用户名: 密码: 验证码:
嗜铁钩端螺旋菌在砷胁迫条件下的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Proteomics Study of Leptospirillum Ferriphilum under Arsenic Stress
  • 作者:李兵
  • 论文级别:博士
  • 学科专业名称:微生物学
  • 学位年度:2010
  • 导师:林建强 ; 林建群
  • 学科代码:071005
  • 学位授予单位:山东大学
  • 论文提交日期:2010-05-26
摘要
生物冶金工艺与其他物理化学冶金方法相比,具有成本低廉、环境友好、适于开采贫矿、难冶矿的特点。提高浸矿微生物的生物活性和适应性,将有效提高生物冶金过程的生产效率。
     在目前已探明的金矿资源中,含砷金矿占有很大的比例,其中砷金比达到2000:1的金矿资源占总探明储量的5%(刘四清宋焕斌,1998)。砷是一种具有毒性和致癌能力的半金属物质。在生物浸矿过程中经常要处理砷黄铁矿等含砷矿石。砷黄铁矿的生物氧化过程主要由硫氧化细菌喜温硫杆菌(Acidithiobacillus caldus)、铁氧化细菌嗜铁钩端螺旋菌(Leptospirillum ferriphilum)以及铁硫氧化菌氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)混合进行。嗜铁钩端螺旋菌(Leptospirillum ferriphilum)是生物浸矿反应中主要的铁氧化微生物,特别是在生物氧化处理过程的中后期高氧化还原电位条件下,是处于主导优势地位的铁氧化菌。该菌主要以氧化Fe2+产生Fe3+获得能量,而Fe3+则是生物浸矿过程中重要的氧化剂。嗜铁钩端螺旋菌的氧化活性和生命活力将直接影响含砷矿物的生物浸出效率。如果处理样品中的砷毒离子浓度超过了嗜铁钩端螺旋菌的砷耐受水平,生物浸出也就难以进行。因此,深入了解嗜铁钩端螺旋菌的砷耐受能力,砷抗性机制,将为进一步的微生物育种提供理论指导。
     但是由于嗜铁钩端螺旋菌的遗传背景,生理代谢等研究甚少,无法直接从该菌现有的生理调节机制及遗传基础入手获得该菌的砷抗性机制。所以,采用比较蛋白质组学的研究策略,引入双向电泳等蛋白质组学研究技术,全局性的研究该菌的砷耐受机制是一种可行的方法。
     双向电泳技术(Two dimensional electrophoresis,2-DE)可以全局性、高通量研究微生物的蛋白质表达差异,高分辨率,高灵敏度的展示和分离出现差异表达的蛋白,是分析复杂混合物和蛋白质组学研究中的关键技术。微生物与外界环境的相互作用和生物学响应往往是通过多个系统的综合协调来完成的,涉及多种酶系和调控系统的变化,这正是蛋白质组学的着眼点。因此,构建L. ferriphilum的2-DE分析技术平台,并在此基础上采用蛋白质组学研究技术来研究L. ferriphilum的抗砷、耐砷机制是科学合理的选择。
     L. ferriphilum是极端嗜酸性专性化能自养革兰氏阴性菌。其获能途径决定了该菌培养物中菌体密度小,各种可溶性离子杂质浓度高。而2-DE技术则要求样品中蛋白浓度较高,杂质浓度,尤其是各种可溶性离子杂质浓度尽可能的低。因此,普通的2-DE方案无法获得分离良好,点量丰富的L. ferriphilum 2-DE图谱,目前国内外还没有关于L. ferriphilum全局蛋白2-DE实验的报道。本研究通过对2-DE的样品制备、杂质去除、上样方法、聚焦参数选择、染色方法等关键环节进行对比实验,制定了一套适用于L. ferriphilum的2-DE实验方案,首次获得了点阵清晰,可稳定重现,胶体考马斯染色法获得独立蛋白点达到600个以上的L. ferriphilum 2-DE图谱。
     在此基础上,为了开展L.f砷胁迫条件下的差异蛋白质组学研究,本研究通过驯化培养获得具有较高耐砷性能的L.f菌株,通过2D电泳技术把耐砷菌株和普通对照菌株的菌体蛋白进行比较,确定差异蛋白,通过MALDI-TOF、MS/MS技术和相关生物信息学检索比对工具对差异蛋白进行分析。从而更全面地了解L.f的耐砷机制。目前已知的微生物耐砷抗砷系统主要是广泛存在的Arsenic Resistance System,即Ars系统。近期还有报道在砷胁迫条件下,某些热激蛋白(HSP蛋白),产能代谢相关蛋白,质膜阴离子通道蛋白的表达量也会提高。显示在砷胁迫条件下,细胞试图通过排出毒性离子、提高能源供给、提高蛋白质的稳定性等途径维持正常的生理生化活动。通过对L. ferriphilum ML-04的耐砷菌株和普通出发菌株的蛋白质2-DE图谱进行数字化比对和分析,发现65个蛋白点出现超过3倍的表达量变化(t-test,p<0.05)。有38种蛋白得到高分匹配和识别,其中,有25种蛋白质匹配确认了具体的生物学功能。其中很多蛋白有助于提高细胞对砷的耐受能力,包括促进三价砷离子的排出以保护一些重要蛋白的稳定性;保护和促进修复染色体,保障染色体的复制过程;避免重要的硫、磷元素的浪费;保持一些重要的砷耐受蛋白的活性等。而且,为了更有效的保护细胞,提高砷耐受能力,L. ferriphilumML-04还通过改变代谢通路中一些关键酶的表达量调整了细胞内一些代谢通路,例如碳水化合物的代谢、能量代谢、氨基酸代谢等。
     此外,该蛋白质组学研究还检测到了2套Ars砷抗性系统。一套是arsRC-arsB型的LJML04Ars1基因簇,一套是arsRDABC型LfML04Ars2基因簇。与先前报道的arsRDABC基因簇相比,LfML04Ars2基因簇中还多了一个编码框,编码了Pst型磷酸特异性转运系统的PstS蛋白。该PstS蛋白所属的Pst磷酸盐转运系统是细胞应对磷酸饥饿及抗五价砷毒离子相关系统。该系统的组成蛋白出现在砷抗性系统中,暗示在嗜铁钩端螺旋菌ML-04菌株中,砷抗性系统与某些磷酸饥饿响应系统存在联动关系。由于砷毒离子可以造成细胞磷酸饥饿,并可以干扰细胞内的多种磷酸化反应过程,这种砷抗性系统与磷酸饥饿响应系统的联动可以使ML-04获得更强的砷耐受能力。
     本研究建立的嗜铁钩端螺旋菌2-DE技术平台及相关研究策略,可应用于嗜铁钩端螺旋菌对其他多种环境条件变化的细胞适应性机制的研究,例如与生物浸矿密切相关的其他金属毒性离子的抗性和耐受机制、能量代谢变化、pH扰动、热冲击响应等生理生化过程,对于实际细菌浸出过程的优化,高效浸矿菌的微生物育种都具有重要的参考价值和理论意义。
Biomining is a mineral pretreatment approach. Comparing with chemical approaches, the bioleaching method displays great advantages of cost-saving and environmental-friendly, particularly in dealing with the low grade ores and hard mining ores. The enhancement in activity and adaptability of the biomining microorganisms will increase the efficiency of biomining process and biomining industrial.
     In the certified reserves goldmine all over the world, the arsenic bearing goldmine takes a huge part and there are about 5% goldmine's arsenic/gold ratio are more than 2000:1 (Liu siqing and Song huanbin,1998). The biooxidation process were dominated by Acidilhiobacillus caldus, Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans. L. ferriphilum is important in bioleaching. In real applications, it is under heavy stresses of heavy metal ions and high oxygen reduction potential (ORP). This bacterial can oxidize the iron(Ⅱ) to iron(Ⅲ) and generate energy. As the metabolism product of L. ferriphilum, iron(Ⅲ) also is a key oxidizer in bioleaching. So the oxidize activity and physiological activity will effect the biooxidize efficiency of arsenic bearing goldore's process. If the arsenic concentration exceed the arsenic tolerance ability of L. ferriphilum. Biooxidize of this arsenic bearing gold ore will not works. So the study of the detoxicity and tolerance mechanism were needed. The results of these researches will provide some useful guidance for further microbiology strain breeding works.
     Because the genetic background and physiological mechanisms of L. ferriphilum are still not very clear. The research of this bacteria can not based on the directly genetic analyze and physiological studies. So, the investigation about the arsenic tolerance and detoxification mechanism of L. ferriphilum will be conducted from a global aspect by the differential proteomic research approaches such as Two-dimensional-electrophoresis (2-DE) and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS).
     Two-dimensional-electrophoresis (2-DE) and comparative proteomic analysis are useful to investigate the responses of L. ferriphilum to environmental stresses. But,2-DE analysis for L. ferriphilum is not successful as the samples of L. ferriphilum contain low protein concentration, complex composition, high salt concentration, and many other interfering components, which make it difficult for 2-DE analysis. In this research, optimizations on the sample preparation and purification methods, sample volume, sample loading methods for isoelectric focusing (IEF), and gel visualization methods were made. More than 629 Coomassie stained spots in single gel were obtained. The image quality and protein concentration in most of the spots met the requirements for both differential spots analysis and mass-spectrum analysis. The 2-DE protocol for L. ferriphilum was successfully developed for the first time.
     Based on the 2-DE technic and proteomic research strategy, the response of Leptospirillum ferriphilum ML-04 under arsenic stress was analyzed using two-dimensional-electrophoresis (2-DE), matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), and bio-informatics research methods.65 differential expressed protein were fond by 2-DE analysis (t-test, p<0.05).38 arsenic response proteins were highly identified. The arsenic resistant or tolerant mechanisms of these arsenic response proteins were studied and elucidated. In addition, some arsenic-resistance-system (ARS) member proteins were identified from these 38 arsenic response proteins. With the help of the genomic analysis, two ars operon like structures were discovered in the chromosome of this strain. One is a arsRC-arsB type LfML04Ars1 cluster. The other one is arsRDABC type cluster named LfFL04Ars2. Comparing with the former reported other arsRDABC type clusters, the LfML04Ars 2 contains a more gene ORF, which encodes a component protein of the Pst phosphate specific transfer system, the PstS like protein. This result indicats that there maybe a linkage relationship between the Ars arsenic resistance system and phosphate specific transfer system in this strain. The gene structure feature and possible function of these ars operon like structures were analyzed.
引文
A.C. Haugen, R. Kelley, J.B. Collins, C.J. Tucker, C. Deng, C.A. Afshari, J.M. Brown, T. Ideker, B. Van Houten. (2004) Integrating phenotypic and expression profiles to map arsenic-response networks, Genome Biol.5(12):R95.
    Amaro AM, Chamorro D, Seeger M, Arredondo R, Peirano I, Jerez CA.1991. Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans. J. Bacteriol 173:910-915.
    Anderson GL, Williams J, Hille R (1991) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. J Biol Chem 267:23674-23682
    Aswegen PC van, Godfrey MW, Miller DM, Haines AK (1991) Developments and innovations in bacterial oxidation of refractory ores. Miner Metall Process November:188-191
    Benaroudj, N.& Goldberg, A.L. (2000) PAN, the proteasome activating nucleotidase from archaebacteria, is a protein unfolding molecular chaperone. Nature Cell Biol.2(11):833-839.
    Bentley R, Chasteen TG (2002) Microbial methylation of metalloids:arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250-271
    Bevilaqua D, Leite ALLC, Garcia O Jr, Tuovinen OH (2002) Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks. Process Biochem 38:587-592
    Blackstock W P, Weir M P(1999) Proteomics:quantitative and physical mapping of cellular proteins. Trends Biotechnol.17:121-127
    Blake RC II, Shute EA, Howard GT (1994) Solubilization of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur. Appl Environ Microbiol 60:3349-3357
    Braun, B.C., Glickman, M., Kraft, R., et al. (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nature Cell Biol.1(4):221-226.
    Brierley CL, Briggs AP (2002) Selection and sizing of biooxidation equipment and circuits. In:Mular AL, Halbe DN, Barret DJ (eds) Mineral processing plant design, practice and control. Society of Mining Engineers, Littleton, Colo., pp.1540-1568
    Brierley JA (2000) Expanding role of microbiology in metallurgical processes. Min Eng 52:49-53
    Brierley JA, Brierley CL (1999) Present and future commercial applications of biohydrometallurgy. In:Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century, IBS99. Elsevier, Amsterdam, pp 81-89
    Bruhn DF, Li J, Silver S, Roberto F, Rosen BP (1996) The arsenical resistance operon of IncN plasmid R46. FEMS Microbiol Lett 139(2-3):149-153
    Bustos S, Castro S, Montealegre S (1993) The Sociedad Mineral Pudahuel bacterial thin-layer leaching process at Lo Aguirre. FEMS Microbol Revs 11:231-236
    Candiano G, Bruschi M, Musante L. (2004) Blue silver:A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, May,25(9):1327-1333.
    Carapito C., Muller D., Turlin E., Koechler S., Danchin A., Van Dorsselaer A., Leize-Wagner E., Bertin P. N.& Lett M.-C. (2006). Identification of genes and proteins involved in the pleiotropic response to arsenic stress in Caenibacter arsenoxydans, a metalloresistant beta-proteobacterium with an unsequenced genome. Biochimie 88,595-606.
    Cervantes C, Ji G, Rami' rez JL, Silver S (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15(4):355-367.
    Chen CM, Misra TK, Silver S, Rosen BP (1986) Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem 261(32):15030-15038.
    Chen Y, Rosen BP (1997) Metalloregulatory properties of the ArsD repressor. J Biol Chem 272(22):14257-14262.
    Cole SP, Sparks KE, Fraser K, Loe DW, Grant CE, Wilson GM, Deeley RG (1994) Pharmacological characterization of multidrug-resistant MRP-transfected human tumor cells. Cancer Res 54:5902-5910
    Coram, N. J., and D. E. Rawlings. (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40℃. Appl. Environ. Microbiol. 68(2):838-845.
    Craig Baker-Austin, Mark Dopson, Margaret Wexler, R. Gary Sawers, Ann Stemmler, Barry P. Rosen, Philip L. Bond. (2007) Extreme arsenic resistance by the acidophilic archaeon 'Ferroplasma acidarmanus'Ferl. Extremophiles. 11(3):425-434.
    Davidson MS (1982) The effects of simulated deep solution mining conditions on the activity of iron and sulfur oxidizing bacteria. PhD Thesis, New Mexico Institute of Mining and Technology
    Dembitsky VM, Levitsky DO (2004) Arsenolipids. Prog Lipid Res 43:403-448
    Dietrich H. Nies, Simon Silver. (1995) Ion efflux systems involved in bacterial metal resistances. J. Ind. Microbiol.14(2):186-99.
    Dopson M, Baker-Austin C, Koppineedi PR, Bond PL. (2003) Growth in sulfidic mineral environments:metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149(8):1959-70.
    Ehrlich HL (1999) Past, present and future of biohydrometallurgy. In:Amils R, Ballester A (eds), Biohydrometallurgy and the environment toward the mining of the 21 st century, IBS99. Elsevier, Amsterdam, pp 3-12
    Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100-kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64°A and 2.03°A. Structure 9:125-132
    Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I:mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1(6):529-539.
    Evens AM, Tallman MS, Gartenhaus RB (2004) The potential of arsenic trioxide in the treatment of malignant disease:past, present, and future. Leuk Res 28:891-900
    Fowler TA, Crundwell FK (1999) Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Appl Environ Microbiol 65:5285-5292
    Gardner, P. R., and I. Fridovich. (1991) Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem.266(29):19328-19333.
    Geng Anli, Lim Ci Ji. (2007) Proteome Analysis of the Adaptation of a Phenol-Degrading Bacterium Acinetobacter sp. EDP3 to the Variation of Phenol Loadings. Chin. J. Chem. Eng., 15(6):781-787.
    Gesing A, Modrzejewska H, Kathownik M, et al. (2000) Thymidine kinase and adenosine kinase activities in homogenates of thyroid lobes in hemithy-roidectomized rats effects of melatonin in vitro. Neuro Endocrinol Lett.21(6):453-459.
    Ghosh M, Shen J, Rosen BP (1999) Pathways of As(Ⅲ) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:5001-5006
    Giovanni C, Maurizio B, Luca M, Laura S, Gian M G, Barbara C, Paola O, Luciano Z, Pier G R, (2004) Blue silver; A very sensitive colloidal Coomassie G-250 staining for proteome analysis, J, Electrophoresis,25:1327-1333
    Gladysheva TB, Oden KL, Rosen BP, (1994) Properties of the arsenate reductase of plasmid R773. Biochemistry 33:7288-7293
    Gorg A., Weiss W., Dunn M.J.,(2004) Current two-dimensional electrophoresis technology for proteomics,[J], Proteomics,4,1-21
    Goyer RA, Clarkson TW (2001) Toxic effects of metals. In:Klaassen CD (ed) Casarett and Doull's Toxicology:the basic science of poisons. McGraw-Hill, New York, pp 811-867
    Grutzner T (2001) Auswirkungen von Acidithiobacillus ferrooxidans auf die Flotierbarkeit sulfidischer Minerale. Diploma thesis, TU Clausthal, Clausthal-Zellerfeld
    Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R 2000 Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA 97:9390-95.
    Harrison VF, Gow WA, Ivarson KC (1966) Leaching of uranium from Elliot Lake ore in the presence of bacteria. Can Mineral J 87:64-67
    Hei TK, Filipic M (2004) Role of oxidative damage in the genotoxicity of arsenic. Free Radic Biol Med 37:574-581
    Huang C, Ke Q, Costa M, Shi X. (2004) Molecular mechanisms of arsenic carcinogenesis. Mol Cell Biochem.255(1-2):57-66.
    Ji, G.; and S. Silver. (1992) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. USA 89(20):7974-7978.
    Ji, G., E. A. Garber, L. G. Armes, C.-M. Chen, J. A. Fuchs, and S. Silver. (1994) Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry 33(23):7294-7299.
    Juri R, Matthias M.(2002) What does it mean to identify a protein in proteomics? [J]Trends in Biochemical Sciences,27(2):74
    Kislay Parvatiyar, Eyad M. Alsabbagh, Urs A. Ochsner, et al. (2005) Global Analysis of Cellular Factors and Responses Involved in Pseudomonas aeruginosa Resistance to Arsenite. J. Bacteriology.187(14):4853-4864.
    Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA, Hays L, Schieltz D,
    Ulaszek R, Wei J, Wolters D, Yates JR 3rd.(2002) Proteomic survey of metabolic pathways in rice. [J] Proc Nati Acad Sci USA.,99(18):11969-11974
    Lebrun E, Brugna M, Baymann F, Muller D, Lievremont D, Lett MC, Nitschke W (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20:686-693
    Leonhard, K., Stiegler, A., Neupert, W.& Langer, T. (1999) Chaperone-like activity of the AAA domain of the yeast Ymel AAA protease. Nature 398(6725):348-351.
    Leslie EM, Haimeur A, Waalkes MP (2004) Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required. J Biol Chem 279:32700-32708
    Lin S, Shi Q, Nix FB, Styblo M, Beck MA, Herbin-Davis KM, Hall LL, Simeonsson JB, Thomas DJ (2002) A novel S-adenosyl-l-methionine:arsenic(Ⅲ) methyltransferase from rat liver cytosol. J Biol Chem 277:10795-10803
    Lin YF, Walmsley AR, Rosen BP (2006) An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci USA 103(42):15617-15622.
    Liu J., Xie X., Xiao S., Wang X:, Zhao W., Tian Z. (2007). Isolation of Leptospirillum ferriphilum by single-layered solid medium. J. Cent. South Univ. Technol.4:467-73.
    Liu Ying, Liu Xiangmei, Tian keli, Qi Fangjun, Yan Wangming. (2003) GROWTH AND MORPHOLOGY OF Leptospirillum ferrooxidans ON SOLID MEDIUM. Microbiology 30(6):70-72.
    Liu Ying, Liu Xiangmei, Zheng Lizheng, Lin Jianqun & Yan Wangming, (2004) Isolation and characterization of a vibrioid-shaped iron-oxidizing bacterium. JOURNAL OF SHANDONG UNIVERSITY 39(2):116-124.
    Liu Ying, Qi Fangjun, Liu Xiangmei, Zheng Lizhen & Yan Wangming, (2004) Phylogenetic analysis for 16S rDNA sequence of the vibrio shaped chemolithoautotrophic iron-oxidizing bacterium ML-04. JOURNAL OF SHANDONG UNIVERSITY 39(5):112-121.
    Luther GW Ⅲ (1987) Pyrite oxidation and reduction:molecular orbital theory considerations. Geochim Cosmochim Acta 51:3193-3199
    M. Fauchon, G. Laniel, J.C. Aude, L. Lombardia, P. Soularue, C. Petat. G. Marguerie, A. Sentenac, M. Werner, J. Labarre. (2002) Sulfur sparing in the yeast proteome in response to sulfur demand, Mol. Cell 9(4):713-723.
    M. J. MacLean, L. S. Ness, G. P. Ferguson, I. R. Booth (1998) The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli Molecular Microbiology.27(3):563-571.
    Marais HJ (1990) Bacterial oxidation of arseno-pyrite refractory gold ore. In:Innovation in metallurgical plant. South African Institute of Mining and Metallurgy, Johannesburg, pp 125-129
    Mitsubishi. (2001) Copper expected to improve in 2001. Min Eng 54(4):13-17
    Morales, G., J. F. Linares, A. Beloso, J. P. Albar, J. L. Martinez, and F. Rojo. (2004) The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J. Bacteriol.186(5):1337-1344.
    Moses CO, Nordstrom DK, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561-1571
    Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic:from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311-325
    Mustin C, de Donato P, Berthelin J, Marion P (1993) Surface sulphur as promoting agent of pyrite leaching by Thiobacillus ferrooxidans. FEMS Microbiol Rev 11:71-78
    Naganuma A, Miura N, Kaneko S, Mishina T, Hosoya S, Miyairi S, Furuchi T, Kuge S (2000) GFAT as a target molecule of methylmercury toxicity in Saccharomyces cerevisiae, FASEB J. 14(7):968-972.
    Novo MT, Garcia Jr O, Ottoboni LM. (2003) Protein profile of Acidithiobacillus ferrooxidans exhibiting different levels of tolerance to metal sulfates. Curr Microbiol 47:492-496.
    O'Farrell P H.(1975) High resolution two-dimensional electrophoresis of proteins. J B. C. 250:4007-4021
    Ordonez, E., Letek, M., Valbuena, N., Gil, J. A.& Mateos, L. M. (2005). Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 71,6206-6215.
    Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939-944
    Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45-49
    Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA 103:2075-2080
    Ram RJ, VerBerkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC, Shah M, Hettich RL, Banfield JF.2005. Community proteomics of a natural microbial biofilm. Science 308: 1915-1920.
    Ramirez P, Guiliani N, Valenzuela L, Beard S, Jerez CA.2004. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70: 4491-4498.
    Rawlings D.E., Tributsch H., Hansford G.S. (1999). Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology.145: 5-13.
    Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A:Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol:DOI 10.1007/s00253-003-1448-7
    Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86-92
    Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86-92
    Rosenberg H, Gerdes RG, Chegwidden K (1977) Two systems for the uptake of phosphate in Escherichia coli. J. Bacteriol.131(2):505-511.
    Rossignol M.(2004) Proteomic investigation of natural variation between Arabidopsis ecotypes[J].Proteomics,4,1372-1381
    Saha JC, Dikshit AK, Bandyopadhyay M, Saha KC. (1999) A review of arsenic poisoning and its effects on human health. Crit Rev Environ Sci Tech.29:281-313.
    Sand W, Gehrke T, Jozsa P-G, Schippers A. (2001) (Bio)chemistry of bacterial leaching—direct vs indirect bioleaching. Hydrometallurgy 59:159-175
    Sanders JG, Windom HL (1980) The uptake and reduction of arsenic species by marine algae. Estuar Coastal Mar Sci 10:555-567
    Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arseniteoxidizing bacterium isolated from a gold mine:phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92-97
    Schippers A, Jozsa P-G, Sand W (1996) Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62:3424-3431
    Schippers A, Rohwerder T, Sand W (1999) Intermediary sulfur compounds in pyrite oxidation:implications for bioleaching and biodepyritization of coal. Appl Microbiol Biotechnol 52:104-110
    Schippers A, Sand W (1999) Bacterial leaching of metal sulfide proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319-321
    Seeger M, Jerez CA.1993. Response of Thiobacillus ferrooxidans to phosphate limitation. FEMS Microbiol Rev 11:37-42.
    Seong I.S., Oh J.Y., Lee J.W., Tanaka K., Chung C.H. (2000) The HslU ATPase acts as a molecular chaperone in prevention of aggregation of SulA, an inhibitor of cell division in Escherichia coli. FEBS Lett.477(3):224-229.
    Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67-78
    Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255(1-2):67-78.
    Silverman M P, Lundgren DG (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans I:An improved medium and a harvesting procedure for securing high cell yields. J Bacterial 77(5):642-7.
    Singer PC, Stumm W (1970) Acidic mine drainage:the ratedetermining step. Science 167:1121-1123
    Sofia HJ, Burland V, Daniels DL, Plunkett G, Blattner FR (1994) Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res 22(13):2576-2586.
    Solari JA, Huerta G, Escobar B, Vargas T, Badilla-Ohlbaum R, Rubio J (1992) Interfacial phenomena affecting the adhesion of Thiobacillus ferrooxidans to sulphide mineral surfaces. Colloid Surf 69:159-166
    Steudel R (1996) Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Ind Eng Chem Res 35:1417-1423
    Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321-336.
    Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107-130
    Strickland, E., Hakala, K., Thomas, P.J.& DeMartino, G.N. (2000) Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome. J. Biol. Chem.275(8):5565-5572.
    Tempel K (2003) Commercial biooxidation challenges at Newmont's Nevada operations. In: 2003 SME Annual Meeting, Preprint 03-067, Soc Mining, Metallurgy and Exploration, Littleton, Colo.
    Thomas M. Gihring, Philip L. Bond, Stephen C. Peters, Jillian F. Banfield (2003) Arsenic resistance in the archaeon " Ferroplasma acidarmanus":new insights into the structure and evolution of the ars genes. Extremophiles 7(2):123-130.
    Tisa LS, Rosen BP (1990) Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein. J Biol Chem 265(1):190-194.
    Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M.,(2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. [J] Proteomics, 1(3):377-396
    Tuffin, I. M., S. B. Hector, S. M. Deane, and D. E. Rawlings. (2006). Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Appl. Environ. Microbiol.72(3):2247-2253.
    Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF.2005. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp nov from an acidophilic microbial community. Appl Environ Microbiol 71:6319-6324.
    Valenzuela L, Chi A, Beard S, Orell A, Guiliani N, Shabanowitz J, Hunt DF, Jerez CA.2006. Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 24: 197-211.
    Varela P, Jerez CA.1992. Identification and characterization of GroEL and DnaK homologues in Thiobacillus ferrooxidans. FEMS Microbiol Lett 77:149-153.
    Vera M, Guiliani N, Jerez CA.2003. Proteomic and genomic analysis of the phosphate starvation response of Acidithiobacillus ferrooxidans. Hydrometallurgy 71:125-132.
    Wang Jiazheng. (2002) Preparation for protein's separation. Manuscript for Protein technics.Beijing:Scinece press,18.
    Wickner, S., Gottesman, S., Skowyra,D., Hoskins, J., McKenney, K.& Maurizi, M.R. (1994) A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc. Natl. Acad. Sci. USA 91(25):12218-12222.
    Willsky GR, Malamy MH (1980a) Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J. Bacteriol.144(1):356-365.
    Willsky GR, Malamy MH (1980b) Effect of arsenate on inorganic phosphate transport in Escherichia coli. J Bacteriol.144(1):366-374
    Z. Wang, G. Hou, T.G. Rossman. (1994) Induction of arsenite tolerance and thermotolerance by arsenite occur by different mechanisms, Environ. Health Perspect.102(3):97-100.
    Zhao B., Yeo C.C., Lee C.C., Geng A., Chew F.T., Poh C.L., (2004) Proteome analysis of gentisate-induced response in Pseudomonas alcaligenes NCIB 9867. Proteomics 4(7): 2028-2036.
    Zhou T, Radaev S, Rosen BP, Gatti DL (2001) Conformational changes in four regions of the Escherichia coli ArsA ATPase link ATP hydrolysis to ion translocation. J Biol Chem. 276(32):30414-30422.
    Zimmerley SR, Wilson DG, Prater JD (1958) Cyclic leaching process employing iron oxidizing bacteria. US Patent 2,829,964
    陈聪,姚香.(2004)难处理金矿石预处理方法简述.[J]黄金科学技术12(4):27-30
    高金昌.(2008)生物冶金技术在黄金工业生产中的应用现状及发展趋势.[J]选矿与冶炼10:36-40
    胡春融,杨凤,杨廻春(2006)黄金选冶技术现状及发展趋势.[J]黄金27(7):29-36
    黄孔宣(1992)国外难处理金矿石处理工艺评述.[J]国外黄金参考(3):1-7
    黄振烈,越飞,杨杏芬.(2007)人外周静脉血血清蛋白质双向电泳条件优化.中国职业医学,34(5):362-366.
    李培铮,吴延之(1995)黄金生产加工技术人全[M].中南工业大学出版社
    刘汉钊(1997)难处理金矿石难浸的原因及预处理方法.[J]黄金18(9):44-47
    刘四清,宋焕斌(1998)含砷金矿石工艺矿物学特征及其应用.[J]昆明理工大学学报4:20-21
    朱长亮,杨洪英,王玉峰,林树宾,汤兴光,敖文成,罗金红,刘淑鹏.(2009)含砷难处理金矿石的细菌氧化预处理工艺研究现状及进展.[J]现代矿业6:14-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700