent (POME) using membrane technology, Desalination, 2003, 157 (1-3): 87-95.
    [28] Ahmad A.L., Chong M.F., Bhatia S., Ismail S., Drinking water reclamation from palm oil mill effluent (POME) using membrane technology, Desalination, 2006, 191 (1-3): 35-44.
    [29] Ahmad A.L., Ismail S., Bhatia S., Membrane treatment for palm oil mill effluent: effect of transmembrane pressure and crossflow velocity, Desalination, 2005, 179 (1-3): 245-255.
    [30] Ahmad A.L., Ismail S., Bhatia S., Ultrafiltration behavior in the treatment of agro-industry effluent: pilot scale studies, Chemical Engineering Science, 2005, 60 (19): 5385-5394.
    [31] Vijayaraghavan K., Ahmad D., Aziz M.E.B.A., Aerobic treatment of palm oil mill effluent, Journal of Environmental Management, 2007, 82 (1): 24-31.
    [32] Najafpour G.D., Yieng H.A., Younesi H., Zinatizadeh A.A.L., Effect of organic loading on performance of rotating biological contactors using palm oil mill effluents, Process Biochemistry, 2005, 40 (8): 2879-2884.
    [33] Oswal N., Sarma P.M., Zinjarde S.S., Pant A., Palm oil mill effluent treatment by a tropical marine yeast, Bioresource Technology, 2002, 85 (1): 35-37.
    [34] Zinatizadeh A.A.L., Mohamed A.R., Najafpour G.D., Isa M.H., Nasrollahzadeh H., Kinetic evaluation of palm oil mill effluent digestion in a high rate upflow anaerobic sludge fixed film bioreactor, Process Biochemistry, 2006, 41 (5): 1038-1046.
    [35] Najafpour G.D., Zinatizadeh A.A.L., Mohamed A.R., Isa M.H., Nasrollahzadeh H., High-rate anaerobic digestion of palm oil mill effluent in an upflow anaerobic sludge-fixed film bioreactor, Process Biochemistry, 2006, 41 (2): 370-379.
    [36] Borja R., Banks C.J., Khalfaoui B., Martin A., Performance evaluation of an anaerobic hybrid digester treating palm oil mill effluent, Journal of Environment Science and Health, Part A Environment Science, 1996, 31 (6): 1379-1393.
    [37] Chin K.K., Wong K.K., Thermophilic anaerobic digestion of palm oil milleffluent, Water research, 1983, 17 (9): 993-995.
    [38] Ibrahim A., Yeoh B.G., Cheah S.C., Ma A.N., Ahamad S., Chew T.Y., Raj R., Wahid M.J.A., Thermophilic anaerobic contact digestion of palm oil mill effluent, Water Science and Technology, 1985, 17 (2-3): 155-166.
    [39] Borja R., Banks C.J., Martin A., Khalfaoui B., Thermophilic semi-continuous anaerobic treatment of palm oil mill effluent, Biotechnology Letters, 1993, 15 (7): 761-766.
    [40] Cali R.G., Barford J.P., Mesophilic semi-continuous anaerobic digestion of palm oil mill effluent, Biomass, 1985, 7 (4): 287-295.
    [41] Borja R., Comparison of an anaerobic filter and an anaerobic fluidized bed reactor treating palm oil mill effluent, Process Biochemistry, 1995, 30 (6): 511-521.
    [42] Setiadi T., Husaini, Djajadiningrat A., Palm oil mill effluent treatment by anaerobic baffled reactors: recycle effects and biokinetic parameters, Water Science and Technology, 1996, 34 (11): 59-66.
    [43] Zinatizadeh A.A.L., Mohamed A.R., Abdullah A.Z., Mashitah M.D., Isa M.H., Najafpour G.D., Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM). Water research, 2006, 40 (17): 3193-3208.
    [44] Borja R., Banks C., Khalfaoui B., Martin A., Anaerobic digestion of palm oil mill effluent using an up-flow anaerobic sludge blanket (UASB) reactor, Biomass Bioenergy, 1994, 6 (5): 381-389.
    [45] Ng W.J., Wong K.K., Chin K.K., Two-phase anaerobic treatment kinetics of palm oil wastes, Water research, 1985, 19 (5): 667-669.
    [46] Borja R., Banks C.J., Sanchez E., Anaerobic treatment of palm oil mill effluent in a two-stage up-flow anaerobic sludge blanket (UASB) system, Journal of Biotechnology, 1996, 45 (2):125-135.
    [47] Borja R., Banks C.J., Treatment of palm oil mill effluent by upflow anaerobic filtration, Journal of Chemical Technology and Biotechnology, 1994, 61 (2): 103-109.
    [48] Borja R., Banks C.J., Kinetics of methane production from palm oil mill effluent in an immobilized cell bioreactor using saponite as support medium, BioresourceTechnology, 1994, 48 (3):209-214.
    [49] Faisal M., Unno H., Kinetic analysis of palm oil mill wastewater treatment by a modified anaerobic baffled reactor, Biochemical Engineering Journal, 2001, 9 (1): 25-31.
    [50] Yacob S., Hassan M.A., Shirai Y., Wakisaka M., Subash S., Baseline study of methane emission from open digesting tanks of palm oil mill effluent treatment, Chemosphere, 2005, 59 (11): 1575-1581.
    [51]顾夏声,黄铭荣,王占生,水处理工程,北京,清华大学出版社, 1987.
    [52]斯皮斯,工业废水的厌氧生物处理技术,北京,中国建筑工业出版社, 2001.
    [53]贺延龄,废水的厌氧生物处理,北京,中国轻工业出版社, 1998.
    [54]胡纪萃,废水厌氧生物处理理论与技术,北京,中国建筑工业出版社, 2003.
    [55] Rittmann M., Environmental Biontechnology: Principles and Applications,北京,清华大学出版社, 2002.
    [56]迟文涛,赵雪娜,江翰,李伟涛,王凯军,厌氧反应器的发展历程与应用现状,城市管理与科技, 2004, 6 (1): 31-33.
    [57]王凯军,王晓惠,柯建明,吴冰,申立贤,厌氧处理技术发展现状与未来发展领域,中国沼气, 1999, 17 (4): 14-17.
    [58]陈坚,卫功元,新型高效废水厌氧生物处理反应器研究进展,无锡轻工大学学报, 2001, 20 (3): 323-328.
    [59]凃?桑芪B,张忠瑞,现代厌氧反应器的现状与发展,新疆环境保护, 2004, 26 (3): 9-12.
    [60]王凯军,左剑恶,甘海立,贾立敏, UASB工艺的理论与工程实践,北京,中国环境科学出版社, 2000.
    [61] Lettinga G., Hobma S.W., Klapwijk A., Van Velsen A.F.M., De Zeeuw W.J., Use of upflow sludge blanket (USB) reactor concept for biological wastewater treatment especially for anaerobic treatment, Biotechnology Bioengineering, 1980 (22): 699-734.
    [62] Lettinga G., Field J., Van Lier J., Zeeman G., Hulshoffpol L.W., Advanced anaerobic wastewater treatment in the near future, Water Science and Technology, 1997, 35 (10): 5-12.
    [63]仲海涛,胡勇有,田静,废水低温厌氧处理技术(上),给水排水, 2004, 30 (2): 98-101.
    [64]仲海涛,胡勇有,田静,废水低温厌氧处理技术(下),给水排水, 2004, 30 (3): 105-109.
    [65]初里冰,杨凤林,张兴文,低温厌氧处理低浓度废水研究进展,环境污染治理技术与设备, 2003, 4 (4): 61-65.
    [66]张选军,张亚雷,方骁,蒋柱武,周雪飞,赵建夫,常温下EGSB处理低浓度城市污水的初步研究,中国给水排水, 2007, 23 (09): 81-84.
    [67]仲海涛,胡勇有,颜智勇,环境温度下EGSB处理高浓度有机废水的研究,中国给水排水, 2006, 22 (19): 68-70.
    [68] Lettinga G., Rebac S., Parshina S., Nozhevnikova A., Van Lier J., Stams A.J.M., High-rate anaerobic treatment of wastewater at low temperature Applied and Environmental Microbiology, 1999, 65 (4):1696-1702.
    [69]白玉华,张代钧,组波,张萍,汪林,低COD浓度废水启动EGSB反应器,环境工程学报, 2007, 1 (4): 29-33.
    [70]裘湛,张之源,高速厌氧反应器处理城市污水的现状与发展,合肥工业大学学报(自然科学版), 2002, 25 (1): 117-122.
    [71]孙斌,杨景亮,李再兴,杨岚,刘妍,陈旭东,城市生活污水厌氧处理技术的研究及进展,河北化工, 2004, 4: 61-63.
    [72]王凯军,Last der G.L.,水解和颗粒污泥床串联工艺处理城市污水,中国给水排水, 1999, 15 (8): 19-23.
    [73]左剑恶,王妍春,陈浩,申强,膨胀颗粒污泥床(EGSB)反应器处理高浓度自配水的试验研究,中国沼气, 2001, 19 (2): 8-11.
    [74]李克勋,近藤何史,张振家,高浓度褐藻酸钠生产废水处理工程设计,城市环境与城市生态, 2003, 16 (2): 65-66.
    [75]张振家,王太平,谷成,两相UASB反应器处理糖蜜酒精糟液的试验研究,工业用水与废水, 2002, 33 (4): 29-31.
    [76]张振家,周伟丽,林荣忱,膨胀颗粒污泥床处理玉米酒精糟液的生产性试验,环境科学, 2001, 22 (4): 114-116.
    [77]杜战鹏,李冬雪,赵敏,马金亮,两相EGSB处理制革含硫废水的研究,西部皮革, 2006, 6: 39-42.
    [78]王伟,阮文权,邹华,严群,陈坚,孙志浩, EGSB反应器处理高浓度硫酸盐废水,食品与生物技术学报, 2006, 25 (6): 23-28.
    [79]周洪波,陈坚,赵由才,周琪,长链脂肪酸对对厌氧颗粒污泥产甲烷毒性研究,水处理技术, 2002, 28 (2): 93-97.
    [80]国家环保局,水与废水监测分析方法,第三版,北京,中国环境科学出版社, 1989.
    [81]中科院成都生物研究所,沼气发酵常规分析,北京,北京科学技术出版社, 1984.
    [82]董春娟,吕炳南,接种厌氧消化污泥EGSB反应器的快速启动,环境污染治理技术与设备, 2005, 7 (10): 118-123.
    [83]李湘凌,周元祥,常温下EGSB的启动和运行研究,武汉理工大学学报, 2006, 28 (11): 82-85.
    [84]董春娟,吕炳南, EGSB反应器中颗粒污泥的快速培养及特性研究,中国给水排水, 2006, 22 (15): 62-66.
    [85]李湘凌,周元祥, EGSB反应器实验装置及启动实验设计研究,环境保护科学, 2006, 32 (2): 25-29.
    [86]左剑恶,王妍春,陈浩,申强, EGSB反应器的启动运行研究,给水排水, 2001, 27 (3): 26-30.
    [87]颜智勇,胡勇有,谢磊, EGSB处理高浓度有机废水的启动与微生物相,工业用水与废水, 2007, 38 (03): 20-23.
    [88]赵景婵,郭治安,常建华,王文君,有机酸类化合物的反相高效液相色谱法的分离条件研究,色谱, 2001, 19 (3): 260-263.
    [89]杜学礼,潘子昂,扫描电子显微镜分析技术,北京,化学工业出版社, 1986.
    [90]王菊思,赵丽辉,贾智萍,王正兰,郭玥,硫酸盐和氯离子对厌氧生物过程抑制作用的研究,环境科学, 1995, 16 (4): 3-7.
    [91]杨晔,陆帆,潘志彦,林春绵,高盐度有机废水处理研究进展,中国沼气, 2003, 21 (1): 22-25.
    [92]王妍春,左剑恶,肖晶华, EGSB反应器处理含氯苯有机废水的试验研究,环境科学, 2003, 24 (2): 116-120.
    [93]王毅军,张振家, EGSB工艺处理DMF废水的试验研究,工业水处理, 2007, 27 (07): 30-32.
    [94]左剑恶,凌雪峰,王妍春,顾夏声, EGSB反应器的动力学模型研究(1)---模型的建立,中国沼气, 2003, 21 (1): 3-7.
    [95]左剑恶,凌雪峰,王妍春,顾夏声, EGSB反应器的动力学模型研究(2)---参数估计与过程模拟,中国沼气, 2003, 21 (2): 3-6.
    [96]左剑恶,王妍春,陈浩,膨胀颗粒污泥床(EGSB)反应器的研究进展,中国沼气, 2000, 18 (4): 3-8.
    [97]李克勋,张扬,王太平,张振家,高浓度变性淀粉废水厌氧生物处理,中国沼气, 2005, 23 (3): 23-24.
    [98]易兆青,张振家,吕有良, ABR/CASS法处理屠宰废水,中国给水排水, 2007, 23 (6): 59-61.
    [99]吴立波,张虹,朱花,张振家,庄源益,戴树桂,厌氧-好氧处理磺胺废水实验研究,环境科学, 2001, 22 (5): 87-90.
    [100]张振家,周长波,张守国,贾春峰,啤酒废水处理工程运行分析,城市环境与城市生态, 2001, 14 (6): 34-36.
    [101]顾夏声,废水生物处理数学模式,北京,清华大学出版社, 1993.
    [102]边凌飞,几种混凝剂应用于活性染料印染废水的脱色研究,染料与染色, 2006, 43 (4): 45-47.
    [103]张林生,蒋岚岚,染料废水的混凝脱色特性及机理分析,东南大学学报(自然科学版), 2000, 30 (4): 72-76.
    [104]王东立,脱色混凝及混凝剂在染料废水处理中的应用,河北化工, 2007, 30 (6): 77-78.
    [105]架兆坤,汤鸿霄,我国无机高分子絮凝剂产业发展现状与规划,工业水处理, 2000, 20 (11): 1-6.
    [106]李玉江,吴涛,新型脱色混凝剂含铁聚硅酸的研究,化学研究与应用, 1999, 11 (3): 323-326.
    [107]汤鸿霄,环境科学中的化学问题一环境水质学中的几个化学前沿问题,化学进展, 2000, 12 (4): 415-422.
    [108]魏娜,赵乃勤,贾威,王哲仁,韩森,活性炭的制备及应用研究进展,炭素技术, 2003, 3: 29-33.
    [109]常瑜,邢金龙,白英彬,杨惠兰,活性炭脱色性能研究,太原理工大学学报, 1995, 26 (2): 95-98.
    [110]冯冰凌,冼萍,黄世钊,董毅宏,酒精糖蜜废水的脱色,工业水处理, 2002, 22 (3): 39-40.
    [111]肖瑞德,阮复昌,印染废水的混凝脱色实验研究,化学反应工程与工艺, 2002, 18 (3): 254-259.
    [112]卢建杭,刘维屏,张刚,潘春秀,印染废水混凝脱色与染料结构及混凝剂种类间的关系,工业水处理, 1999, 19 (4): 28-30.
    [113]朱保家,印染废水吸附脱色技术的研究进展,沿海企业与科技, 2003, 2: 71-72.
    [114]管晓涛,王全金,董秉直,膜分离技术在给水处理中的应用研究,华东交通大学学报, 2001, 18 (1): 41-43.
    [115]张雅君,李卓,膜分离技术在污水处理及再生回用中的应用,北京建筑工程学院学报, 2004, 20 (3): 8-10.
    [116]秦霄雯,张波,胡文容,秦霄鹏,膜分离生物反应器处理污水的优势和局限性,工业水处理, 2004, 24 (2): 4-7.
    [117]李健秀,王建刚,邱俊,张维芬,超滤-反渗透集成工艺处理玉米酒糟废水,化学工程, 2007, 35 (8): 42-44.
    [118]李健秀,王树清,景丽杰,邱峻,谭乃迪,超滤反渗透联用处理玉米浸渍水,化工进展, 2003, 22 (10): 1105-1107.
    [119]梁建瑞,超滤-反渗透组合工艺处理电厂循环排污水,水处理技术, 2006, 32 (6): 79-81.
    [120]杨琦,尚海涛,席宏波,王洪臣,甘一萍,超滤反渗透处理城市二级生活污水处理厂出水中试研究,膜科学与技术, 2007, 27 (3): 71-74.
    [121]张旭明,超滤和反渗透在电厂中水回用技术中的应用,工业水处理, 2006, 26 (6): 82-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700