用户名: 密码: 验证码:
三种石斛的光合电子传递、碳同化动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以报春石斛、金钗石斛、鼓槌石斛为试验材料,测定了其碳同化、光合作用系统电子传递特征;同步研究了三种石斛PSII荧光动力学和PSI氧化还原信号在不同处理之间的变化规律;检测了三种石斛叶片中苹果酸含量和磷酸烯醇式丙酮酸羧化酶日变化动态;观察了三种石斛气孔形态和开闭特点,探究了碳同化、电子传递和气孔运动三者之间的联动规律。
     结果表明,报春石斛为景天科酸代谢植物;正常栽培条件下和轻度干旱环境条件下金钗石斛和鼓槌石斛的碳同化行C3途径,比较严重的干旱胁迫可以诱导金钗石斛和鼓槌石斛行景天科酸代谢途径,而且鼓槌石斛可以昼夜不停地进行碳同化,全天保持二氧化碳交换速率为正值。
     冬季温室栽培条件下,三种石斛对光照条件的需求差异很大。报春石斛和鼓槌石斛可以适应1000μmolphotonm-2s-1的光照,而金钗石斛的光饱和点在300μmolphotonm-2s-1。石斛属植物光合作用速率普遍偏低,三种石斛光合速率最高者为鼓槌石斛,可以达到3.92μmolCO2m-2s-1。光合作用日变化显示,报春石斛表现为景天科酸代谢植物特征。
     生长季节报春石斛的光饱和点有所降低,为700μmolphotonm-2s-1;光合作用速率提高,高达3.826μmolCO2m-2s-1;光合作用日变化呈现出CAM植物的四阶段特征。鼓槌石斛的光饱和点降低为800-900μmolphotonm-2s-1之间,最大光合作用速率升高到5.912μmolCO2m-2s-1;光合作用日变化呈单峰曲线,最大值出现在中午前后。金钗石斛更适合荫蔽环境,光合作用日变化呈双峰曲线,中午光照最强烈的时段表现为一定程度的光抑制。
     报春石斛晚间黑暗条件下PEPC羧化酶活性最强,而在中午光照最充足时,酶的活性相对较弱;金钗石斛的PEPC羧化酶活性日变化特点与报春石斛相似,但是活性比较弱;鼓槌石斛的PEPC羧化酶活性很弱,昼夜变化幅度很小,表现为黑暗状态下比光下更强。
     在冬季,报春石斛的最大光量子光化学效率低于0.8,叶绿体光合作用机构处于非正常状态,叶片失绿,说明其进入休眠状态;金钗石斛的最大光量子光化学效率为0.828,但是其实际光量子光化学效率、光化学猝灭系数在冬季普遍处于较低水平,说明其光合作用活性不高,表现出一定程度的休眠;鼓槌石斛能够很好地适应冬季温室环境,整个冬季,最大光量子光化学效率都比较高,即便是在临晨低温的11月中下旬,其Fv/Fm高达0.8,可见其适应低温的能力是最强的。而且,鼓槌石斛天线色素吸收的能量用于光化学反应的份额比较高,PSII反应中心开放的比例高,利于电子的快速传递,迅速形成同化力。因此,冬季温室栽培的鼓槌石斛保持着较高的光合作用能力。
     黑暗处理后报春石斛的最大荧光值低于同一光合作用能力的金钗石斛,也低于12h黑暗处理的报春石斛,表明2h黑暗处理的报春石斛的电子传递链存在电子传递,为叶绿体呼吸作用(chlororespiration)提供了证据。
     暗适应后照光处理的时间对于光化学反应有影响,对于本试验条件下的C3植物金钗石斛和鼓槌石斛,4h以上的光化光照射有利于其光合作用机构的正常运转;对于CAM途径的报春石斛,暗适应后2h的照光使其光合作用速率达到最高,其光化学反应与二氧化碳供应关系密切。
     报春石斛叶片苹果酸含量表现出规律性的昼夜变化,其节律与典型CAM植物相似,呈现四阶段的鲜明特征。
     CAM植物报春石斛光下气孔近乎关闭,但是光合作用系统电子传递正常进行。鼓槌石斛、金钗石斛明显存在气孔不均匀开闭现象。三种石斛的气孔结构相似,气孔复合体为不规则型,没有副卫细胞;保卫细胞外侧罩有拱盖。
     文章首次在园林植物上根据叶绿素荧光动力学和PSI氧化还原信号同步研究两个光合作用系统电子传递状态;首次对不作任何处理的鲜活叶片样品进行快速显微观察,捕捉到真实的气孔不均匀开闭实时状态;并且,对同步研究碳同化、电子传递、气孔运动三者的联动关系做出创造性探索。
Three dendrobia named Dendrobium primulinum, D. nobile, D.chrysotoxum were employed in the trials. Carbon assimilation, electron transport across the two photosystems were explored; the fluctuation of chlorophyll fluorescence related to PSII and P700 signal pertinent to PSI were investigated synchronously; the diurnal changes of malic acid contents in fresh leaves was measured; the diurnal changes of the activity of phosphoenolpyruvate carboxylase (PEPC) was inspected; stomata morphology and stomata movement were observed; moreover, the experiment design was initiated to realize synchronous study on the linkage between three physiological processes including carbon assimilation, electron transport and stomata movement.
     The results demonstrated that D.primulinum is a CAM (Crassulacean acid metabolism) species. Under normal conditions and in moderate arid environment, D.nobile and D.chrysotoxum performed C3 photosynthesis. However, serious drought could induce them switching into CAM pathway, furthermore, the carbon assimilation could operate unremittingly round the clock in D.chrysotoxum, and it always kept net absorb of carbon dioxide day and night.
     In green house during winter, the requirement for light condition was different significantly from one to another among the three dendrobia. D.primulinum and D.chrysotoxum could be adapt to the highlight as intense as 1000μmolphotonm-2s-1, while the light saturation point was 300μmolphotonm-2s-1. Generally, the photosynthetic rate was low in dendrobia. Among the three dendrobia, the maximum photosynthetic rate was 3.92μmolCO2m-2s-1in D.chrysotoxum during winter. Diurnal change of photosynthesis in D.primulinum exhibited typical feature of CAM with nocturnal carbon assimilation.
     In growth season, the light saturation point of D.primulinum declined to 300μmolphotonm-2s-1, and the maximum photosynthetic rate increased to 3.826μmolCO2m-2s-1. The diurnal change of photosynthesis was composed by four distinct phases. The light saturation point of D.chrysotoxum lowered to 800μmolphotonm-2s-1, and maximum photosynthetic rate rose to 5.912μmolCO2m-2s-1, while the diurnal change of photosynthesis showed single summit at noon.
     D.nobile preferred to shade environment, whose diurnal change of photosynthesis showed double summits, and there was photo inhibit at noon when illumination was intense.
     Activity of PEPC of D.primulinum from dark leaves was strong, whilst it was relatively weak at noon when sun light was bright. The diurnal change of activity of PEPC in D.nobile was resembled to D.primulinum. The activity of PEPC in D.chrysotoxum was very weak, and the magnitude of diurnal change was small; anyway, its activity from dark leaves was stronger than one from illuminated leaves.
     The maximal photochemical efficiency of PSII in D.primulinum during winter was lower than 0.8, and the photosynthetic apparatus was in abnormal state that there was chlorophyll deficiency, which indicated that D.primulinum fell into dormancy. The maximal photochemical efficiency in D.nobile was 0.828, but its actual photochemical efficiency and photochemical quenching coefficient were very small, which showed that its photosynthesis was sluggish and was dormant to some certain during winter. D.chrysotoxum could perfectly acclimatize itself to the greenhouse environment in winter, its maximal photochemical efficiency was higher even as high as 0.8 when encountered to the chilling stress. The ratio for photochemistry from the energy absorbed by antenna pigment in D.chrysotoxum was high, and there were more open centers of PSII, which was conducive to electron transport so as to rapidly produce assimilatory power. Hence, the photosynthesis processes were vigorous in D.chrysotoxum during winter.
     After 2 hours of darkness treatment, the maximal fluorescence was lower than one of D.nobile which was in the same level based on the photosynthetic rate as D.primulinum, and the Fm was also lower than the value of maximal fluorescence of D.primulinum after 12 hours of darkness treatment. Therefore, there was electron transport in the D.primulinum treated in darkness for 2 hours, which probably related to chlororepiration.
     The effect of illumination period on photochemical reaction after darkness adaptation was significant. Longer than 4 hours of actinic light illumination was beneficial to operating efficiently of photosynthesis apparatus for C3 species including D.nobile and D. chrysotoxum. As to D.primulinum, 2 hours of illumination after darkness adaptation resulted in the maximal photosynthetic rate, and there was close relationship between photochemical reaction and carbon dioxide supply.
     Malic acid contents showed orderly diurnal fluctuation in the leaf of D.primulinum, and its rhythm demonstrated the characteristics of four phases exclusive to CAM species.
     The stomata of D.primulinum were nearly close when exposed to light intenser than actinic light, but its electron transport operated smoothly. It was found that there was unevenly stomata close in D.nobile and D.chrysotoxum. Stomata configuration were similar among the three dendrobia, their stomata apparatus types were anomocytic, without subsidiary cells, and there was a cuticle stomata ledge outside of guard cells.
     For the first time, chlorophyll fluorescence kinetics and P700 signal were simultaneously monitored and served as probe to study the electron transport across two photosystems in ornamental plants. For the first time, micro-observation was actualized on fresh leaf free from special treatment which disturbed the stomata movement, snapshooting the actual stomata uneven close. The blueprint tailored for synchronously exploring carbon assimilation, electron transport and stomata movement was initiated, and the primary experiment conducted lately foretold the bright future.
引文
[1]王雁,李振坚,彭红明,等.石斛兰-资源·栽培·应用[M]北京:中国林业出版社,2007,11-12.
    [2]陈心启,吉占和.中国兰花全书(第二版)北京:中国林业出版社, 2003,153-171.
    [3]张光浓,毕志明,等.石斛属植物化学成分研究进展[J].中草药2003 34(.6):5.
    [4]黎英,赵亚平,等.5种石斛水提物对活性氧的清除作用[J].中草药2004 34(11):1240-1242.
    [5]林萍,毕志明,等.石斛属植物生理活性研究进展[J].中草药2003 34(11):19.
    [6] N.Xiang Y.Hong L.T.Lam-Chan Genetic Analysis of Tropical Orchid Hybrids (Dendrobium) with Fluorescence Amplified Fragment-length Polymorphism(AFLP)[J].Journal American Society for Horticultural Science,2003,128(5):731-735.
    [7]张尊建,王源园.五种石斛的指纹图谱研究[J].中国药科大学学报,2003(34)6:534-540.
    [8]郑艳,徐珞珊,等.香豆素类成分在球花石斛(Dendrobium thyrsiflorum)根中的分布和相对含量[J].激光生物学报,2005,14(2):87-90.
    [9]陈晓梅,郭顺星.4种内生真菌对金钗石斛无菌苗生长及其多糖和总生物碱含量的影响[J].中国中药杂志, 2005,30(4):253-257.
    [10]王玉英,李枝林,余朝秀.春石斛试管增殖研究初报[J].中国农学通报,2005,121(2):208-209.
    [11]查学强,罗建平,姜绍通.悬浮培养霍山石斛原球茎合成活性多糖的研究[J].食品科学,2005,26 (4 )41-44.
    [12]孙廷,杨玉珍,陶杰,等.金钗石斛的组织培养和快繁技术[J].山东农业大学学报(自然科学版), 2005,36(1):47-50.
    [13]魏小勇,方花.石斛属药用植物分子生物学研究[J].上海中医药大学学报,2003,19:(1)47-49.
    [14]侯丕勇,郭顺星.悬浮培养的铁皮石斛原球茎在固体培养基上生长和分化的研究[J].中国中药杂志,2005,30(10):729-732.
    [15]陈庭,叶庆生,刘伟.金钗石斛类原球茎诱导及增殖的正交试验[J].华南农业大学学报(自然科学版), 2005,26(3):59-63.
    [16]朱苏文,刘伟.石斛干品基因组DNA的提取与RAPD分析[J].激光生物学报,2005,14(3):224-227.
    [17]谭云,叶庆生,刘伟.霍山石斛的组织培养[J].植物学通报,2005,22(1):58-62.
    [18]丑敏霞,朱利泉,张玉进,等.光照强度对石斛生长与代谢的影响[J].园艺学报,2000,27(5 ):380-382.
    [19]李泉森,丑敏霞,朱利泉,等.不同光照强度和温度对金钗石斛生长的影响[J].植物生态学报,2001, (3):325-330.
    [20]宋锡全,吴辉,赵俊,等.金钗石斛试管苗壮苗培养和光合速率的检测,贵州师范大学学报(自然科学版) [J].2006,4(1):6-9
    [21]蔡永萍,李玲,李合生,等.霍山县3种石斛叶片光合特性及其对光强的响应[J].中草药,2005,36 (4 ):586-590.
    [22]蔡永萍,李合生,骆炳山,等.霍山3种石斛的生长节律及其与生态因子关系的研究[J].武汉植物学研究,2003,21(4):351-355.
    [23]蔡永萍,李玲,李合生,等.霍山石斛叶片光合速率和叶绿素荧光参数的日变化[J].园艺学报,2004, 31(6 ):778-783.
    [24]吕献康,徐春华,舒小英.3种石斛的光合特性研究[J].中草药,2004,35(11):1296-1298.
    [25]苏文华,张光飞.金钗石斛光合作用特征的初步研究[J].中药材,2003,26(3 ):157-159.
    [26]苏文华,张光飞.铁皮石斛叶片光合作用的碳代谢途径[J].植物生态学报,2003,27(5):631-637.
    [27] R. SINCLAIR Water Relations of Tropical Epiphytes III. EVIDENCE FOR CRASSULACEAN ACID METABOLISM[J].Journal of Experimental Botany,1984, 35(1):1-7.
    [28] R. SINCLAIR Water Relations of Tropical Epiphytes II.PERFORMANCE DURING DROUGHTING[J].Journal of Experimental Botany,1983,34(12):1664-1675.
    [29] R. SINCLAIR Water Relations of Tropical Epiphytes I.RELATIONSHIPS BETWEEN STOMATAL RESISTANCE, RELATIVE WATER CONTENT AND THE COMPONENTS OF WATER POTENTIAL[J].Journal of Experimental Botany,1983,34(12):1652-1633.
    [30] Woei-Jiun Guo,Nean Lee. Effect of Leaf and Plant Age, and Day/Night Temperature on Net CO2 Uptake in Phalaenopsis amabilis var. formosa[J].Journal American Society for Horticultural Science,2006,131(3):320-326.
    [31] Eric L. Kruger and John C.Volin. Reexamining the empirical relation between plant growth and leaf photosynthesis[J].Functional Plant Biology, 2006,33,421-429.
    [32] Min-Wha Jeon,Mohammad Babar Ali, Eun-Joo Hahn, Kee-Yoeup.Pack Photosythetic pigments,morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature[J].Environmental and Experimental Botany,2006,(55)183-194.
    [33] Richard Haslam, Anne Borland, Kate Maxwell, Howard Griffiths.Physiological responses of the CAM epiphyte Tillandsia usneoides L.(Bromeliaceae) to variations in light and water supply[J].Journal of Plant Physiology,2003,(160):627-634.
    [34] Rasika G.Mudalige,Adelheid R.Kuehnle.Orchid Biotechnology in Production and Improvement HortScience, 2004 39(1): 11-17
    [35] Shu Hua Yang, Hao Yu and Chong Jin Goh Functional Characterisation of a cytokinin oxidase gene DXCKX1 in Dendrobium Orchid Plant Molecular Biology 2003,(51):237-248
    [36] Nayak N.R.1,Sahoo S,Patnaik S.,Rath S.P. Establishment of thin cross section (TCS) culture method for rapid micropropagation of Cymbidium aloifolium (L.) Sw. and Dendrobium nobile Lindl. (Orchidaceae) Scientia Horticulturae, 2002 94(1):107-116.
    [37]方花,魏小勇铁皮石斛cDNA文库的构建及分析生命科学研究, 2005,9(3):263-266
    [38]詹忠根,徐程,张铭,等.铁皮石斛离体根尖经体细胞胚再生植株研究[J].浙江大学学报(农业与生命科学版),2005,31(5):579-580.
    [39]唐凤,丁小余,丁鸽,等.锗对铁皮石斛原球茎的生长及抗氧化酶系的影响[J].南京师大学报(自然科学版),2005,28(9):86-89.
    [40] Chong Siang Tee , Mahmood Maziah.Optimization of Biolistic Bombardment Parameters for Dendrobium Sonia 17 Calluses Using GFP and GUS as the reporter system[J].Plant Cell,Tissue and Organ Culture,2005,80:77-89.
    [41] E.A.Tsavkelova,T.A.Cherdyntseva,A.I.Netrusov Auxin Production by Backteria Associated with Orchid Roots[J].Microbiology,2005,4(1):46-53.
    [42] Xue-Min Wu,Saw-Hoon Lim,Wei-Cai Yang.Characterization,expression and phylogenetic study of R2R3-MYB genes in Orchid[J].Plant Molecular Biology,2003,51:959-972.
    [43] SKIPPER,M.JOHANSEN,L.B.,PEDERSEN, K.B.FREDERIKSEN.S.,JOHANSEN B.B.Cloning and transcription analysis of an AGAMOUS-and SEEDSTICK ortholog in the orchid Dendrobium thysiflorum(Reichb.f.).[J].Gene,2006,366(2):266-274.
    [44] Xu YIFENG,TEO LAILAI.Floral organ identity genes in the orchid Dendrobium crumenatum[J].Plant Journal,(2006),46(1):54-68.
    [45] Karin Ernst,Peter Westhoff.The Phosphoenolpyruvate carboxylase(ppc)gene family of Flaveria trinervia (C4)and F.pringlei(C3):molecular characterization and expression analysis of the ppcB and ppcC genes[J].Plant Molecular Biology,1997,34:427-443.
    [46] Li Yong-Geng,Li Ling-Hao,Jiang Gao-Ming,Niu Shu-Li,Liu Mei-Zhen.Traits of chlorophyll fluorescence in 99 plant species from the sparse-elm grassland in Hunshandak Sandland[J].PHOTOSYNTHETICA,2004,42(2):243-249.
    [47] J. He,L.C.D. Teo.Susceptibility of green leaves and green flower petals of CAM orchid Dendrobium cv. Burana Jade to high irradiance under natural tropical conditions[J].PHOTOSYNTHETICA,2007,45(2):214-221.
    [48] Guadalupe Malda, Ralph A. Backhaus,Chris Martin.Alterations in growth and crassulacean acid metabolism(CAM)activity of in vitro cultured cactus[J].Plant Cell Tissue and Organ Culture,1999,58:1-9.
    [49] MARTIN K.P.,MADASSERY J. Rapid in vitro propagation of Dendrobium hybrids through direct shoot formation from foliar explants and protocorm-like bodies[J].Scientia Horticulturae,2006,108(1):95099.
    [50] V.P.Kholodova,S.N.Gracheva, Yu.S.Morkina,V.V.Ragulin,Vl.V.Kuznetsov.Reversibility of the Stress-Induced Development of CAM Photosynthesis in Plants[J].Doklady Biological Sciences,2004,(395):133-135.
    [51] M.I.ELAMRY,A.K.HEGAZY.Age-specific changes of acidity,phosphoenolpyruvate carboxylase,ribulose-1,5-bisphosphate carboxylase/oxygenase,abscisic acid and leaf water potential in Mesembryanthemum nodiflorum[J].BIOLOGIA PLANTARUM,1997/98,40(2):219-228.
    [52] Michitio Tsuyama,Masaru Shibata,Tetsa Kawazu,Yoshichika Kobayashi.An analysis of the mechanism of the low-wave phenomenon of chlorophyll fluorescence[J].Photosynthesis Research,2004,81:67-76.
    [53]李鹏民,高辉远,Reto J. Strasser.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报,2005,31(6):559-566.
    [54] John C. Cushman.Crassulacean Acid Metabolism.A Plastic Photosynthetic Adaptation to Arid Environments[J].Plant Physiol,2001,(127):1439-1448.
    [55] Antony N. Dodd,Anne M. Borland,Richard P. Haslam,Howard Griffiths,Kate Maxwell.Crassulacean acid metabolism: plastic, fantastic[J].Journal of Experimental Botany,2002,53(369):569-580.
    [56] Klaus Winter,Joseph A.M. Holtum.Environment or Development? Lifetime Net CO2 Exchange and Control of the Expression of Crassulacean Acid Metabolism in Mesembryanthemum crystallinum[J].Plant Physiology,2007,184143:98-107.
    [57] Klaus Winter,Milton Garcia,Joseph A. M. Holtum.On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalancho?, and Opuntia[J].Journal of Experimental Botany,2008 59(7):1829-1840.
    [58] Ulrich Lüttge.Photosynthetic flexibility andecophysiological plasticity: questions and lessons from Clusia, the only CAM tree, in the neotropics[J].New Phytologist,2006,171: 7–25.
    [59] Howard Griffiths, Wendy E. Robe, Jan Girnus,Kate Maxwell.Leaf succulence determines the interplay between carboxylase systems and light use during Crassulacean acid metabolism in Kalancho? species[J].Journal of Experimental Botany,2008,59(7):1851-1861.
    [60] Kate Maxwell,Giles N.Johnson.Chlorophyll fluorescence—a practical guide[J].Journal of Experimental Botany,2000,51(345):659-668.
    [61] George C.Papageorgiou and Govindjee Chlorophyll a Fluorescence: A Signature of Photosynthesis[M]. Springer Printed in The Netherlands,2004.
    [62] Quick WP, Horton P.Studies on the induction of chlorophyll fluorescence in barley protoplasts. I. Factors affecting the observation of oscillations in the yield of chlorophyll fluorescence and the rate of oxygen evolution[J].Proceedings of the Royal Society of London B,1984,220:61–370.
    [63]陈建明,俞晓平,程家安叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55
    [64]赵弢,高志奎,高荣孚,等.非调制式荧光仪测定叶绿素荧光参数的研究[J].生物物理学报,2006,22(1):34-37.
    [65]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [66] S.Redondo-Gomez,E.Mateos-Naranjo,J.Cambrolle,T.Luque,M.E.Figueroa,A.J.Davy.Carry-over of Differential Salt Tolerance in Plants Grown from Dimorphic Seeds of Suaeda splendens[J].Annals of Botany,2008,102(1): 103-112.
    [67] M. E. Ghanem,A.Albacete,C.Martinez-Andujar,M.Acosta,R.Romero-Aranda,I.C.Dodd,S.Lutts,F.Perez Alfocea.Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.) [J].Journal of Experimental Bot.,2008,153(1):1-12.
    [68] S. E. Abdel-Ghany,M. Pilon MicroRNA-mediated.Systemic Down-regulation of Copper ProteinExpression in Response to Low Copper Availability in Arabidopsis[J].J. Biol. Chem.,2008,283(23): 15932 - 15945.
    [69] J. B. Skillman Quantum yield variation across the three pathways of photosynthesis: not yet out of the dark[J].J. Exp. Bot.,2008,59(7): 1647–1661.
    [70] C.P.Osborne,E.J.Wythe,D.G.Ibrahim,M.E.Gilbert,B.S.Ripley.Low temperature effects on leaf physiology and survivorship in the C3 and C4 subspecies of Alloteropsis semialata[J].J. Exp. Bot.,2008,59(7): 1743 - 1754.
    [71] D. D. Cameron,J.M.Geniez,W.E.Seel,L.J.Irving Suppression of Host Photosynthesis by the Parasitic[J].Plant Rhinanthus minor Annals of Botany,2008,101(4): 573-578.
    [72] T.Hajek,R.P.Beckett.Effect of Water Content Components on Desiccation and Recovery in Sphagnum Mosses[J].Annals of Botany,2008,101(1):165–173.
    [73] Olivia Hernández-González,Oscar Briones Villarreal.Crassulacean acid metabolism photosynthesis in columnar cactus seedlings during ontogeny: the effect of light on nocturnal acidity accumulation and chlorophyll fluorescence [J].American Journal of Botany,2007,94:1344-1351.
    [74] Eduardo A.de Mattos,Ulrich Lüttge.Chlorophyll Fluorescence and Organic Acid Oscillations during Transition from CAM to C3-photosynthesis inClusia minor L. (Clusiaceae) [J].Annals of Botany,2001,88(3):457-463.
    [75] Fernando Broetto,Heitor Monteiro Duarte,Ulrich Lüttge.Responses of chlorophyll fluorescence parameters of the facultative halophyte and C3–CAM intermediate species Mesembryanthemum crystallinum to salinity and high irradiance stress[J].Journal of Plant Physiology,2007,164(7): 904-912.
    [76] Abdolhossein Rezaei Nejad,Jeremy Harbinson,Uulke van Meeteren.Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity[J].Journal of Experimental Botany,2006,57(14):3669-3678.
    [77] Downton WJS,Loveys BR,Grant WJR.Non-uniform stomatal closure induced by water stress causes putative non-stomatal inhibition of photosynthesis[J].New Phytologist,1988,110(4):503–509.
    [78] Terashima I,Wong S-C,Osmond CB,Farquhar GD.Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies[J].Plant Cell Physiology,1988,29:385–394.
    [79] Genty B..Meyer S.Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging[J].Australian Journal of Plant Physiology,1994,22(2):277–284.
    [80] West JD,Peak D,Peterson J,Mott KA.Dynamics of stomatal patches for a single surface of Xanthium strumarium L. leaves observed with fluorescence and thermal images[J].Plant,Cell and Environment. 2005,28:633–64.
    [81] Jones HG.Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces[J].Plant, Cell and Environment,1999,22:1043–1055.
    [82] Hartmut Kaiser,Nicole Legner.Localization of Mechanisms Involved in Hydropassive and Hydroactive Stomatal Responses of Sambucus nigra to Dry Air[J].Plant Physiology,2007,143(2): 1068-1077.
    [83] Keith A. Mott1,David Peak.Stomatal Patchiness and Task-performing Networks[J].Annals of Botany,2007,99(2):219-226.
    [84] Cardon ZG,Mott KA,Berry JA.Dynamics of patchy stomatal movements, and their contribution to steady-state and oscillating stomatal conductance calculated with gas-exchange techniques[J].Plant, Cell and Environment,1994,17:995–1008.
    [85] Eckstein J, Beyschlag W, Mott KA, Ryel RJ.Changes in photon flux can induce stomatal patchiness[J].Plant, Cell and Environment,1996,19:1066–1074.
    [86] Bro E,Meyer S,Genty B.Heterogeneity of leaf CO2 assimilation during photosynthetic induction. Plant, Cell and Environment,1996,19:1349–1358.
    [87] Mott KA,Shope JC.,Buckley TN.Effects of humidity on light-induced stomatal opening: evidence for hydraulic coupling among stomata[J].Journal of Experimental Botany,1997,50:1207–1213.
    [88] Dhammika Gunasekera,Gerald A.Berkowitz.Heterogenous Stomatal Closure in Response to Leaf Water Deficits Is Not a Universal Phenomenon[J].Plant Physiology,1992,98:660-665.
    [89] Abdolhossein Rezaei Nejad,Uulke van Meeteren.Dynamics of adaptation of stomatal behaviour to moderate or high relative air humidity in Tradescantia virginiana[J].Journal of Experimental Botany,2008,(59)2:289-301.
    [90] Abdolhossein Rezaei Nejad,Jeremy Harbinson1,Uulke van Meeteren.Dynamics of spatial heterogeneity of stomatal closure in Tradescantia virginiana altered by growth at high relative air humidity[J].Journal of Experimental Botany,2006,57(14):3669-3678.
    [91] Keith A.Mott,Thomas N.Buckley.Stomatal heterogeneity[J].Journal of Experimental Botany,1998,49(Special Issue):407–417.
    [92] Jürgen Eckstein Olga Artsaenko,Udo Conrad,Martin Peisker,Wolfram Beyschlag.Abscisic acid is not necessarily required for the induction of patchy stomatal closure[J].Journal of Experimental Botany, 1998,49(320):611–616.
    [93] Keith A. Mott,Thomas N.Buckley.Patchy stomatal conductance: emergent collective behaviour of stomata[J].Trends in Plant Science,2000,5(6):258-262.
    [94] Wolfram Beyschlag,Jürgen Eckstein.Towards a causal analysis of stomatal patchiness: the role of stomatal size variability and hydrological heterogeneity[J].Acta Oecologica,2001,22(3):161-173.
    [95] J.W.HAEFNER,T.N.BUCKLEY,K.A.MOTT.A spatially explicit model of patchy stomatal responses to humidity Plant[J].Cell & Environment,2008,20(9):1087-1097.
    [96] D.W.G.VAN KRAALINGEN.Implications of non-uniform stomatal closure on gas exchange calculations[J].Plant, Cell & Environment,2006 13 (9):1001-1004.
    [97] Z.G.CARDON,K.A.MOTT J.A.BERRY.Dynamics of patchy stomatal movements and their contribution to steady-state and oscillating stomatal conductance calculated using gas-exchange techniques Plant[J].Cell & Environment,2006,17(9):995-1007.
    [98] Naila Ferimazova,Hendrik Küpper,Ladislav Nedbal,Martin Trtílek.New Insights into Photosynthetic Oscillations Revealed by Two-dimensional Microscopic Measurements of Chlorophyll Fluorescence Kinetics in Intact Leaves and Isolated Protoplasts[J].Photochemistry and Photobiology,2002,76(5):501-508.
    [99]高志奎,高荣孚,何俊萍,王梅.环境因子对温室茄子光合非稳态性的影响[J].园艺学报,2005,32(4):624-627.
    [100] N.G.Bukhov,N.Boucher,R.Carpentier.Loss of the precise control of photosynthesis and increased yield of non‐radiative dissipation of excitation energy after mild heat treatment of barley leaves[J].Physiologia Plantarum,2002,104(4):563-570.
    [101] S.M.SCHRADER,R.R.WISE,W.F.WACHOLTZ,D.R.ORT,T.D.SHARKEY.Thylakoid membrane responses to moderately high leaf temperature in Pima cotton[J].Plant, Cell & Environment 2004,(6):725-735.
    [102] Gennady Ananyev,Zbigniew S.Kolber,Dennis Klimov,el ta.Remote sensing of heterogeneity in photosynthetic efficiency,electron transport and dissipation of excess light in Populus deltoides stands under ambient and elevated CO2 concentrations, and in a tropical forest canopy, using a new laser-induced fluorescence transient device[J].Global Change Biology,2005,11(8):1195-1206.
    [103] Elizabeth A.Ainsworth,Stephen P. Long.What have we learned from 15 years of free-air CO2 enrichment (FACE)?A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2[J].New Phytologis,2004,165(2):351-372.
    [104] M.M.Chaves,E.Pantschitz,E.D.Schulze.Growth and Photosynthetic Carbon Metabolism in Tobacco Plants under an Oscillating CO2 Concentration in the Atmosphere[J].Plant Biology,2008,31(4):417-425.
    [105] Tang Yanhong,Koizumi Hiroshi,Satoh Mitsumasa,Washitani Izumi.Characteristics of transient photosynthesis in seedlings grown under lightfleck and constant light regimes[J].Oecologia,1994,100(4):1432-1939.
    [106] K.Siebke1,A.Laisk,V.Oja,O.Kiirats,K.Raschke,U.Heber.Control of photosynthesis in leaves as revealed by rapid gas exchange and measurements of the assimilatory force[J].FA Planta,1990,182(4):513-522.
    [107] U.SCHURR,A.WALTER,U.RASCHER.Functional dynamics of plant growth and photosynthesis from steady-state to dynamics from homogeneity to heterogeneity[J].Plant,Cell & Environment,2006,29(3):340-352.
    [108] D.A.Sims,R.W.Pearcy.Sunfleck Frequency and Duration Affects Growth Rate of the Understorey Plant, Alocasia macrorrhiza[J].Functional Ecology,1993,7(6):683-689.
    [109] A.Bohn,A.Geist,U.Rascher,U.Lüttge.Responses to different external light rhythms by the circadian rhythm of Crassulacean acid metabolism in Kalanchoe daigremontiana[J].Plant,Cell & Environment,2001,6(2):811-820.
    [110] Uwe Rascher,Ladislav Nedbal.Dynamics of photosynthesis in fluctuating light[J].Current Opinion in Plant Biology,2006,9(6):671-678.
    [111] Ladislav Nedbal,Jan ?erveny,Uwe Rascher,Henning Schmidt.E-photosynthesis: a comprehensive modeling approach to understand chlorophyll fluorescence transients and other complex dynamic features of photosynthesis in fluctuating light[J].Photosynthesis Research,2007,93(3):223-234.
    [112] Toru Sakai,Nobuko Saigusa,Susumu Yamamoto,Tsuyoshi Akiyama.Microsite variation in light availability and photosynthesis in a cool-temperate deciduous broadleaf forest in central Japan[J].Ecological Research,2005,20(5):537-545.
    [113] Carsten Külheim,Jon ?gren Stefan Jansson.Rapid Regulation of Light Harvesting and Plant Fitness in the Field[J].Science,2002,297(5578)91-93.
    [114] Ulrika Hjelm, Erling Ogren.Photosynthetic responses to short-term and long-term light variation inPinus sylvestris and Salix dasyclados[J].Trees Structure and Function,2004,18 (6): 622-629.
    [115] J.Stegemann,H.C.Timm,M.Kuppers.Simulation of photosynthetic plasticity in response to highlyfluctuating light: an empirical model integrating dynamic photosynthetic induction andcapacity[J].Trees Structure and Function, 1999,14 (3) : 145-160.
    [116] ULRIKE BECHTOLD , STANISLAW KARPINSKI, PHILIP M. MULLINEAUX The influence ofthe light environment and photosynthesis on oxidative signalling responses in plant-biotrophicpathogen interactions [J] .Plant, Cell & Environment,2005,28 ( 8 ): 1046-1055.
    [117] Zu-Hua Yin,GilesN.Johnson.Photosynthetic acclimation of higher plants to growth in fluctuating lightenvironments[J].Photosynthesis Research,2000 63 (1): 97-107.
    [118] F.Valladaresl,Mitchell TAllen,Robert W.Pearcy. Photo synthetic responses to dynamic light under fieldconditions in six tropical rainforest shrubs occuring along a light gradient[J].Oecologia,l997,111 (4):505-514.
    [119] DOU Jun-xia,ZHANG Yi-ping,FENG Zong-wei,LIU Wen-jie.Variation in photosynthetic photon fluxdensity within a tropical seasonal rain forest of Xishuangbanna, south-western China[J].JOURNAL OFENVIRONMENTAL SCIENCES,2005,17(6)966-969.
    [120] M. U.FKirschbauml,M.Kuppersl,H.Schneiderl,C.Giersch,S.Noe.Modelling photosynthesis in fluctuatinglight with inclusion of stomatal conductance, biochemical activation and pools of key photosyntheticmtermediates[J].Planta,1997,204 (1): 16-26.
    [121] Robert W.Pearcy, JohnP.Krall,Gretchen F,Sassenrath-Cole.Photosynthesis in Fluctuating LightEnvironments Advances in Photosynthesis and Respiration[J].Photosynthesis and theEnvironmen,1997,5: 321-346.
    [122] M.VShorina, VVRagulin, Vl.VKuznetsov and N.I.Shevyakova Are cadaverine and ethylene involvedin the induction of CAM photosynthesis in the common ice plant?[JJ.Doklady Biological Sciences ,2005,400(1). 45-47.
    [123] Thorsten E.E.Grams,Stephan Thiel.High light-induced switch from C3-photosynthesis to Crassulaceanacid metabolism is mediated by UV-A/blue light[ J]. Journal of Experimental Botany,2002,53, (373): 1475-1483.
    [124] GD. Farquhar,S.von CaemmererJ.A.Berry.ABiochemical Model of Photosynthetic CO2 AssimilationinLeaves of C3 Species[J].Planta,1980,149:78-90.
    [125] S.von Caemmerer,GD.Farquhar Some relationships between the biochemistry of photosynthesis andthe gas exchange of leaves[J].Planta,1981,153:376-387.
    [126] DEELL J R, TOIVONEN P. M A. Practical applications of chlorophyll fluorescence in plantbiology[M]. Boston: Kluwer Academic Publishers, 2003.
    [127] LAZARD.Chlorophyll a fluorescence induction[J]. Biochimica etBiophysica Acta, 1999,1412:1-28.
    [128] ZHU X G,GOVINDJE E,BAKER N.R.,et al.Chlorophyll a fluorescence induction kinetics in leavespredicted from a model describing each discrete step of excitation energy and electron transferassociated with photosystem II [J].Planta,2005,223: 114-133.
    [129] Kluge M,Razanoelisoa B,Brulfert J.Implications of genotypic diversity and phenotypic plasticity in theecophysiological success of CAM plants, examined by studies on the vegetation of Madagascar.[J].PlantBiology.2001.3: 214-222.
    [130] David M. Kramer, Giles Johnson, Olavi Kiirats, GeraldE.Edwards.New Fluorescence Parameters forthe Determination of QA Redox State and Excitation Energy [J].Photosynthesis Research,2004,79:209-218.
    [131] Mark Aurel Sch6ttler,Helmut Kirchhoff.Engelbert Weis Role of Plastocy anin in Adjustment of PhotosyntheticElectron Transport to the Carbon Metabolism in Tobacco[J].Plant Physiology,2004,136:4265-4274.
    [132] Pierre Haldimann,Merope Tsimilli-Michael.Mercury inhibits the non-photochemical reduction ofplastoquinone by exogenous NADPH and NADH: evidence from measurements of thepolyphasicchlorophyll a fluorescence rise in spinach chloroplasts[J].Photosynthesis Research,2002,74: 37-50.
    [133] Peter Horton,Alexander V.Ruban,Mark Wentworth.Allosteric regulation of the light-harvesting systemof photosystem II[J].Phil.Trans.R.Soc.Lond.B,2000,355:1361-1370.
    [134] BenHua,Cao YunYing,Xie HuanSong,Zhu SuQin,Ma QiAngJiao DeMao.Changes in ViolaxanthinDeepoxidase Activity and Unsaturation of Thylakoid Membrane Lipids in Indica and Japonica RiceUnder Chilling Condition and Strong Light[J]. ACTA BOTANIC A SINICA,2003,45(9 ):1063-1070.
    [135] Xin-Guang Zhu,Govindjee Neil,R. Baker,Eric deSturler,Donald R.,Ort Stephen,P Long.Chlorophyllafluorescence induction kinetics in leaves predicted from a model describing each discrete step ofexcitation energy and electron transfer associated with Photosystem II[J].Planta,2005,223: 114-133.
    [136] UlnchLiittge Clusia.Holy Grail and enigma[J]. Journal of Experimental Botany,2008,59(7): 1503-1514.
    [137] MarkAurel Schottler,HelmutKirchhoff,EngelbertWeis.TheRoleofPlastocyaninintheAdjustaPhotosynthetic Electron Transport to the Carbon Metabolism in Tobacco[J].Plant Physiology,2004,136:4265-4274.
    [138] KOICHI OTA, YUKIO YAMAMOTO.Effects of Different Nitrogen Sources and Concentrations onCAM Photosynthesis in Kalanchoe blossfeldiana[J]. Journal of Experimental Botany, 1991,42 (10):1271-1277.
    [139] STRASSER R.J.,SRIVASTAVA A,TSIMILLI2MICHAEL M.Analysis of the chlorophylla fluorescencetransient[ A]. Papageorgiou,G.,Govindjee(Eds.), Advances in Photosynt hesis and Respiration. (Vol. 19)Chlorophyll fluorescence: a Signature of photosynthesis [M].Kluwer Academic Publishers, The Netherlands,2004,321-362.
    [140] Schreiber U.Pulse-Amplitude (PAM) fluorometry and saturation pulse method.In: Papageorgiou G andGovindjee (eds) Chlorophyll fluorescence: A signature of Photosynthesis[M].Kluwer Academic Publishers,Dordrecht,The Netherlands, 2004,279-319.
    [141]钟传飞,高荣孚稳态叶绿素荧光动力学理论构建和常绿阔叶植物越冬光合生理生态研究[M]北京林业大学博士论文,2008,26-35
    [142] Neil R.Baker,Eva Rosenqvist.Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities[J]. Journal of Experimental Botany, 2004,5 5 (403): 1607-1621.
    [143] Pierre Haldimannl, Merope Tsimilli-Michael Mercury inhibits the non-photochemical reduction of plastoquinone by exogenous NADPH and NADH: evidence from measurements of the polyphasic chlorophyll a fluorescence rise in spinach chloroplasts Photosynthesis Research, 2002,74: 37-50.
    [144] P. SUSILA,D. LAZAR,P ILIK.The gradient of exciting radiation within a sample affects the relative height of steps in the fast chlorophyll a fluorescence nse[J].PHOTOSYNTHETICA,2004,42 (2): 161-172.
    [145] Pavel Posp'isill,Holger Daul .Chlorophyll fluorescence transients of Photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution[J].Photosynthesis Research,2000,65:41-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700