用户名: 密码: 验证码:
大功率光纤激光模场自适应优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤激光器具有转换效率高、光束质量好、性能稳定、结构紧凑等优点,在工业加工、医疗美容、国防科研等领域有着广阔的应用前景。但是受非线性效应、热效应、光纤端面损伤等物理因素的限制,单根光纤激光器输出功率有限;增大光纤纤芯直径能有效提高激光器输出功率,但由此带来的光束质量退化反而会降低激光亮度。基于自适应光学的光束净化技术已广泛应用于提高大功率固体激光器的光束质量,如果能将光束净化技术用于改善大功率光纤激光器的光束质量,会进一步拓展高亮度光纤激光的发展方向及应用领域。论文提出了大功率光纤激光模场自适应优化控制的概念,并对此进行了系统的分析与研究,主要包括以下内容:
     1、对用于提高激光亮度的各种大模场光纤进行了总结与分析,指出依靠特殊光纤设计等手段很难实现高亮度光纤激光输出;对比大功率光纤激光器与大功率固体激光器发展历程,类比提出将基于自适应光学的光束净化技术用于提高大功率光纤激光器的光束质量,不再只单纯关注光纤激光器设计,而是用主振荡功率放大器(MOPA)结构实现光纤激光器的高功率,用光束净化实现光纤激光器的高光束质量,通过两个系统解决目前光纤激光器无法同时实现高功率和高光束质量的问题。
     2、针对大功率光纤激光的光束净化,使用光束传播法和模式分析法计算了单MOPA结构的大模场光纤激光器和多MOPA光纤合束激光器的出射光场,分析了光场特性,指出这两种结构出射激光光场模式的一致性,即可使用光束净化技术改善光束质量,提高激光亮度。建立了大功率光纤激光模场自适应优化控制模型,对应用于光纤激光的光束净化系统进行了分析,确定了优化式自适应系统更适合用于光纤激光光束净化;光束净化系统采用随机并行梯度下降算法(SPGD),选择桶中功率(PIB)为算法的性能评价函数;建立了图形化用户界面仿真环境,对大功率光纤激光光场的模式控制进行系统的仿真。
     3、对单MOPA大模场光纤激光模场自适应优化控制进行了理论研究和实验验证。从单个高阶模入手,研究了光束净化系统空间分辨率、相位噪声、光强起伏等对光场净化效果的影响,得到了算法收敛对相位噪声等影响因素的容忍度。仿真结果表明,使用PIB作为性能评价函数能有效减少光强起伏对算法收敛性的影响;当相位噪声频率与算法迭代频率相近时,光束净化可以容忍均方差在π2rad范围内的相位噪声。实现了单个高阶模(LP11)的模式控制,远场PIB值由控制前的0.2增大至0.75,得到近衍射极限的远场光强分布;进行了多模光纤激光光束实验,将多模光场的PIB值由净化前的0.08提高至0.7,光强远场能量集中度提高9倍,验证了多模光纤激光光束净化的可行性。
     4、对多MOPA光纤合束激光器多模光场的自适应优化控制进行了理论研究和实验验证。分析了多MOPA光纤合束光场的锁相原理,证明了光纤合束的多模光场能够实现相位锁定和光束净化。以参数为105/125μm,NA=0.22的多模传能光纤为例,分析了耦合时光轴的离轴、倾斜等误差对能量耦合效率及光场模式的影响。实现了2路激光合束的多模光场相位锁定和光束净化,将多模光场的PIB值由净化前的0.2提高至0.71,光强远场能量集中度提高3.5倍,验证了多MOPA光纤合束结构的大功率光纤激光器光束净化的可行性。
Fiber lasers have wide potential for industrial and military applications due to their essential characters such as high conversion efficiency, excellent beam quality, robust performance and compact configuration. However, the ultimate output power of single fiber is limited by nonlinear effect, thermal effect and so on. Beam cleanup technique has been widely applied in high-power solid state laser systems to improve beam quality; therefore it would be an effective approach for achieving high brightness lasers if the beam cleanup technique could be employed in high power laser systems. In the present paper, the new method that control the mode field of high power fiber lases based on adaptive optics is presented and analyzed systematically, and some meaningful results are achieved as follows.
     1、Reviewed and analysis on various theniques of large mode area(LMA) fibers is presented, the result indicates that it is hard to achieve high brightness by means of fiber design. The idea that applies beam cleanup technique to increase high power fiber laser beam quality is proposed while the history of high power solid state laser technology and high power fiber laser technology are compared. The new method actualizes high power and high beam qualitr by master oscillator power amplifier (MOPA) and beam cleanup respectively, which get out of the traditionary thought in high brightness fiber laser technoly.
     2、Using beam propagation method and mode analysis method calculate the beam field of LMA fiber lasers based on the configuration of MOPA and multi-MOPA combine respectively. The characteristic of two kind beam fields are analyzed and the essential consistency of beam fields illuminates the feasibility of fiber laser beam cleanup. The system model of mode field control of high power fiber laser based on adaptive optics is build up and is analyzed in detail. Optimization algorithm based on adaptive optics (OABAO) is confirmed for the beam cleanup system. OABAO employs Stochastic Parallel Gradient Descent (SPGD) algorithm and Power in the bucket (PIB) is selected as the quality evaluation function. Simulation software with graphics-user-interface used for modeling and simulation of mode field control of high power fiber laser based on adaptive optics is developed.
     3、Beam cleanup of single LMA fiber is investigated in theory and experiment. Starting with single high order mode, the influence of system resolution、phase noise、 power fluctuation on the result of beam cleanup is theoretically analyzed. The conclusion indicates that PIB, as the quality evaluation function can eliminate the the influence of power fluctuation and the toleration of standard deviation of phase noise could be π/2when the frequency of noise and algorithm updating rate is approximate. A LP11mode transform is demonstrate in experiment. The system transforms the LP11 mode into a nearly Gaussian beam and the power in the diffraction-limited bucket in the far-field is increased by more than a factor of3.6. The beam cleanup of multimode fiber laser is demonstrated in experiment and the power in the diffraction-limited bucket in the far-field is increased from0.08to0.7that the feasibility of multimode fiber laser cleanup is proved.
     4、Beam cleanup of multi-MOPA combine fiber laser is investigated in theory and experiment. The theory of phase-locking and beam cleanup multi-MOPA combine fiber laser is analyzed. The influence of error axial on enegy coupling and mode composing is analyzed with the parameters of multimode fiber is105/125μm, NA=0.22. A two-channel fiber combine is demonstrated in experiment. After phase-lockingl and cleanup, the power in the diffraction-limited bucket in the far-field is increased from0.2to0.71, which the feasibility of multi-MOPA combine fiber laser beam cleanup is proved.
引文
[1]Snitzer E. Optical maser action of Nd+3in a Barium crown glass[J]. Phys. Rev. Lett.1961,7(12):444-446.
    [2]Koester C J, Snitzer E. Amplification in a fiber laser[J]. Appl. Opt.1964,3(10):1182-1186.
    [3]Hong C S, Kasemset D, Patel N B, et al. Low-threshold oxide stripe GaAs/GaAlAs lasers grown by MOCVD[J]. Electron. Lett.1982,18(12):497-499.
    [4]Poole S B, Payne D N, Fermann M E. Fabrication of low-loss optical fibres containing rare-earth ions[J]. Electron. Lett.1985,21(17):737-738.
    [5]Imanaka K, Horikawa H, Matoba A, et al. High power output, low threshold, inner strip GaInAsP laser diode on a P-type InP substrate [J].1984,45(3):282-283.
    [6]Scifres D R, Lindstrom C, Burnham R D, et al. Phase-locked (GaAl)As laser diode emitting2.6W CW from a single mirror[J]. Electron. Lett.1983,19(5):169-171.
    [7]Snitzer E, Hakimi F, Po H, et al. Double_clad, offset corend fiber laser[Z].1988.
    [8]Po H, Cao J D, Laliberte B M, et al. High-power neodymium-doped single transverse mode fiber laser[J]. Electron. Lett.1993,29(17):1500-1501.
    [9]Pask H M, Archambauh J L, Hanna D C. Operation of cladding-pumped Yb3+doped silica fiber laser in lm region[J]. Electron. Lett.1994,30(11):863-865.
    [10]Muendel M, Engstrom B, Kea D.35-watt CW single mode ytterbium fiber laser at1μm[C].1997.
    [11]Dominic V, Accormack S M, Waarts R.110W fiber laser[J]. Electron. Lett.1999,35(14):1158-1160.
    [12]Offerhaus H. L,Broderick N. G.,Richardson D. J.,et al. High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber[J]. Opt. Lett.1998,23(21):1683-1685.
    [13]Haden J M, Endriz J G, Sakamoto M, et al. Advances in high average power long life laser diode pump array architectures[C].1995.
    [14]Burkhard H, Piataev V, Schlapp W. High-power high-TO native oxide strip-geometry980-nm laser diodes [C].1996.
    [15]Goldberg L, Pinto J, Dennis M, et al. Double cladding fiber amplifiers with lens-less side-pumping[C].2000.
    [16]Limpert J, Liem A, Zellmer H, et al.500W continuous-wave fibre laser with excellent beam quality[J]. Electronics Letters.2003,39(8):645-647.
    [17]Liu C H, Galvanauskas A, Ehlers B, et al.700-W single transver mode Yb-doped fiber laser[C].2003.
    [18]Jeong Y, Al E. Ytterbium-doped laser core fiber laser with1kW of continuous-wave output power[J]. Electron. Lett.2004,40(8):470-471.
    [19]Jeong Y, Sahu J, Payne D, et al. Ytterbium-doped large-core fiber laser with1.36kW continuous-wave output power[J]. Opt. Express.2004,12(25):6088-6092.
    [20]Hecht J. The highest single-mode powers of Yb-doped fiber Laser achieved2kW CW output[C]. Laser and Electro-Optics Europe,2005.
    [21]www.Femto.ph.ic.ac.uk.
    [22]Gapontsev D.6kW CW single mode Ytterbium fiber laser in all-fiber format[C]. Solid State and Diode Laser Technology Review,2008.
    [23]IPG photonics successfully tests word's first10kilowatt single-mode production laser (2009),http://www.ipgphtonics.com
    [24]周朴.光纤激光相干合成技术研究[D].长沙:国防科学技术大学,2009.
    [25]谭晓玲.大模场光纤波导特性的理论研究[D].天津大学,2009.
    [26]IPG Photonics Corporation investor presentation(2011), http://www.ipgphotonics.com.
    [27]德国BAM研究所安装IPG公司的20kW光纤激光器[J].2006(1):59-60.
    [28]刘洋编译.高能光纤激光器成功用于造船工业[J].激光与光电学进展.2005,42(11):61.
    [29]宝马汽车向IPG订购大功率光纤激光器[J].光机电信息.2008(8):53-54.
    [30]楼祺洪,朱健强,周军等.双包层光纤激光器及其在军事中的应用[J].装备指挥技术学院学报.2003,14(5):28-32.
    [31]李伟,赵勇,陈曦等.大功率光纤激光器在销毁弹药中的应用[J].激光与光电子学进展.2008,45(7):39-43.
    [32]Sieff M. Raytheon tests new laser weapon. http://www. spacedaily. com/reports/Raytheon_Tests_New_Laser_Weapon_999. html
    [33]Peter Felstead. Raytheon targets Q4shootdown of mortar round in flight. http://www.janes.com/products/janes/defence-security-report.aspx?ID=1065927742
    [34]Bringing speed-of-light weapons to the battlespace[J]. Defender.2009,5(4):16-19.
    [35]A-Laser weapon system integration, engineering and logistics support. https://www.fbo.gov/index?s=opportunity&mode=form&id=baa1cc549d4d9e35257533a552a41dbf&tab=core&cview=1
    [36]Navy Laser Success Key in Unmanned Aerial Vehicle Research, Development. http://www.navy.mil/search/display. asp? story_id=46368
    [37]Navy Laser Destroys Unmanned Aerial Vehicle in a Maritime Environment. http://www. navsea. navy. mil/nswc/dahlgren/NEWS/LAWS/LAWS.aspx
    [38]蒲林科,崔琳,蒲星.美军激光武器技术及应用发展趋势[J].电子工程信息.2011,4-6.
    [39]楼祺洪,何兵,薛宇豪,等.1.75kW国产掺Yb双包层光纤激光器[J].中国激光.2009,36(5).
    [40]Yan P, Yin S, He J, et al.1.1-kW Ytterbium monolithic fiber laser with assembled end-pump scheme to couple high brightness single emitters[J]. IEEE Photon. Technol. Lett.2011,23(11):697-699.
    [41]李伟,武子淳,陈曦.大功率光纤激光器输出功率突破1kW[J].强激光与粒子束.2006,18(6):890.
    [42]赵鸿,周寿桓,朱辰等.大功率光纤激光器输出功率超过1.2kW[J].激光与红外.2006,18(6):930.
    [43]马阎星,肖虎,周朴等.全光纤激光器实现kW级功率输出[J].强激光与粒子束.2011,23(5):1137-1138.
    [44]我国大功率全光纤激光器输出功率突破1000W[J].传感器世界.2009(11):39.
    [45]杨英惠摘译.用20kW光纤激光器焊接厚板[J].现代材料动态.2008(7):14.
    [46]Scaling limits of high average power fiber lasers[C]. Optical Fiber Communications Conference,2009
    [47]Review of Directed Energy Technology for Countering Rockets, Artillery, and Mortars (RAM), http://www.nap.edu/catalog.php?record_id=12008
    [48]任国光,黄裕年.二极管抽运固体激光器迈向100kW[J].激光与红外.2006,36(8):617-622.
    [49]文建国,张景贵.一种用作武器的高亮度光纤激光器实现方案[J].应用激光.2005,25(6):397-400.
    [50]Scaling limits of high average power fiber lasers[C].Optical Fiber Communications Conference,2009.
    [51]Dawson J W, Messerly M J, Beach R J. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics. Express.2008,16(17):13241-13266.
    [52]Stile E. New developments in IPG fiber laser technology [C]. Proceedings of the5th International Workshop on Fiber Lasers,2009.
    [53]Ferin A, Gapontsev V, Fomin V, et al.17kW CW laser with50μm delivery fiber[C]. Laser Optics,2012.
    [54]Zhu J, Zhou P, Ma Y, et al. Power scaling analysis of tandem-pumped Yb-doped fiber laser and amplifiers[J]. Opt. Express.2011,19(19):18645-18654.
    [55]安连生.应用光学[M].北京:北京理工大学出版社,2001.
    [56]Nicholson J W, Fini J M, Desantolo A M, et al. A higher-order-mode Erbium-doped-fiber amplifier[J]. Opt. Express.2010,18(17):17651-17657.
    [57]Wen F J, Chen Z, Chung P S. Area measurement at long-distance using a circular Dammann grating[J]. Appl. Opt.2010,49(4):648-652.
    [58]Kuhn V, Unger S, Jetschke S, et al. Experimental Comparison of Fundamental Mode Content in Er:Yb-Codoped LMA Fibers With Multifilament-and Pedestal-Design Cores[J]. J. Lightwave Technol.2010,28(22):3212-3219.
    [59]Nicholson J. Higher-Order-Mode Fiber Amplifiers[C]. Optical Society of America,2010.
    [60]Vogel M M, Abdou-Ahmed M, Rataj T, et al. Novel Multicore Fibers for Large-Mode-Areas and High Beam Quality[C]. Optical Society of America,2010.
    [61]Devautour M, Roy P, Vrier S E B F.3-D Modeling of Modal Competition in Fiber Laser:Application to HOM Suppression in Multi-Layered Fiber[C]. Optical Society of America,2009.
    [62]Alkeskjold T T. Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity [J]. Opt. Express.2009,17(19):16394-16405.
    [63]Marciante J R, Roides R G. Mode Control in Large-Mode-Area Fiber Lasers via Gain Filtering[C]. Optical Society of America,2009.
    [64]Vogel M M, Abdou-Ahmed M, Voss A, et al. Very-large-mode-area, single-mode multicore fiber[J]. Opt. Lett.2009,34(18):2876-2878.
    [65]Liu C H, Galvanauskas A, Ehlers B, et al.810-W single transverse mode Yb-doped fiber laser[C]. Optical Society of America,2004.
    [66]Koplow J P, Kliner D A V, Goldberg L. Single-mode operation of a coiled multimode fiber amplifier[J]. Opt. Lett.2000,25(7):442-444.
    [67]Wadsworth W J, Percival R M, Bouwmans G, et al. High power photonic crystal fibre laser with very high NA pump cladding[C]. Optical Society of America,2003.
    [68]Wong W S, Peng X, Mclaughlin J M, et al. Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers[J]. Opt. Lett.2005,30(21):2855-2857.
    [69]Dong L, Li J, Peng X. Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to3160um2[J]. Optics Express.2006,14(24):11512-11519.
    [70]Peng X, Dong L. Fundamental-mode operation in polarization-maintaining ytterbium-doped fiber with an effective area of1400um2[J]. Opt. Lett.2007,32(4):358-360.
    [71]Iizawa K, Varshney S K, Tsuchida Y, et al. Bend-insensitive lasing characteristics of singlemode, large-mode-area Ytterbium-doped photonic crystal fiber[J]. Opt. Express.2008,16(2):579-591.
    [72]Ropke U, Bartelt H, Unger S, et al. Opt. Express.2007,15:6894.
    [73]Huo Y, Peter K. J. Opt. Soc. Am. B.2005,22:2345.
    [74]Lavoute L, Roy P, Desfarges-Berthelemot A, et al. Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration[J]. Opt. Express.2006,14(7):2994-2999.
    [75]Lavoute L, Roy P, Vrier S E B F, et al. Single-Mode Laser Emission from a Multimode Core Surrounded by a Tailored Cladding[C]. Optical Society of America,2008.
    [76]Vrier S E B F, Gaponov D D, Roy P, et al. High-power photonic-bandgap fiber laser[J]. Opt. Lett.2008,33(9):989-991.
    [77]S A C, Luan F, Cordeiro C M B, et al. Hybird photonic crystal fiber[J]. Opt. Express.2006,14(2):926-931.
    [78]Jiang Z, Marciante J R. Mode-area scaling of helical-core, dual-clab fiber lasers and amplifiers using an improved bend-loss model[J]. J. Opt. Soc. Am. B.2006,23(10):2051-2058.
    [79]Galvanauskas A, Swan M C, Liu C. Effectively-single-mode Large core passive and active fibers with chirally-coupled-core structures[C]. ClEO,2008.
    [80]Liu C, Chang G, Litchinitser N, et al. Effectively Single-Mode Chirally-Coupled Core Fiber[C]. Optical Society of America,2007.
    [81]Liu C, Chang G, Litchinister N, et al. Chirally Coupled Core Fibers at1550-nm and1064-nm for Effectively Single-Mode Core Size Scaling[C]. Optical Society of America,2007.
    [82]Huang S, Zhu C, Liu C. Power Scaling of CCC fiber based laser[J]. ClEO.2009.
    [83]Morley R J, Yelden E F, Baker H J, et al. Mode and frequency control of compact CO2slab lasers through intracavity coherent imaging[J]. Applied Ootics.1995,34(3):418-425.
    [84]Kol'Chenko A P, Nikitenko A G, Troitskil Y K. Control of the structure of transverse laser modes by phase-shifting masks[J]. Sov.J.Quantum Electron.1981,10(8):1013-1016.
    [85]Rioux M, Belanger P A, Cormier M. High-order circular-mode selection in a concial resonator[J]. APPLIED OPTICS.1977,16(7):1791-1792.
    [86]Fini J M. Intuitive modeling of bend distortion in large-mode-area fibers[J]. Opt. Lett.2007,32(12):1632-1634.
    [87]Fini J M. Bend-resistant design of conventional and microstructure fibers with very large mode area[J]. Opt. Express.2006,14(1):69-81.
    [88]Alvarez-Chavez J A, Grudinin A B, Nilsson J, et al. Mode selection in high power cladding pumped fiber laser with tapered section[C].1999.
    [89]Griebner U, Schonnagel H. Laser operation with nearly diffraction-limited output from a Yb:YAG multimode channel waveguide[J]. Optics Letters.1999,24(10):750-752.
    [90]A.E. Siegman. Propagating modes in gain-guided optical fibers[J]. J. Opt. Soc. Am. A.2003,20(8),1617-1628.
    [91]A.E. Siegman, Y. Chen, V. Sudesh, et al. Confined Propagation and near single modes laser oscillation in a gain guided, index antiguided optical fiber[J]. Appl. Phys. Lett.2006(89),251101-13.
    [92]Chen Y, Mccomb T, Sudesh V, et al. Very large-core, single-mode, gain-guided, index-antiguided fiber lasers[J]. Opt. Lett.2007,32(17):2505-2507.
    [93]Ramachandran S, Nicholson J W, Ghalmi S, et al. Light propagation with ultralarge modal areas in optical fibers[J]. Opt. Lett.2006,31(12):1797-1799.
    [94]Nemova G, Kashyap R. High-power long-period-grating-assisted erbium-doped fiber amplifier[J]. J. Opt. Soc. Am. B.2008,25(8):1322-1327.
    [95]Williams, H W. Simulations of a phase corrector plate for the National Ignition Facility[J]. proc of SPIE.1998,3492:344-354.
    [96]Greenwood D P, Primmerman C A. Adaptive optics research at Lincoln Lab oratory [J]. The Lincoln Laboratory Journal.1992,5(1):3-24.
    [97]姜文汉.自适应光学技术进展—1991年SPIE国际光学应用科学和工程讨论会综述[J].光电工程.1992,19(4):49-60.
    [98]王三宏.基于随机并行梯度下降算法的光束净化研究[D].长沙:国防科学技术大学,2009.
    [99]O'Meara T R. The multidither principle in adaptive optics[J]. J. Opt. Soc. Am.1977,67(3):305-316.
    [100]Pearson J E. COherent Optical Adaptive Technique:Design and Performance of an18-element Visible Multidither COAT System[J]. Appl. Opt.1976,15(3):611-621.
    [101]周仁忠,阎吉祥.自适应光学理论[M].北京:北京理工大学出版社,1996.
    [102]Greiner U J, Klingenberg H H. Thermal lens correction of a diode-pumped Nd:YAG laser of high TEM00power by an adjustable-curvature mirror[J]. Optics letters.1994,19(16):1207-1709.
    [103]Salmon J T, Bliss E S, Byrd J L, et al. An Adaptive OPtics System for Solid State Laser System used in Inertial Confinement Fusion[J].1995.
    [104]Weyrauch T, Vorontsov M A. Dynamic wave-front distortion compensation with a134-control-channel submillisecond adaptive system[J]. Opt. Lett.2002,27(9):751-753.
    [105]Weyrauch T, Vorontsov M A, Ii J W G, et al. Adaptive compensation of atmospheric effects with a high-resolution micro-machined deformable mirror[Z]. SPIE,2002:4825,14-23.
    [106]Weyrauch T, Vorontsov M A. Free-Space Laser COmmunication with Adaptive Optics:Atmospheric Compensation Experiment[J]. J. Opt. Fiber. Commun. Rep.2004,1(4):355-379.
    [107]Nosato H, Itatani T, Murakawa M, et al. Automatic wave-front correction of a Femtosecond laser Using genetic algorithm[C].2004.
    [108]Mansell J D, Henderson B, Wiesner B, et al. A Low-Cost Compact Metric Adaptive Optics System[J]. Proc. of SPIE.2007,6711:6711-6720.
    [109]Vorontsov M, Riker J, Carhart G, et al. Deep turbulence effects compensation experiments with a cascaded adaptive optics system using a3.63m telescope[J]. Appl. Opt.2009,48(1):A47-A57.
    [110]姜文汉.光电技术研究所的自适应光学技术[J].光电工程.1995,22(1):1-13.
    [111]Jiang W, Rao C, Zhang Y, et al. Adaptive Optics in IOE, CAS[J]. Proc. of SPIE.2009,7209:72090J-72091J.
    [112]许冰,张强,鲜浩,等.对正支共焦非稳腔环形光束的光束净化实验及其分析[C].第五届全国激光科学技术青年学术交流会论文集,西安,1999.
    [113]Yang P, Hu S J, Chen S Q, et al. Research on the Phase Aberration Correction with a Deformable Mirror Controlled by a Genetic Algorithm[C]. Journal of Physics: Conference Series,2006.
    [114]Yang P, Liu Y, Ao M, et al. A wavefront sensor-less adaptive optical system for a solid-state laser[J]. Optics and Lasers in Engineering.2008,46:517-521.
    [115]王小林.激光相控阵中的优化式自适应光学研究[D].长沙:国防科学技术大学,2011.
    [116]梁永辉,王三宏,龙学军,等.随机并行梯度下降光束净化实验研究[J].光学学报.2008,28(4):613-618.
    [117]Yonghui L, Sanhong W, Xuejun L, et al. Beam Cleanup Technique Based on Stochastic Parallel Gradient Beam Cleanup Technique Based on Stochastic Parallel Gradien Descent Wavefront Control Method[C]. SPIE, Beijinj,2007.
    [118]Yang P, Ning Y, Lei X, et al. Enhancement of the beam quality of non-uniform output slab laser amplifier with a39-actuator rectangular piezoelectric deformable mirror[J]. Opt. Express.2010,18(7):7121-7130.
    [119]Barchers J D, Fried D L, Link D J. Evaluation of the Performance of Hartmann Sensors in Strong Scintillation[J]. Appl. Opt.2002,41(6):1012-1021.
    [120]Primmerman C A, Price T R, Humphreys R A, et al. Atmospheric-compensation experiments in strong-scintillation conditions[J]. Appl. Opt.1995,34(12):2081-2088.
    [121]Weyrauch T, Vorontsov M. Atmospheric compensation with a speckle beacon in strong scintillation conditions:directed energy and laser communication applications[J]. Appl. Opt.2005,44(30):6388-6401.
    [122]Vorontsov M A, Sivokon V P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction[J]. J. Opt. Soc. Am. A.1998,15(10):2745-2758.
    [123]杨平.固体激光光束净化及相关技术研究[D].成都:中科院成都光电所,2007.
    [124]Jeong Y, Nilsson J, Sahu J K, et al. Single-frequency,single-mode,plane-polarized ytterbium-doped fiber master oscillator power amplifier source with264W of out-put power[J]. Opt. Lett.2005,30(5):459-461.
    [125]Liem A, Limpert J, Zellmer H.100W-single frequency master-oscillator fiber power amplifier[J]. Opt. Lett.2003,28(17):1537-1539.
    [126]Limpert J, Liem A, Gabler T, et al. High-average-power picosecand Yb-doped fiber amplifier[J].2001,26(23):1849-1851.
    [127]廖延彪.光纤光学[M].北京:清华大学出版社,2000.
    [128]Feit M D, Fleck J A, Light propagation in graded-index optical fibers[J].Appl. Opt.1978.17,3990-3998.
    [129]Hermanssor B, Yevick D, A propagating Beam Method Analysis of Nomlinear Effects in Optical Waveguide[J]. Opt. Quantum Electron.1984(16):525-534.
    [130]Thylen L, Yevic K D. Beam propagation method in anisotropic media[J].Appl. Opt.1982(21):2751-2754.
    [131]Koch T B, Davies J B, Wickramasinghe D. Finite element/finite difference propagation algorithm for integrated optical device[J]. Electronics Letters.1989,25(8):514-516.
    [132]Soldano L B, Pennings E C M. Optical multi-mode interference devices based on self-imaging:principles and applications[J]. Lightwave Technology, Journal of.1995,13(4):615-627.
    [133]Xu C L, Huang W P, Chaudhuri S K. Efficient and accurate vector mode calculations by beam propagation method[J]. Lightwave Technology, Journal of.1993,11(7):1209-1215.
    [134]Hadley G R. Wide-angle beam propagation using Pade approximant operators[J]. Opt. Lett.1992,17(20):1426-1428.
    [135]Hadley G R. Multistep method for wide-angle beam propagation[J]. Opt. Lett.1992,17(24):1743-1745.
    [136]Bachmann M, Besse P A, Melchior H. General self-imaging properties in multimode interference couplers including phase relations[J]. Appl. Opt.1994,33(7):3905-3911.
    [137]Soldano B L, Pennigs E. Optical Muti-mode Interference devices based on self-imaging:principles and applications[J]. J Lightwave Technology.1995,13(4):615-627.
    [138]Marcuse D. Loss analysis of single-mode fiber splices[J]. Bell System Technical Journal.1977,5(56),703-778.
    [139]蓝信钜.激光技术[M].北京:科学出版社,2003:171-191.
    [140]Machavariani G, Davidson N, Ishaaya A A, et al. Efficient formation of a high-quality beam from a pure high-order Hermite-Gaussian mode[J]. Optics Letters.2002,27(17):1501-1503.
    [141]Ishaaya A A, Machavariani G, Davidson N, et al. Efficient mode conversion of laser beams[J]. Optics&Photonics News.2002:43.
    [142]Machavariani G, Davidson N, Lumer Y, et al. New methods of mode conversion and brightness enhancement in high-power lasers[C]. Optical Society of America,2007.
    [143]Machavariani G, Lumer Y, Moshe I, et al. Efficient conversion of a radially polarized beam to a nearly Gaussian beam[J]. OPTICS LETTERS.2007,32(8):924-926.
    [144]Machavariani G, Jackel S, Lumer Y, et al. Spatially variable retardation plate for beam brightness enhancement in a high-power laser[J]. OPTICS LETTERS.2007,32(17):2626-2628.
    [145]Machavariani G. Effect of Phase Imperfections on High-Order Mode Selection with Intracavity Phase Elements[J]. Applied Optics.2004,43(34):6328-6333.
    [146]Machavariani G, Ishaaya A A, Shimshi L, et al. Efficient mode transformations of degenerate Laguerre-Gaussian beams[J]. APPLIED OPTICS.2004,43(12):2561-2567.
    [147]Ishaaya A A, Machavariani G, Davidson N, et al. Conversion of a high-order mode beam into a nearly Gaussian beam by use of a single interferometric element[J]. OPTICS LETTERS.2003,28(7):504-506.
    [148]Oron R, Shimshi L, Blit S, et al. Laser operation with orthogonally polarized transverse modes[J]. APPLIED OPTICS.2002,41(18):3634-3637.
    [149]Ishaaya A A, Oron R, Davidson N, et al. Improving the Beam Quality of High-Order Laser Modes [J]. OPtics&Photonics News.2001:55.
    [150]Oron R, Davidson N, Friesem A A. Continuous-phase elements can improve laser beam quality[J]. OPTICS LETTERS.2000,25(13):939-941.
    [151]Oron R, Davidson N, Friesem A A, et al. Efficient formation of pure helical laser beams[J]. Optics Communication.2000,182:205-208.
    [152]凌宁,官春林.变形反射镜的发展[J].光电工程.1995,1(22):14.
    [153]Hardy J W. Active Optics:A New Technology for the Control of Light[J]. Proceedings of the IEEE.1978,6(66):651-709.
    [154]周仁忠.自适应光学[M].北京:国防工业出版社,1996.
    [155]Muller R A, Buffington A. Real-time correction of atmospherically degraded telescope images through image sharpening[J]. J. Opt. Soc. Am.1974,64(9):1200- 1210.
    [156]G W Carhart, J C Ricklin, Sivokon V P. Parallel perturbation gradient descent algorithm for adaptive wavefront correction[J]. Proc. of SPIE.1997:221-227.
    [157]V I Polejaev, Vorontsov M A. Adaptive active imaging system based on radiation focusing for extended targets[J]. Proc. of SPIE.1997:216-220.
    [158]Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Opt. Lett.1997,22(12):907-909.
    [159]Vorontsov M A. Adaptive wavefront correction with self-organized control system architecture [C].1998.
    [160]Vorontsov M A. Decoupled stochastic parallel gradient descent optimization for adaptive optics:Integrated approach for wave-front sensor information fusion[J]. J. Opt. Soc. Am. A.2002,19(2):356-368.
    [161]杨慧珍.无波前探测自适应光学随机并行优化控制算法及其应用研究[D].成都:中国科学院光电技术研究所,2008.
    [162]王三宏、梁永辉、龙学军等.基于随机并行梯度下降方法的动态光束净化实验研究[J].光学学报,2009,29(1),97-101
    [163]Weyrauch T, Vorontsov M A, Bifano T G, et al. Microscale adaptive optics: wave-front control with a μ-mirror array and a VLSI stochastic gradient descent controller[J]. Appl. Opt.2001,40(24):4243-4253.
    [164]Uberna R, Bratcher A, Tiemann B G. Power scaling of a fiber master oscillator power amplifier system using a coherent polarization beam combination[J]. Appl. Optics.2010,49(35):6762-6765.
    [165]Ye J, Hall J L. Optical phase locking in the microradian domain:potential applications to NASA spaceborne optical measurements[J]. Opt. Lett.1999,24(24):1838-1840.
    [166]Zhou P, Liu Z, Wang X, et al. Coherent beam combintion of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm[J]. Appl. Phys. Lett.2009,231106-231108(94).
    [167]Jolivet V, Bourdon P, Bennai B, et al. Beam Shaping of Single-Mode and Multimode Fiber Amplifier Arrays for Propagation Through Atmospheric Turbulence[J]. IEEE J. Sel. Top. Quantum Electron.2009,15(2):257-268.
    [168]Hans B, Shuoqin W, Monica M, et al. Coherent Phase-Locking of Seven Laser Transmitters on a408meter Outdoor Range[C].2005.
    [169]Jones D C, Scott A M. Characterisation and stabilising dynamic phase fluctuations in large mode area fibres[C].2007.
    [170]Zheng Y, Wang X, Shen F, et al. Generation of dark hollow beam via coherent combination based on adaptive optics[J]. Opt. Express.2010,18(26):26946-26958.
    [171]叶玉堂,饶建珍,肖峻.光学教程[M].北京:清华大学出版社,2005.
    [172]Zhou P, Liu Z, Wang X, et al. Coherent beam combintion of two-dimensional high power fiber amplifier array using stochastic parallel gradient descent algorithm[J]. Appl. Phys. Lett.2009,94:231106-231108.
    [173]肖瑞.主振荡功率放大器方案光纤激光相干合成技术[D].长沙:国防科技大学,2007.
    [174]Goodno G D, Asman C P, Anderegg J, et al. Brightness-Scaling Potential of Actively Phase-Locked Solid-State Laser Arrays[J]. IEEE J. Sel. Top. Quantum Electron.2007,13(3):460-472.
    [175]Goodno G D, Mcnaught S J, Rothenberg J E, et al. Active phase and polarization locking of a1.4kW fiber amplifier[J]. Optics Letters.2010,35(10):1542-1544.
    [176]Jolivet V, Bourdon P, Bennai B, et al. Beam Shaping of Single-Mode and Multimode Fiber Amplifier Arrays for Propagation Through Atmospheric Turbulence[J]. IEEE J. Sel. Top. Quantum Electron.2009,15(2):257-268.
    [177]Ye J, Hall J L. Optical phase locking in the microradian domain:potential applications to NASA spaceborne optical measurements[J]. Optics Letters.1999,24(24):1838-1840.
    [178]Fan X, Liu J, Liu J, et al. Experimental investigation of a seven-element hexagonal fiber coherent array [J]. Chin. Opt. Lett.[J]. Chin. Opt. Lett.2010,8(1):48-51.
    [179]肖瑞.主振荡功率放大器方案光纤激光相干合成技术[D].长沙:国防科学技术大学,2007.
    [180]Anderegg J, Brosnan S, Weber M, et al.8-watt coherently phased4-element fiber array [C].
    [181]Shay T M, Benham V, Baker J T, et al. First experimental demonstration of self-synchronous phase locking of an optical array[J]. Opt. Express.2006,25(14):12015-12021.
    [182]马阎星,王小林,周朴等.光纤激光器阵列的多抖动法相干合成[J].强激光与粒子束.2010,22(12):2803-2806.
    [183]马阎星.光纤激光抖动法相干合成技术研究[D].长沙:国防科技大学,2012.
    [184]Carhart G W, Ricklin J C, Sivokon V P, et al. Parallel perturbation gradient descent algorithm for adaptive wavefront correction[J]. Proc. of SPIE.1997,3126:221-227.
    [185]Vorontsov M A. Parallel image processing based on an evolution equation with anisotropic gain:integrated optoelectronic architectures[J]. J. Opt. Soc. Am. A.1999,16(7):1623-1637.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700