用户名: 密码: 验证码:
复杂雷达回波特征提取及信号检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以智能化为核心内涵的下一代雷达技术已在科技进步和国防应用彰显其重要性。目前感知雷达、知识辅助的自适应雷达、基于知识的雷达信号处理以及空时自适应信号处理等都是国内外研究的热点,然而在上述研究范畴中有一个共同的关键问题,那就是对复杂环境和目标的雷达回波信号中包含的各种成分进行分析、理解、提取,进而实现微弱目标检测。
     通过对环境杂波动态特性的分析,研究适合于复杂雷达回波的特征提取方法,能够充分利用回波中蕴含的环境参数信息、结构属性信息,实现低信杂比条件下的自适应信号检测。本文立足于复杂数据分析和雷达信号处理的最新研究成果,从复杂雷达回波信号的特性分析入手,讨论了宽带情形下和高阶域上分析多分量非平稳信号的具体方法,以及雷达回波中进行微多普勒特征提取和拓扑结构特征提取的技术途径,最终通过海杂波中的微弱信号检测来检验方法的可行性与实际效果,并形成系统分析复杂雷达回波信号的内容框架。
     主要研究内容概括如下:
     1、研究复杂雷达回波信号特性分析方法。首先对回波序列中的复杂性和不确定性进行了定量分析,然后介绍了本文后续章节进行实验分析的实测数据样本,并给出了一种基于变尺度相关分析的数据预处理方法。讨论了复杂雷达回波的序列分析方法,最后在联合域上开展雷达回波信号的研究,讨论了宽带情形下和高阶域上分析多分量非平稳信号的具体方法。提出了对局域模糊和全域相关的一体化分析方法,这是对联合域能量分布一种结构化表示。
     2、研究复杂雷达回波特征提取的几种方法,包括:基于微多普勒特征的海面弱目标特征提取方法;结合拓扑分析,提出了基于保持同调的流形拓扑特征提取方法;基于有限时间Lyapunov指数,得到更进一步的流形结构特征描述。最后,利用这些特征提取的结果确定重构参数,实现基于联合域能量分布的相空间重构。
     3、提出了两种用于复杂雷达回波的信号检测方法。首先应用基于拓扑结构特征的检测方法,为在复杂多变的高维数据集上获取包含信号数目及特性的拓扑不变量,进而实现杂波环境下微弱信号检测;其次在雷达回波多维特征空间上,利用多维参考滑窗在各个轴向上都进行局部化和单元化,解决低信杂比条件下局部海域同时检测多个小目标的问题。
     综上,本文以复杂环境与目标特性分析和为背景,针对雷达回波信号的特性分析、特征提取和微弱目标检测等关键技术,展开了深入的研究和探索,取得了一些有价值的研究成果。
“Intelligent” technique considered to be a core point for the next generation radarsystems has played a more and more important role in technology progress and defenseapplications. For radar signal processing, how to apply characteristic analysis andextraction followed by target detection for weak targets in the complex radar returnsignals is a desirable investigation topic with both theoretic and real values. By learningthe dynamic clutter environments characteristics and analyzing the radar return signals,a higher signal-to-clutter ratio and a lower false rate can be achieved with effectivecharacteristic extraction methods and proper targets detection approaches.
     This dissertation is based on the existing work on complex data analysis and radarsignal processing and focuses on the investigation of characteristic extractionapproaches for the complex radar signals. Then the measured data are used to illustratethe effectiveness of the proposed approaches for weak targets detection. In addition, thepaper also describes the framework for the system analysis of the complex radar signals.The main contents are listed as follows:
     1) Considers the characteristics analysis methods of the complex radar signals. Itfirst takes the quantificational analysis to the complexity and uncertainty of the signals,then introduce the measured data which are used by following contents. A pretreatmentmethod based on Scaled Correlation Analysis is proposed. Discussion on the analysis ofcomplex radar echo series is finally extended to joint-domain, and the concrete methodsof multi-component non-stationary signal are investigated under both broadband andhigh-order circumstances.
     2) Several feature extraction methods are investigated in complex radar echo.based on topological pattern discovery. This approach reconstructs the phase space ofcomplex radar signals by extracting the topological structural features and analyzing thetopological invariants.
     3) Two targets detection methods in the complex radar signals is proposed,including weak targets detection based on micro-Doppler analysis, weak targetsdetection based on topological structural features, constant false alarm rate detectionbased on3D feature space of radar signal. Numerical results validate the performance ofthe proposed methods in very low SCR environments.
     To sum up, based on investigation background of complex environment and target,the dissertation and presents some contribution for future works. Around the keyquestions of characteristic analysis, feature extraction and weak target detection, theresearch provide theoretic summary and real applications in radar signal processing.
引文
[1] Wikipedia. Complexity[Z].2009.
    [2]诺尔·高夫澳,陆晓红译.复杂性、复杂性还原及教育探究中的方法论借用[J].全球教育展望.2010(12):3-14.
    [3]齐磊磊,颜泽贤.混沌边缘的复杂性探析——对不同领域内复杂性产生条件的同构性分析[J].自然辩证法通讯.2009,31(2):19-26.
    [4]胡政发.统计量复杂性估计及其在机器学习中的应用[J].自动化学报.2008,34(10):1332-1336.
    [5]黄欣荣.论复杂性语义的复杂性[J].江南大学学报(人文社会科学版).2006,5(2):21-25.
    [6]黄欣荣.复杂性究竟有多复杂?--论复杂性的测度[J].系统辩证学学报.2005,13(4):49-55.
    [7]黄欣荣.复杂性究竟是什么--复杂性的语义分析[J].自然辩证法研究.2004,20(5):31-35.
    [8]李亚.从工程系统复杂性到社会系统复杂性[Z].香港:2004.
    [9]赵凯荣.从复杂性哲学看规律的复杂性[J].系统辩证学学报.2003,11(2):14-18,30.
    [10]张本祥.复杂性的概念界定及复杂性的基本问题[J].系统辩证学学报.2002,10(4):21-24.
    [11] Merrilli美.雷达手册[M].北京:电子工业出版社,2010.
    [12]姜斌,王宏强,付耀文.基于LS-SVM的海杂波混沌预测[J],自然科学进展.2007,17(3):28-34.
    [13]林三虎,朱红,赵亦工.海杂波的混沌特性分析[J].系统工程与电子技术.2004,26(2):178-180,244.
    [14]张玉石,张忠治,李善斌等.高分辨率海杂波观测研究[J].电波科学学报.2008,23(6):1119-1122.
    [15]马晓岩,黄晓斌,张贤达.海杂波中基于混沌预测的目标检测方法改进[J].电子学报.2003,31(6):907-910.
    [16]石志广,周剑雄,赵宏钟等.海杂波的多重分形特性分析[J].数据采集与处理.2006,21(2):168-173.
    [17]杜鹏飞,王永良,孙文峰.混沌海杂波背景下的弱信号检测[J].系统工程与电子技术.2002,24(7):65-67,98.
    [18]杨杰,姜明启.混沌研究方法在雷达海杂波分析中的应用[J].电子与信息学报.2001,23(6):552-558.
    [19]赵巨波,符燕,耿文东.海杂波统计特性分析[J].现代雷达.2005,27(11):4-6.
    [20]徐少博,刘以安,唐霜天等.雷达辐射信号分类识别与特征提取[J].计算机仿真.2011,28(6):34-37.
    [21]周欣,吴瑛.改进的特征提取及其在信号分类中的应用[J].四川大学学报(工程科学版).2011,43(3):133-138.
    [22]胡伟文,苑秉成,刘千里等.目标信号特征提取中的特征压缩及其算法研究[J].武汉理工大学学报(交通科学与工程版).2005,29(4):617-619,644.
    [23] DARPA on Adaptive Waveform Design[Z].2012:2012.
    [24] Titi G W, Marshall D F. The ARPA/NAVY Mountaintop Program: adaptivesignal processing for airborne early warning radar[C].1996:1165.
    [25]孟庆丰.信号特征提取方法与应用研究[D].2005.
    [26]张建国,孙晓东,张礼勇.基于时频分析的信号特征提取方法研究[J].2005:4.
    [27] Hlawitschka M, Garth C, Tricoche X, et al. Direct visualization of fiberinformation by coherence[J]. International journal of computer assisted radiology andsurgery.2010,5(2):125-131.
    [28] Schultz T, Theisel H, Seidel H P. Topological visualization of braindiffusion MRI data[J]. Visualization and Computer Graphics, IEEE Transactions on.2007,13(6):1496-1503.
    [29] Peikert R, Hauser H, Carr H, et al. Topological Methods in Data Analysisand Visualization II: Theory, Algorithms, and Applications[M]. Springer,2012.
    [30] Theisel H, R O Ssl C, Weinkauf T. Topological representations of vectorfields[J]. Shape Analysis and Structuring.2008:215-240.
    [31] Theisel H, Weinkauf T, Hege H C, et al. Topological methods for2Dtime-dependent vector fields based on stream lines and path lines[J]. Visualizationand Computer Graphics, IEEE Transactions on.2005,11(4):383-394.
    [32] Scheuermann G, Tricoche X. Topological Methods for Flow[J].Visualization Handbook.2004:341.
    [33] Li B, Huang D S. Maximum Generialized Fisher Criterion[C].2010:349-352.
    [34] Wang C, Huang D S, Li B. A novel local sensitive frontier analysis forfeature extraction[J]. Emerging Intelligent Computing Technology and Applications.With Aspects of Artificial Intelligence.2009:556-565.
    [35] Wang C, Shen Z. Local Sensitive Frontier Analysis based facial expressionrecognition[C].2011:1-4.
    [36]沈希忠.盲信号处理的二阶和高阶分离算法研究[D].上海交通大学,2005.
    [37]张贤达.盲信号处理几个关键问题的研究[J].深圳大学学报理工版.2004,21(3):196-200.
    [38]张贤达.盲信号处理[J].国际学术动态.1998(3):30-31.
    [39] Jutten C, Herault J. Blind separation of sources, part I: An adaptivealgorithm based on neuromimetic architecture[J]. Signal processing.1991,24(1):1-10.
    [40] Common P. Independent component analysis[J]. A new concept.:287-314.
    [41] Yellin D, Friedlander B. An algorithm for dual-channel noiseless signalreconstruction and its performance analysis[J]. Signal Processing, IEEE Transactionson.1999,47(6):1542-1558.
    [42] Yellin D, Weinstein E. Multi-channel signal separation based oncross-bispectra[C].1993:270-274.
    [43] Yellin D, Weinstein E. Multichannel signal separation: Methods andanalysis[J]. Signal Processing, IEEE Transactions on.1996,44(1):106-118.
    [44] Yellin D, Weinstein E. Criteria for multichannel signal separation[J]. SignalProcessing, IEEE Transactions on.1994,42(8):2158-2168.
    [45] Bell A J, Sejnowski T J. An information-maximization approach to blindseparation and blind deconvolution[J]. Neural computation.1995,7(6):1129-1159.
    [46] Kawamoto M, Matsuoka K, Ohnishi N. A method of blind separation forconvolved non-stationary signals[J]. Neurocomputing.1998,22(1):157-171.
    [47] Matsuoka K, Ohoya M, Kawamoto M. A neural net for blind separation ofnonstationary signals[J]. Neural networks.1995,8(3):411-419.
    [48] Even J, Saruwatari H, Shikano K. Frequency domain semi-blind signalseparation: application to the rejection of internal noises[C].2008:157-160.
    [49] Smith D, Lukasiak J, Burnett I S. An analysis of the limitations of blindsignal separation application with speech[J]. Signal Processing.2006,86(2):353-359.
    [50] Ackley M W, Rege S U, Saxena H. Application of natural zeolites in thepurification and separation of gases[J]. Microporous and Mesoporous Materials.2003,61(1):25-42.
    [51] Wang D, Saab R, Yilmaz O, et al. Recent results in curvelet-basedprimary-multiple separation: application to real data[C].2007.
    [52] Comon P. Higher-order separation, application to detection andlocalization[J]. Proc. EUSIPCO, Barcelona, Spain.1990:277-280.
    [53] Satinder A. Chiral Separation: Application and Technology[J]. ChiralSeparation: Application and Technology.1993.
    [54] Comon P, Jutten C, Herault J. Blind separation of sources, part II: Problemsstatement[J]. Signal processing.1991,24(1):11-20.
    [55] Dascalescu L, Tilmatine A, Aman F, et al. Optimization of electrostaticseparation processes using response surface modeling[J]. Industry Applications, IEEETransactions on.2004,40(1):53-59.
    [56] Stark J, Balakumar V A. Extracting slowly varying signals from a chaoticbackground[J]. International Journal of Bifurcation and Chaos.1992,2(02):413-419.
    [57] Broomhead D S, Luchinskaya E A, Mcclintock P V E, et al. Stochastic andChaotic Dynamics in the Lakes.[M]. American Institute of Physics,2000.
    [58] Broomhead D S, Huke J P, Potts M. Cancelling deterministic noise byconstructing nonlinear inverses to linear filters[J]. Physica D: Nonlinear Phenomena.1996,89(3):439-458.
    [59]刘元峰,赵玫.混沌时间序列的一种降噪算法[J].机械科学与技术.2003,22(4):538-539,546.
    [60]李春福,虞厥邦.低信噪比时混沌信号降噪的微扰方法[J].电子与信息学报.2002,24(8):1049-1053.
    [61]韩敏,刘玉花,史志伟等.改进局部投影算法的混沌降噪研究[J].系统仿真学报.2007,19(2):364-368.
    [62]徐威,郭静波.混沌序列降噪算法综述[Z].湖南张家界:2007.
    [63]王志强,冯云,汪飞.混沌时间序列信号的降噪[J].电子器件.2006,29(3):888-890,894.
    [64]刘云侠.含噪声混沌时序的非线性降噪方法研究[D].大连理工大学,2008.
    [65]汤龙坤,梁建莉.利用最大Lyapunov指数检验混沌时序降噪效果[J].重庆科技学院学报(自然科学版).2011,13(2):155-158,163.
    [66]马建仓,马艳玲,刘琦.混沌振动信号的盲分离[J].计算机仿真.2009,26(4):55-58.
    [67]周文,侯进勇.基于独立分量分析的混沌信号盲分离[J].现代电子技术.2009(21):109-111.
    [68]李雪霞.混沌信号的分离及其应用研究[D].西南大学,2007.
    [69]成谢锋.混沌信号的盲反卷积和含噪混合信号的盲分离[D].山东大学,2004.
    [70]李祯燕.混沌与信号的分离方法研究[D].哈尔滨工业大学,2002.
    [71]汪芙平,王赞基,郭静波.混沌背景下信号的盲分离[J].物理学报.2002,51(3):474-481.
    [72]汪芙平.混沌背景下信号盲分离及其在混沌通信中的应用研究[D].清华大学,2001.
    [73]毛雪松,王玫.混沌信号与噪声的分离[J].桂林电子工业学院学报.2000,20(1):37-40.
    [74]关键,李宝,刘加能等.两种海杂波背景下的微弱匀加速运动目标检测方法[J].电子与信息学报.2009,31(8):1898-1902.
    [75]李强,张守宏,张焕颖等.高掠海角下基于Radon变换的海杂波抑制方法[J].电子与信息学报.2007,29(5):1087-1091.
    [76]何伍福,王国宏,刘杰.海杂波环境中基于混沌的目标检测[J].系统工程与电子技术.2005,27(6):1016-1020.
    [77]秦国栋, Bo-Xiao Chen,陈多芳.大入射余角下海杂波仿真及其时空相关性分析[J].西安电子科技大学学报(自然科学版).2008,35(4):600-604.
    [78]杜鹏飞,王永良.海杂波背景中的一种恒虚警率检测方法[J].国防科技大学学报.2005,27(3):54-57.
    [79]陈建军,黄孟俊,邱伟等.海杂波下的双门限恒虚警目标检测新方法[J].电子学报.2011,39(9):2135-2141.
    [80]姜斌,王宏强,黎湘等.海杂波背景下的目标检测新方法[J].物理学报.2006,55(8):3985-3991.
    [81] Xu Z W, Wu J, Wu Z S. A survey of ionospheric effects on space-basedradar[J]. Waves in Random Media.2004,14(2):189-273.
    [82] White B S, Kohler W E, Srnka L J. Random scattering inmagnetotellurics[J]. Geophysics.2001,66(1):188-204.
    [83] Arnold J F, Shaw S W. Oceanographic Data Processing Program[R]. DTICDocument,1993.
    [84] Haykin S, Li X B. Detection of signals in chaos[J]. Proceedings of the IEEE.1995,83(1):95-122.
    [85] Haykin S, Bakker R, Currie B W. Uncovering nonlinear dynamics-the casestudy of sea clutter [J]. Proceedings of The IEEE.2002,90:860-881.
    [86]何建华,杨宗凯,王殊.基于混沌和神经网络的弱信号探测[J].电子学报.1998,26(10):33-37.
    [87]黑晓军,程文青,郑凛等.一种增加混沌信号有效数据长度的新方法[J].华中理工大学学报.1999,27(4):84-86.
    [88]程文青,何建华.基于小波和分形的时间序列压缩[J].华中理工大学学报.1999,27(3):59-61.
    [89]何建华.分形、混沌理论及其在兰绿激光探潜系统中的应用[D].华中理工大学华中科技大学,1998.
    [90] Haykin S S, Haykin S. Adaptive radar signal processing[M].Wiley-Blackwell,2007.
    [91]汪芙平,王赞基,郭静波.混沌背景下信号的盲分离[J].物理学报.2002,51(3):474-481.
    [92]汪芙平.混沌背景下信号盲分离及其在混沌通信中的应用研究[D].清华大学,2001.
    [93]聂春燕,徐振忠.混沌系统在弱信号检测中的应用[J].传感器技术.2003,22(1):55-57.
    [94]聂春燕.混沌特性判别方法探讨[J].长春大学学报.2003,13(1):13-15.
    [95] Chen C, Duan S, Cai T, et al. Smart energy management system for optimalmicrogrid economic operation[J]. Renewable Power Generation, IET.2011,5(3):258-267.
    [96] Orovi C I, Orlandi C M, Stankovi C S, et al. A Virtual Instrument forTime-Frequency Analysis of Signals With Highly Nonstationary InstantaneousFrequency[J]. Instrumentation and Measurement, IEEE Transactions on.2011(99):1-13.
    [97] Yang J, Qiu Z, Nie L, et al. Frequency modulated radar signals based onhigh dimensional chaotic maps[C].2010IEEE10th International Conference onSignal Processing, October24,2010:1923-1926.
    [98] Jiang W, Qiu Z, Nie L. Continuous wave radar for micro-motionmeasurement and micro-Doppler analysis[J]. Xi Tong Gong Cheng Yu Dian Zi JiShu/Systems Engineering and Electronics.2010,32(11):2325-2327.
    [99] Nie L, Yang J, Li K, et al. The inversion of sea state based on themicro-Doppler analysis of sea-clutter[C].2010IEEE10th International Conferenceon Signal Processing,2010:2206-2209.
    [100] Imran S, Jamil A, Syed Ismail S, et al. High-Resolution Time-FrequencyMethods Performance Analysis[J]. EURASIP Journal on Advances in SignalProcessing.2010.
    [101] Bahri M, Hitzer E S M, Ashino R, et al. Windowed Fourier transform oftwo-dimensional quaternionic signals[J]. Applied Mathematics and Computation.2010,216(8):2366-2379.
    [102] Z Ari C N, Orovi C I, Stankovi C S. Robust time-frequency distributionswith complex-lag argument[J]. EURASIP Journal on Advances in Signal Processing.2010:9.
    [103] Boultadakis G E, Kalognomos G K, Karakasiliotis A V, et al. AComparative Study of Bilinear Time-Frequency Transforms of ISAR Signals for AirTarget Imaging[J]. Electronics and Electrical Engineering.2009(4):92.
    [104] Yang Z, Nie L, Jiang W, et al. Broadband echo simulation based onall-attitude RCS database of ballistic missile[C].2009International Radar Conference"Surveillance for a Safer World", December16,2009, Bordeaux, France.
    [105] Jiang W, Cao M, Nie L, et al. Study on dynamic electromagnetic datasimulation of space targets[J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/SystemsEngineering and Electronics.2009,31(9):2042-2045.
    [106] Irena O, Srdjan S. A Class of Highly Concentrated Time-FrequencyDistributions Based on the Ambiguity Domain Representation and Complex-LagMoment[J]. EURASIP Journal on Advances in Signal Processing.2009.
    [107] Khan N A, Jaffri M N, Shah S I. Modified Gabor Wigner transform forcrisp time frequency representation[C].2009:119-122.
    [108] Sejdi C E, Djurovi C I, Jiang J. Time--frequency feature representationusing energy concentration: An overview of recent advances[J]. Digital SignalProcessing.2009,19(1):153-183.
    [109] Orovic I, Stankovic S. A class of highly concentrated time-frequencydistributions based on the ambiguity domain representation and complex-lagmoment[J]. EURASIP Journal on Advances in Signal Processing.2009:35.
    [110] Bultheel A, Mart I Nez-Sulbaran H. Recent developments in the theory ofthe fractional Fourier and linear canonical transforms[J]. Bulletin of the BelgianMathematical Society-Simon Stevin.2007,13(5):971-1005.
    [111] Shafi I, Ahmad J, Shah S I, et al. Evolutionary time-frequency distributionsusing Bayesian regularised neural network model[J]. Signal Processing, IET.2007,1(2):97-106.
    [112] Cornu C, Stankovic S, Ioana C, et al. Time-frequency distributions withgeneralized complex lag argument[J]. IEEE Transactions on Signal Processing.2007,55(10):4831-4838.
    [113] Hahn S L, Snopek K M. Wigner distributions and ambiguity functions of2-d quaternionic and monogenic signals[J]. Signal Processing, IEEE Transactions on.2005,53(8):3111-3128.
    [114] Wang W, Zhang H, Jiang W, et al. Study of target feature extractingmethod based on low-resolution radar[J]. Guofang Keji Daxue Xuebao/Journal ofNational University of Defense Technology.2002,24(2):31.
    [115] Ozaktas H M, Kutay M A, Zalevsky Z. The fractional Fourier transformwith applications in optics and signal processing[M]. Wiley New York,2001.
    [116] Shinde S, Gadre V M. An uncertainty principle for real signals in thefractional Fourier transform domain[J]. Signal Processing, IEEE Transactions on.2001,49(11):2545-2548.
    [117] Almeida L B. The fractional Fourier transform and time-frequencyrepresentations[J]. Signal Processing, IEEE Transactions on.1994,42(11):3084-3091.
    [118] Lohmann A W. Image rotation, Wigner rotation, and the fractional Fouriertransform[J]. JOSA A.1993,10(10):2181-2186.
    [119] Bailey D H, Swarztrauber P N. The fractional Fourier transform andapplications[J]. SIAM review.1991:389-404.
    [120] Shafi I, Ahmad J, Shah S I, et al. Quantitative evaluation of concentratedtime-frequency distributions[C].1995:1176-1180.
    [121] Bultheel A, Mart I Nez H. A shattered survey of the Fractional FourierTransform[J]. Report TW,2000:332-337.
    [122] Hahn S L, Snopek K M. Audio watermarking using two anti-slope chirpsand windowed double-dimensional Wigner distributions[J]. WarSaw Univ Tech,Report No.12007:1-12.
    [123] Kuhn A, Lehmann D J, Gaststeiger R, et al. A Clustering-basedVisualization Technique to Emphasize Meaningful Regions of Vector Fields[C].2011:191-198.
    [124] Otto M, Germer T, Theisel H. Uncertain topology of3d vector fields[C].2011:67-74.
    [125] Rodri guez J N, Canosa M C, Pereira E H. Electrical distribution gridvisualization using programmable GPUs[C].2010:1231-1235.
    [126] Otto M, Germer T, Hege H C, et al. Uncertain2D vector field topology[C].2010:347-356.
    [127] Shi K, Theisel H, Hauser H, et al. Path line attributes-an informationvisualization approach to analyzing the dynamic behavior of3d time-dependent flowfields[J]. Topology-Based Methods in Visualization II.2009:75-88.
    [128] Petrelli D, Mazumdar S, Dadzie A S, et al. Multi visualization anddynamic query for effective exploration of semantic data[J]. The SemanticWeb-ISWC2009.2009:505-520.
    [129] Mcgraw T, Kawai T, Yassine I, et al. New scalar measures fordiffusion-weighted MRI visualization[J]. Advances in Visual Computing.2009:934-943.
    [130] Tricoche X, Kindlmann G, Westin C F. Invariant crease lines fortopological and structural analysis of tensor fields[J]. Visualization and ComputerGraphics, IEEE Transactions on.2008,14(6):1627-1634.
    [131] Salzbrunn T, J A Nicke H, Wischgoll T, et al. The state of the art in flowvisualization: Partition-based techniques[J]. Simulation and Visualization2008Proceedings.2008:75-92.
    [132] Garth C, Wiebel A, Tricoche X, et al. Lagrangian Visualization ofFlow-Embedded Surface Structures[C].2008:1007-1014.
    [133] Salzbrunn T, Scheuermann G. Streamline predicates as flow topologygeneralization[J]. Topology-based Methods in Visualization.2007:65-77.
    [134] Weinkauf T, Theisel H, Hege H C, et al. Feature flow fields in out-of-coresettings[J]. Topology-based Methods in Visualization.2007:51-63.
    [135] Theisel H, Weinkauf T, Hege H C, et al. On the applicability of topologicalmethods for complex flow data[J]. Topology-based Methods in Visualization.2007:105-120.
    [136] Kubota N, Tang D, Kojima H, et al. Visualization of perceptualinformation of a partner robot[C].2007:628-633.
    [137] Klein T, Ertl T. Scale-space tracking of critical points in3D vectorfields[J]. Topology-Based Methods in Visualization.2007:35-49.
    [138] Dey T K, Levine J A, Wenger R. A Delaunay simplification algorithm forvector fields[C].2007:281-290.
    [139] Garth C, Laramee R, Tricoche X, et al. Extraction and visualization ofswirl and tumble motion from engine simulation data[J]. Topology-based Methods inVisualization.2007:121-135.
    [140] Laramee R, Hauser H, Zhao L, et al. Topology-based flow visualization,the state of the art[J]. Topology-based methods in visualization.2007:1-19.
    [141] Sahner J, Weinkauf T, Teuber N, et al. Vortex and strain skeletons ineulerian and lagrangian frames[J]. Visualization and Computer Graphics, IEEETransactions on.2007,13(5):980-990.
    [142] Shi K, Theisel H, Weinkauf T, et al. Path line oriented topology forperiodic2D time-dependent vector fields[J]. Data Visualization2006. Proc. EuroVis’06.2006:139-146.
    [143] Zheng X, Tricoche X, Pang A. Degenerate3D tensors[J]. Visualizationand Processing of Tensor Fields.2006:241-256.
    [144] Schulz H J, Schumann H. Visualizing graphs-a generalized view[C].2006:166-173.
    [145] Achard S, Salvador R, Whitcher B, et al. A resilient, low-frequency,small-world human brain functional network with highly connected associationcortical hubs[J]. The Journal of Neuroscience.2006,26(1):63-72.
    [146] Weinkauf T, Theisel H, Hege H C, et al. Topological Structures inTwo-Parameter-Dependent2D Vector Fields[C].2006:607-616.
    [147] Weinkauf T, Theisel H, Shi K, et al. Extracting higher order critical pointsand topological simplification of3D vector fields[C].2005:559-566.
    [148] Zheng X, Parlett B N, Pang A. Topological lines in3D tensor fields anddiscriminant hessian factorization[J]. Visualization and Computer Graphics, IEEETransactions on.2005,11(4):395-407.
    [149] Laramee R S, Garth C, Doleisch H, et al. Visual analysis and explorationof fluid flow in a cooling jacket[C].2005:623-630.
    [150] Rafat M, Devereux M, Popelier P. Rendering of quantum topologicalatoms and bonds[J]. Journal of Molecular Graphics and Modelling.2005,24(2):111-120.
    [151] Sahner J, Weinkauf T, Hege H C. Galilean invariant extraction and iconicrepresentation of vortex core lines[C].2005.
    [152] Sun L, Batra R K, Shi X, et al. Topology visualization of the optical powerflow through a novel C-shaped nano-aperture[C].2004:337-344.
    [153] Weinkauf T, Theisel H, Hege H C, et al. Boundary switch connectors fortopological visualization of complex3D vector fields[C].2004:183-192.
    [154] Simunic K, Novak J. Combining visualization and interactive clusteringfor exploring large document pools[C].2004.
    [155] Lo C, Trout B L. Density-functional theory characterization of acid sites inchabazite[J]. Journal of Catalysis.2004,227(1):77-89.
    [156] Hans-Christian H T T W, Seidell H H P. Grid-independent detection ofclosed stream lines in2D vector fields[C].2004:421.
    [157] Yuan X, Chen B. Illustrating surfaces in volume[C].2004:9-16.
    [158] Theisel H, Weinkauf T, Hege H C, et al. Stream line and path line orientedtopology for2D time-dependent vector fields[C].2004:321-328.
    [159] Weinkauf T, Theisel H, Hege H C, et al. Topological construction andvisualization of higher order3D vector fields[C].2004:469-478.
    [160] Hofmann T. Probmap-a probabilistic approach for mapping largedocument collections[J]. Journal for Intelligent Data Analysis.2000,4:149-164.
    [161] Hofmann T. Probabilistic topic maps: Navigating through large textcollections[J]. Advances in Intelligent Data Analysis.1999:161-172.
    [162] Chac I N J M, Cantwell B J, Kline S J. Study of turbulent boundary layerstructure using the invariants of the velocity gradient tensor[J]. Experimental thermaland fluid science.1996,13(4):308-317.
    [163] Globus A, Levit C, Lasinski T. A tool for visualizing the topology ofthree-dimensional vector fields[C].1991:33-40.
    [164] Helman J, Hesselink L. Representation and display of vector field topologyin fluid flow data sets[J]. Computer.1989,22(8):27-36.
    [165] Nicolson G L. Difference in topology of normal and tumour cellmembranes shown by different surface distributions of ferritin-conjugatedconcanavalin a.[J]. Nat New Biol, Oct201971:233(40):244-6.
    [166] Nicolson G L, Singer S J. Ferritin-conjugated plant agglutinins as specificsaccharide stains for electron microscopy: application to saccharides bound to cellmembranes[J]. Proceedings of the National Academy of Sciences.1971,68(5):942-945.
    [167]罗成全.几种恒虚警检测器的应用研究[D].东南大学,2007.
    [168]杨强,刘永坦.复杂背景下的二维检测研究[J].系统工程与电子技术.2002,24(1):34-37.
    [169] D. Gabor. Theory of communication[J]. J. IEE,1946,93(3):249-457.
    [170] R. Koenig, H. K. Dunn, L. Y. Lacy. The sound spectroghaph[J]. J. Acoust.Soc. Amer.,1946,18:19-49.
    [171] L. B. Almeida. The fractional Fourier transform and time-frequencyrepresentations[J]. IEEE Trans. Signal Processing,1994,42(11):3084-3091.
    [172] B. Boashash. Time-frequency signal analysis. In: Advances in SpectralEstimation and Array Processing (Ed. by S. Haykin)[M]. Prentice-Hall,1991.
    [173] L.科恩著.白居宪译.时-频分析:理论与应用[M].西安:西安交通大学出版社,1998.
    [174] S. Barbarossa. Analysis of multicomponent LFM signals by a combinedWigner-Hough transform[J]. IEEE Trans. Signal Processing,1995,(6):1511-1515.
    [175] B. Boashash, P. O'Shea. Polynomial Wigner-Ville distributions and theirrelationship to time-varying higher order spectra[J]. IEEE Trans. Signal Processing,1994,42:216-220.
    [176] L. J. Stankovic. A multitime definition of the Wigner higher orderdistribution: L-Wigner distribution[J]. IEEE Signal Processing Lett.,1994,1:106-109.
    [177] L. Stankovic. S-class of time-frequency distributions[C]. IEE Proceedingson Vis. Image Signal Process.,1997,144(2):57-64.
    [178] N. E. Huang. The empirical mode decomposition and the Hilbert spectrumfor nonlinear and non-stationary time series analysis[J]. Proceedings of the RoyalSociety of London, Series A,1998,454:903-995.
    [179] J. C. Nunes, Y. Bouaoune, E. Delechelle. Image analysis by bidimensionalempirical mode decomposition[J]. Image and Vision Computing,2003,21:1019-1026.
    [180]何友等.雷达自动检测与恒虚警处理[M].北京:清华大学出版社,1999.
    [181]冯志华.时频分析的优化及其在设备状态检测中的应用[D].合肥:中国科学技术大学,2005.
    [182]于雪莲.基于核方法和流形学习的雷达目标距离像识别研究[D].电子科技大学,2008.
    [183]谷瑞军.基于流形学习的高维空间分类器研究[D].江南大学,2008.
    [184]侯文广,丁明跃.基于流形学习的三维空间数据网格剖分方法[J].电子学报.2009,37(11).
    [185]孙明明.流形学习理论与算法研究[D].南京理工大学,2007.
    [186]王自强,钱旭,孔敏.流形学习算法综述[J].计算机工程与应用.2008(35).
    [187] Xie N, Leung H, Chan H. A multiple-model prediction approach for SeaClutter Modeling,IEEE Transactions On Geoscience and Remote Sensing,2003,41(6):1491-1502.
    [188] He D, Leung H. CFAR detection of weak target in clutter using chaossynchronization[J].2008,36(8):899-921.
    [189]张维.复杂杂波背景恒虚警检测技术研究[D].南京:南京航空航天大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700