用户名: 密码: 验证码:
碱金属铌酸盐基无铅压电陶瓷的组成、结构与性能关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人类社会可持续发展,开发具有高的压电和机电耦合性能的绿色环保型的无铅压电陶瓷材料成为近年来的研究热点。(Na,K)NbO3(NKN)基压电陶瓷被认为是最有应用前景的无铅压电陶瓷体系之一。然而,目前NKN基无铅压电陶瓷材料还存在诸多问题:如材料的压电和机电耦合性能还无法完全与许多商业化的铅基压电陶瓷相媲美且性能的温度稳定性较差;对NKN基陶瓷材料中压电性能的组成依赖性的理论解释没有统一的认识;文献的研究主要集中在正交-四方多晶共存的铌酸盐材料组成;NKN陶瓷材料在组成位于相界附近时具有增强的压电活性的微观结构机理还不是很清楚等等。
     针对上述问题,本论文拟通过组成的优化设计,调节NKN基陶瓷材料的相变行为,在室温附近获得具有不同相界结构的陶瓷材料(如正交-四方相界,正交-菱方相界和菱方-四方相界);研究这些陶瓷材料的组成,相变特性,电畴结构及其在外加电场作用下的响应(主要包括畴壁运动和电畴翻转)对性能的影响以及在不同相界附近具有优异压电性能增强的机理;分析NKN基陶瓷材料中两相共存的本质以及相结构和畴结构对压电性能的影响。全文研究内容可概括为如下几个方面:
     (1)通过Sb取代Nb,研究NKN中低温段的菱方-正交多晶相变和电学性能的变化,研究发现在NKN中加入Sb能够将该相变温度移动至室温附近,从而形成菱方-正交相共存区,在相界处的组成具有增强的电学性能,其最佳电学性能为:d33=230pC/N,ε33T/εo=1470,Qm=102。另外,考虑到该组成在室温以上要经历菱方相到正交相再到四方相的连续的多晶相变,因而对其压电性能的温度依赖性也进行了研究。见第二章。
     (2)通过固定Sb含量并改变LiTaO3(LT)含量这一特别的组成设计方法,在NKN基陶瓷材料中能够获得一系列的具有正交-四方相共存的陶瓷材料组成。研究发现,随着Sb含量的增加,形成正交-四方相界所需的LT含量会逐渐减少。当组成位于正交-四方相界时,陶瓷材料的电学性能随组成具有显著的可调性,比如:d33=240-400pC/N, kp=36%-54%, ε33T/ε0=750-2500。该陶瓷材料体系相比文献报导的其他NKN基陶瓷而言,具有明显的性能优势。见第三章。
     (3)利用BaZrO3取代LT,首次在(Na,K)(Nb,Sb)O3-LiTaO3-xBaZrO3(NKNS-LT-xBZ)陶瓷体系中获得了室温下稳定的菱方-四方相共存。研究发现室温附近的菱方-四方相界线位于低温端的菱方-正交-四方三相点和高温端的菱方-立方-四方三相点之间。此时相界附近组成的压电和机电耦合性能有明显的增强(d33=365pC/N, kp=45%和d33*=508pm/V),使得该材料体系有望成为一种很有潜力的无铅压电材料,同时也为开发高性能NKN基陶瓷材料提供了一种新的设计思路。见第四章。
     (4)以具有正交-四方相界的(Na0.52K0.48-x)(Nb0.92-xSb0.08)03-xLiTaO3(NKNS0.08-xLT)压电陶瓷为例,对NKN基陶瓷材料中由多晶相变温度变化所形成的相界特性及其对性能的影响进行了研究。研究发现,与传统铅基压电材料材料中的准同型相界相比,NKN基陶瓷材料在很宽的组成范围内具有两相共存并且相结构随组成的变化具有连续性和弥散性,致使NKN基陶瓷材料的压电性能具有明显的温度依赖性;此外,还研究了NKNS0.08-xLT陶瓷的压电性能对组成、相含量以及极化温度的依赖性。在此基础上,为区别于准同型相界,将这一相界定义为多晶型相界。见第五章。
     (5)从电畴种类,结构及其对外场的响应等方面对几种典型的NKN基无铅压电陶瓷材料的极化反转、畴壁运动以及电畴结构及其对电性能的影响进行了详细的研究。首先,研究了具有类双电滞回线的CuO掺杂NKN陶瓷的极化反转行为进行。研究发现,按照滞后回线面积与施加的电场幅值Eo和频率f之间的关系,极化反转过程可分为三个阶段,并对畴壁运动、180°电畴和非180°电畴在这三个阶段的极化反转中的行为和作用进行了阐述;其次,对NKNS0.08-xLT和NKNS-LT-xBZ陶瓷中由畴壁运动所造成的介电和压电非线性响应进行了详细的研究。研究发现,相比正交相,单斜相以及菱方相而言,四方相具有大的点阵畸变和内应力,使得NKNS0.08-xLT和NKNS-LT-xBZ陶瓷中的介电和压电响应均在四方相区最低。在NKNS0.08-xLT陶瓷中,其介电和压电的本征响应均在相界偏正交相一侧达到最大值,而非本征响应则在相界偏四方相一侧达到最大值。在NKNS-LT-xBZ陶瓷中,由于存在正常-弛豫转变,介电响应和压电响应的变化趋势并不一致,其中介电响应在菱方相区要明显大于四方相区和相界,而压电响应则在相界处具有最大值;最后,对两类无铅压电陶瓷(NKNS0.08-xLT和NKNS-LT-xBZ)的电畴结构及其演变进行了详细的研究。利用会聚束电子衍射证实了NKNS0.08-xLT陶瓷确实具有正交-四方相共存而NKNS-LT-xBZ陶瓷则具有菱方-四方相共存。在NKNS0.08-xLT陶瓷组成的正交-四方相共存区附近发现了由于畴壁能降低所形成的纳米电畴结构,这被认为是相界附近组成具有高压电活性的重要结构根源之一。而在NKNS-LT-xBZ陶瓷体系中,发现四方菱方相变会伴随着正常-弛豫转变,而且在正常-弛豫转变过程中电畴形貌会由亚微米层片状电畴逐渐向斜纹状电畴,最终向极性纳米电畴转变。见第六章。
     (6)采用同步辐射X射线衍射并结合其它测试手段,系统地研究了具有正交-菱方相共存、正交-四方相共存和菱方-四方相共存的NKN基陶瓷材料在电场作用下的相结构变化。首先,对具有菱方-正交相变的NKNSy陶瓷研究了极化前NKNSy陶瓷的初始相结构及其随Sb含量的变化,证实了NKNSy陶瓷随着Sb含量的增加会产生正交-菱方相变;同时研究了极化前后和原位电场作用下NKNSy陶瓷的相结构变化,发现极化前具有铁电菱方相与铁电四方相共存的陶瓷组成在极化后会出现少量的单斜相结构,且该相结构主要是由菱方相结构不可逆的转变而产生的;其次,对具有正交-四方相变的NKNS0.08-xLT陶瓷开展了原位和非原位电场条件的的同步辐射X衍射研究,发现未极化的陶瓷样品中的正交相在极化后会不可逆的转变为具有低对称性的单斜Mc相,由此使得样品中的相界由极化前的正交-四方相界转变为极化后的单斜-四方相界。在该体系还发现在电场作用下单斜Mc相与四方相问存在可逆的相结构转变,这被认为是NKNS0.08-xLT陶瓷材料具有高压电活性的重要原因。同时,针对NKNS0.08-xLT陶瓷样品的组成对正交-四方多晶相变温度的调制行为,利用Raman光谱和XAFS从局域结构的变化入手,同时结合前面的同步辐射X射线衍射结果,研究了其相结构转变的微观机理。研究发现,在NKNS0.08-xLT陶瓷中的正交-四方相结构转变是通过极性轴从正交相的[101]向[001]的翻转来完成,且NKNS0.08-xLT陶瓷中的四方相主要是由具有小的离子半径的A位Li离子沿[001]方向具有大的偏心移动所造成。与之相比,B位的Nb离子则局限在正交相与四方相间NbO6八面体中的平均位置上,在相变过程中仅仅改变它们的相对位置与取向;最后,采用同步辐射X射线和介电谱相结合,从相结构的角度分析了NKNS-LT-xBZ陶瓷材料具有高压电活性的起源。研究发现,极化前具有铁电菱方相与铁电四方相共存的陶瓷组成在极化后会转变成具有正交相结构的中间过渡相,且发现该过渡相是由未极化样品中低温段的正交相区向高温方向扩大造成的。由此认为,在电场作用下导致的正交相以及极化偏转变路径的优化(如菱方-四方变为菱方-正交-四方)被认为是该材料具有高压电活性的起源。见第七章。
     (7)对具有不同相界结构的NKN基无铅陶瓷的极化翻转转普适机理研究进行了研究和总结。结果认为NKN基陶瓷材料在电场作用下的不可逆相转变为准同型相转变,而可逆相转变则为多晶型相转变,并构建了不同相结构和相界特性的NKN基无铅陶瓷的普适相图。见第八章。
The development of lead-free ceramics with high piezoelectric and electromechanical properties has attracted much attention in recent years, due to the demand of environment protection.(Na,K)NbO3(NKN) based piezoelectric ceramics have been considered as one of the most promising candidates. However, there still exist some problems in NKN based materials. For example, the piezoelectric and electromechanical properties of NKN-based ceramics cannot be compared with the commercial Pb-based piezoelectric ceramics and their electrical properties show an obvious temperature instability. The understanding of the composition dependence of the piezoelectric properties in NKN based piezoelectric ceramics was still unclear. The previously-reported word was mainly focused on compositions near the orthorhombic-tetragonal polymorphic phase boundary. The mechanism of the high piezoelectric activity for phase coexisted NKN-based ceramics was still not well understood.
     In this thesis, NKN-based lead-free piezoelectric ceramics with different types of phase boundaries such as orthorhombic-tetragonal, orthorhombic-rhombohedral and rhombohedral-tetragonal phase boundaries, were achieved at room temperature by optimizing the compoisitional design and modulating the phase transition behavior. The influence of the composition, the phase transition characteristic, the domain structure and its response to the applied electric field on the electrical properties were investigated as well as the mechanism of enhancing piezoelectric properties near phase boundaries. In addition, the nature of the phase coexistence in NKN-based ceramics and the effect of the phase structure and domain structure on piezoelectric properties were also explored. The main contents can be outlined as below:
     (1) In chapter2, the correlation of the rhombohedral-orthorhombic polymorphic phase transition and electric properties was studied by substituting of Sb for Nb in NKN based ceramics. It was found that this lower-temperature phase transition temperature can be tuned to near room temperature, resulting in the formation of the rhombohedral-orthorhombic phase boundary, in which the optimum piezoelectric properties of d33=230pC/N,ε33T/ε0=1470and Qm=102can also be obtained. In addition, the temperature dependence of piezoelectric properties was also investigated considering the existence of successive polymorphic phase transition from rhombohedral, orthorhombic to tetragonal phases during heating.
     (2) In chapter3, a seires of NKN-based compositions with an orthorhombic-tetragonal phase coexistence were obtained by fixing ta few Sb contents but changing the LiTaO3(LT) content. It was found that the LT content added to form the orthorhombic-tetragonal phase boundary decreases gradually with increasing the Sb content. Excellent and tunable dielectric, piezoelectric and electromechanical properties of d33=240-400pCN, kp=36%-54%, ε33T/ε0=750-2500were achieved by changing Sb and LT contents in compositions near the phase boundary. These properties obviously show overall advantages compared to other NKN based materials reported in the literature.
     (3) In chapter4, a rhombohedral-tetragonal phase coexistence were for the first time obtained in (Na,K)(Nb,Sb)O3-LiTaO3-xBaZrO3(NKNS-LT-xBZ) by substituting BZ for LT. It was found that the rhombohedral-tetragonal phase boundary line was linked between a rhombohedral-orthorhombic-tetragonal triple point at lower temperature and a rhombohedral-cubic-tetragonal triple point at higher temperature. The enhanced piezoelectric properties (d33=365pC/N, kp=45%, d33*=508pm/V) were achieved in compositions near the phase boundary, making this material system become a promising lead-free piezoelectric material. Our work may provide a new method for designing high-performance lead-free NKN-based piezoelectric materials.
     (4) In chapter5, the characteristic of the phase boundary coming from the change of polymorphic phase transition temperatures were studied by using the (Na0.52K0.48-x)(Nb0.92-xSb0.08)O3-xLiTaO3(NKNS0.08-xLT) ceramics as a case study. It was found that the phase coexistence zone in NKN-based ceramics is very broad and diffuse compared with that in lead-based materials with a morphotropic phase boundary, which induces an obvious temperature dependence of piezoelectric properties in NKN based ceramics. The influence of the compositions, the phase content and the poling temperature on piezoelectric properties of NKNSo.os-xLT ceramics was also investigated in detail. To distinguish the morphotropic phase boundary in lead-based materials, this phase boundary in NKN-based ceramics was defined as the polymorphic phase boundary, accordingly.
     (5) In chapter6, several typical NKN-based lead-free piezoelectric ceramics were studied in terms of the domain type and structure and its reponse to the external electric field. Firstly, the polarization reversal behavior of the CuO doped NKN-based ceramics with double hysteresis-like loops were studied in detail. It was found that the evolution of the polarization vs electric field loops can be divided into three stages according to the relation betwwen the loop area, the amplitude Eo and the frequency f of the electric field. The role of the domain wall motion,180°domains and non180°domains during the polarization reversal were clarified. Secondly, the dielectric and piezoelectric nonlinearity induced by domain wall motion in NKNSo.os-xLT and NKNS-LT-xBZ ceramics were studied in detail. It was found that the lowest dielectric and piezoelectric response were located at the tetragonal phase zone for both NKNSo.os-xLT and NKNS-LT-xBZ ceramics, owing to that the tetragonal phase exhibits a relatively large degree of the lattice distortion and internal stress compared with the orthorhombic, monoclinic and rhombohedral phases. In addition, it was found that the largest intrinsic dielectric and piezoelectric responses in NKNSo.os-xLT were obtained in compositions at the orthorhombic-rich side of the orthorhombic-tetragonal phase boundary, whereas, the largest extrinsic responses were obtained in compositions at the tetragonal-rich side of the phase boundary. By comparison, the tendency of composition dependent dielectric response was inconsistent with that of the piezoelectric response due to the existence of normal-relaxor transformation in NKNS-LT-xBZ ceramics. Thirdly, the domain structure evolution of both NKNSo.os-xLT and NKNS-LT-xBZ ceramics was investigated by using a transmission electron microscope. the orthorhombic-tetragonal phase coexistence in NKNS0.08-xLT and rhombohedral-tetragonal phase coexistence in NKNS-LT-xBZ ceramics, were confirmed by using the convergent beam electron diffraction. On the one hand, nanodomains were obviously obversed near the orhorhombic-tetragonal phase coexistence zone in NKNSo.os-Xlt cermics, which were believed to be closely related to the high piezoelectric response for compositions near the orthorhombic-tetragonal phase boundary. On the other hand, it was found that the tetragonal to rhombohedral phase transition in NKNS-LT-xBZ ceramics was accompanied by a normal to relaxor ferroelectric transition, during which the domain morphology will evolve from normal micron-sized lamellar domains to tweed-like domains and finally to polar nanodomains.
     (6) In chapter7, the electric field induced phase structural transition in NKN based ceramics with orthorhombic-rhombohedral, orthorhombic-tetragonal and rhombohedral-tetragonal phase coexistence were investigated by using synchrotron X-ray diffraction combined with other testing methods. Firstly, a structural change from orthorhombic phase to rhombohedral phase in NKNSy ceramics was confirmed owing to the addition of Sb. In addition, a monoclinic phase was induced irreversibly from rhombohedral phase after poling for NKNSy ceramics. Secondly, it was found that the orthorhombic phase can be irreversibly changed into a low-symmetry Mc phase after poling in NKNS0.08-xLT ceramics. The enhancement of piezoelectric properties was mainly attributed to the Mc-T phase coexistence and the phase instability owing to the reversible Mc-T phase transition. In addition, the mechanism of the orthorhombic-tetragonal phase transition induced by changing the composition in NKNSo.os-xLT ceramics was investigated by using Raman spectra and XAFS. The results indicated that the composition induced orthorhombic-tetragonal phase transition can be completed through a jump of polar axis from [101] in orthorhombic phase to [001] in tetragonal phase, in which the tetragonal phase should be dominantly induced by A-site smaller Li ions with a large off centering along [001] direction. However, the B-site Nb atoms are only localized near their average positions of the NbO6octahedra between orthorhombic and tetragonal phases. The Nb-O octahedral distortion changes over the phase transition only by adjusting their positions and orientations. Thirdly, an orthorhombic transient phase could be evolved from initially rhombohedral and tetragonal coexisted NKNS-LT-xBZ ceramics after poling, which was considered to be due to the enlargement of the orthorhombic zone at a low temperature zone. The electric-field induced phase transition and modified polarization rotation path from rhombohedral-tetragonal to rhombohedral-orthorhombic-tetragonal were ascribed to high piezoelectric properties in NKNS-LT-xBZ ceramics.
     (7) In chapter8, the universal polarization rotation mechanism summarized in NKN based lead-free ceramics with different types of phase boundary were studied. It was found that the irreversible phase transition under the electric field can be described as the morphotropic phase transition, while the reversible phase transition can be described as the polymorphic phase transition. In addition, a universal phase diagram of NKN based lead-free piezoelectric ceramics with different types of phase structures and phase boundaries was established.
引文
[1]孙慷,张福学.压电学.国防工业出版社,1984.
    [2]秦善.晶体学基础.北京大学出版社,2004.
    [3]钟维烈.铁电体物理学.科学出版社,1996.
    [4]徐廷献,沈继跃,薄占满,方春行,曲远方.电子陶瓷材料.天津大学出版社,1993.
    [5]J.C. Slater. The Lorentz correction in barium titanate. Physcal Review,1950,78:748-761.
    [6]R.E. Cohen. Origin of ferroelectricity in perovskite oxides. Nature,1992,358:136-138.
    [7]三井利夫,达崎达,中村英二.铁电物理学导论.科学出版社,1983.
    [8]A.F. Devonshire. Theory of ferroelectrics. Philosophical Magazine (supplement),1954, 3:85-130.
    [9]W.L. Zhong, Y.G. Wang, P.L. Zhang and B.D. Qu. Phenomenological study of the size effect on phase transitions in ferroelectric particles. Physical Review B,1994,50:698-703.
    [10]R.布林斯,B.契克兹.铁电体和反铁电体中的软模.科学出版社,1981.
    [11]W. Cochran. Crystal stability and the theory of ferroelectricity. Advances in Physics,1960, 9:387-423.
    [12]E.A. Stern. Character of order-disorder and displacive components in barium titanate. Physical Review Letters,2004,93:037601.
    [13]N. Sicron, B. Ravel, Y. Yacoby, E.A. Stern, F. Dogan and J.J. Rehr. Nature of the ferroelectric phase transition in PbTiO3. Physical Review B,1994,50:13168-13180.
    [14]B.贾菲等.压电陶瓷.科学出版社,1979.
    [15]G. Shirane and K. Suzuki. Crystal structure of Pb(Zr-Ti)O3. Journal of Physics Society of Japan,1952,7:333.
    [16]S.T. Bowden. The phase rule and phase reactions. London:Macmillan and Co. Ltd.,1945.
    [17]E. Sawaguchi. Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. Journal of Physics Society of Japan,1953,8:615-620.
    [18]B. Jaffe, R.S. Roth, S. Marzullo. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. Journal of Applied Physics,1954,25:809-810.
    [19]P. Ari-Gur, L. Benguigui. Direct determination of the coexistence region of solid solutions Pb(ZrxTi1-x)O3. Journal of Physics D:Applied Physics,1975,8:1856-1862.
    [20]V.A. Isopov. Comments on the paper 'X-ray study of the PZT solid solution near the morphotropic phase transition'. Solid State Communications,1975,17:1331-1333.
    [21]K. Kakegawa, J. Mohri, T. Takahashi, H. Yamamura and S. Shirasaki. A compositional fluctuation and properties of Pb(Zr,Ti)O3. Solid State Communications,1977,24:769-772.
    [22]W.W. Cao and L.E. Cross. Theoretical model for the morphotropic phase boundary in lead zirconate-lead titanate solid solution. Physical Review B,1993,47:4825-4830.
    [23]W.W. Cao and L.E. Cross. The ratio of rhombohedral and tetragonal phases on the morphotropic phase boundary in lead zirconate titanate. Japanese Journal of Applied Physics,1992, 31:1399-1402.
    [24]B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross and S.-E. Park. A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Applied Physics Letters,1999,74:2059-61.
    [25]B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.-E. Park, D.E. Cox and G. Shirane. Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite:The structure of PbZr0.52Ti0.48O3. Physical Review B,2000,61:8687-8695.
    [26]Z.-G. Ye, B. Nodeda, M. Dong, D.E. Cox and G. Shirane. Monoclinic phase in the relaxor-based piezoelectric/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Physical Review B, 2001,64:184111.
    [27]D.E. Cox, B. Nodeda, G. Shirane, Y. Uesu, K. Fujishiro and Y. Yamada. Universal phase diagram for high-piezoelectric perovskite systems. Applied Physics Letters,2001,79:400-402.
    [28]B.Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones and L.E. Cross. Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Physical Review B,2001,63:014103.
    [29]B. Noheda, D.E. Cox, G. Shirane, J. Gao and Z.-G. Ye. Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3. Physical Review B,2002,66:054104.
    [30]D. La-Orauttapong, B. Noheda, Z.-G. Ye, P.M. Gehring, J. Toulouse, D.E. Cox and G. Shirane. Phase diagram of the relaxor ferroelectric (1-x)Pb(Zni/3Nb2/3)O3-xPbTiO3. Physical Review B,2002, 65:144101.
    [31]D.E. Cox, B. Noheda, G. Shirane. Low-temperature phases in PbZr0.52Ti0.4sO3:A neutron powder diffraction study. Physical Review B,2005,71:134110.
    [32]B. Noheda and D.E. Cox. Bridging phases at the morphotropic boundaries of lead oxide solid solutions. Phase transitions,2006,79:5-20.
    [33]R. Guo, L.E. Cross, S.-E. Park, B. Noheda, D.E. Cox and G. Shirane. Origin of the high piezoelectric response in PbZr1-xTixO3. Physical Review Letters,2000,84:5423-5426.
    [34]B. Noheda, D.E. Cox, G. Ghirane, S.-E. Park, L.E. Cross and Z. Zhong. Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZni/3Nb2/3O3-8%PbTiO3. Physical Review Letters, 2001,86:3891-3894.
    [35]M. Hinterstein, J. Rouquette, J. Haines, Ph. Papet, M. Knapp, J. Glaum and H. Fuess. Structural description of the macroscopic piezo- and ferroelectric properties of lead zirconate titanate. Physical Review Letters,2011,107:077602.
    [36]H.X. Fu and R.E. Cohen. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature,2000,403:281-283.
    [37]L. Bellaiche, A. Garcia and D. Vanderbilt. Finite-temperature properties of Pb(Zri-xTix)O3 alloys from first principles. Physical Review Letters,2000,84:5427-5430.
    [38]D. Vanderbilt and M.H. Cohen. Monoclinic and triclinic phases in higher-oder Devonshire theory. Physical Review B,2001,63:094108.
    [39]R.R. Ragini, S.K. Mishra and D. Pandey. Room temperature structure of Pb(ZrxTii-x)O3 around the morphotropic phase boundary region:A Rietveld study. Journal of Applied Physics,2002, 92:3266-3274.
    [40]R.R. Ragini, S.K. Mishra, D. Pandey, H. Lemmens and G.V. Tendeloo. Evidence for another low-temperature phase transition in tetragonal Pb(ZrxTi1-x)O3 (x=0.515,0.520). Physical Review B, 2001,64:054101.
    [41]R.S. Solanki, S.K. Mishra, A. Senyshyn, S. Yoon, S. Baik, N. Shin and D. Pandey. Confirmation of the monoclinic Cc space group for the ground state phases of Pb(Zr0.525Ti0.47s)O3:A combined synchrotron x-ray and neutron powder diffraction study. Applied Physics Letters,2013, 102:052903.
    [42]D.M. Hatch, H.T. Stokes, R.R. Ragini, S.K. Mishra, D. Pandey and B.J. Kennedy. Antiferrodistortive phase transition in Pb(Ti0.48Zr0.52)O3:Space group of the lowest temperature monoclinic phase, Physical Review B,2002,65:212101.
    [43]Y.M. Jin, Y.U. Wang, A.G. Khachaturyan, J.F. Li and D. Viehland. Conformal miniaturization of domains with low domain-wall energy:monoclinic ferroelectric states near the morphotropic phase boundaries. Physical Review Letters,2003,91:197601
    [44]Y.M. Jin, Y.U. Wang, A.G. Khachaturyan, J.F. Li and D. Viehland. Adaptive ferroelectric states in systems with low domain wall energy:tetragonal microdomains. Journal of Applied Physics, 2003,94,3629-3640.
    [45]D. Viehland. Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BI12/3)O3-PbTiO3 crystals. Journal of Applied Physics,2000,88:4794-4806.
    [46]K.A. Schonau, L.A. Schmitt, M. Knapp, H. Fuess, R.-A. Eichel, H. Kungl and M.J. Hoffinann. Nanodomain structure of Pb[Zri-xTix]O3 at its morphotropic phase boundary:Investigations from local to average strcture. Physical Review B,2007,75:184117.
    [47]R. Theissmann, L.A. Schmitt, J. Kling, R. Schierholz, K.A. Schonau, H. Fuess, M. Knapp, H. Kungl and M.J. Hoffinann. Nanodomains in morphotropic lead zirconate titanate ceramics:On the origin of the strong piezoelectric effect. Journal of Applied Physics,2007,102:024111.
    [48]A.G. Khachaturyan. Ferroelectric solid solutions with morphotropic boundary:Rotational intability of polarization, metasbable coexistence of phases and nanodomains adaptive states. Philosophical Magazine,2010,90:37-60.
    [49]G.A. Rossetti, A.G. Khachaturyan, G. Akcay and Y. Ni. Ferroelectric solid solutions with morohotropic boundaries:Vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. Journal of Applied Physics,2008,103:114113.
    [50]A. Al-Zein, G. Fraysse, J. Rouquette, Ph. Papet, J. Haines, B. Hehlen, C. Levelut, G. Aquilanti and Y. Joly. Zr-shift at the orgin of the exceptional piezoelectric properties of PbZr0.52Ti0.45O3. Physical Review B,2010,81:174110.
    [51]D. Cao, I.-K. Jeong, R.H. Heffner, T. Darling, J.-K. Lee. F. Bridges, J.-S. Park and K.-S. Hong. Local structure study of the off-center displacement of Ti and Zr across the morphotropic phase boundary of PbZr1-xTixO3 (x=0.40,0.47,0.49,0.55). Physical Review B,2004,70:224102.
    [52]E. Ringgaard and T. Wurlitzer. Lead-free piezoceramics based on alkali niobates. Journal of the European Ceramic Society,2005,25:2701-2706.
    [53]杜红亮,李智敏,周万城,屈绍波,斐志斌.无机材料学报.2006,21:1281-1291.
    [54]T.R. Shrout and S.J. Zhang. Lead-free piezoelectric ceramics:Alternatives for PZT?. Journal of Electroceramics,2007,19:111-124.
    [55]J. Rodel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow and D. Damjanovic. Perspective on the development of lead-free piezoceramics. Journal of the Amercian Ceramic Society,2009,92: 1153-1177.
    [56]郝俊杰,李龙土,王晓慧,桂治轮.硅酸盐学报.2004,32:189-195.
    [57]李月明,程亮,顾幸勇,张玉平,廖润华.高居里温度压电材料的研究进展.陶瓷学报,2006,27:309-315.
    [58]H. Takahashi, Y. Numanoto, J. Tani, K. Matsuta, J.H. Qiu and S. Tsurekawa. Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering. Japanese Journal of Applied Physics,2006,45:L30-L32.
    [59]T. Karaki, K. Yan and M. Adachi. Barium titanate piezoelectric ceramics manufactured by two-step sintering. Japanese Journal of Applied Physics,2007,46:7035-7038.
    [60]S.F. Shao, J.L. Zhang, Z. Zhang, P. Zheng, M.L. Zhao, J.C. Li and C.L. Wang. High piezoelectric properties and domain configuration in BaTiO3 ceramics obtained through the solid-state reaction route. Journal of Physics D:Applied Physics,2008,41:125408.
    [61]W.F. Liu and X.B. Ren. Large piezoelectric effect in Pb-free ceramics. Physical Review Letters, 2009,103:257602.
    [62]T. Takenaka, K. Maruyama and K. Sakata. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Japanese Journal of Applied Physics,1991,30:2236.
    [63]A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki. Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Japanese Journal of Applied Physics,1999,38:5564-5567.
    [64]H. Nagata, M. Yoshida, Y. Makiuchi and T. Takenaka. Large piezoelectric constant and high Curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary, Japanese Journal of Applied Physics.2003,42:7401-7403.
    [65]J. Shieh, K.C. Wu and C.S. Chen. Switching characteristics of MPB compositions of (Bi0.5Na0.5)TiO3-BaTiO3-(Bi0.5K0.5)TiO3 lead-free ferroelectric ceramics. Acta Materialia,2007, 55:3081-3087.
    [66]G. Shirane, R. Newnham and R. Pepinsky. Dielectric properties and phase transitions of NaNbO3 and (Na,K)NbO3. Physical Review,1954,96:581-588.
    [67]L. Egerton and D.M. Dillon. Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. Journal of the American Ceramic Society,1959,42:438-442.
    [68]R.E. Jaeger and L. Egerton. Hot pressing of potassium-sodium niobates. Journal of the American Ceramic Society,1962,45:209-213.
    [69]V.J. Tennery and K.W. Hang. Thermal and X-ray diffraction studies of the NaNbO3-KNbO3 system. Journal of Applied Physics,1968,39:4749-4753.
    [70]M. Ahtee and A.M. Glazer. Lattice parameters and tilted octahedral in sodium-potassium niobate solid solutions. Acta Crystallographica Section A,1976,32:434-446.
    [71]M. Kosec and D. Kolar. On activated sintering and electrical properties of NaKNbO3. Materials Research Bulletin,1975,10:335-340.
    [72]Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura. Lead-free piezoceramics. Nature,2004,432:84-87.
    [73]Z. Zhang, A.M. Glazer, D. Baker and P.A. Thomas. Structures of K0.05Na0.95NbO3 (50-300 K) and K0.30Na0.70NbO3 (100-200 K). Acta Crystallographic Section B,2009,65:291-299.
    [74]D.W. Baker, P.A. Thomas, N. Zhang and A.M. Glazer. Structural study of KxNa1-xNbO3 (KNN) for compositions in the range x=0.24-0.36. Acta Crystallographic Section B,2009,65:22-28.
    [75]D.W. Baker, P.A. Thomas, N. Zhang and A.M. Glazer. A comprehensive study of the phase diagram of KxNa1-xNbO3. Applied Physics Letters,2009,95:091903.
    [76]Y.J. Dai, X.W. Zhang and K.P. Chen. Morphotropic phase boundary and electrical properties of K1-xNaxNbO3 lead-free ceramics. Applied Physics Letters,2007,94:042905.
    [77]Y.S. Sung, S. Baik, J.H. Lee, G.H. Ryu, D. Do, T.K. Song, M.H. Kim and W.J. Kim. Enhanced piezoelectric properties of (Na0.5+y+zK0.5-y)(Nb1-xTax)O3 ceramics. Applied Physics Letters,2012, 101:012902.
    [78]YJ. Dai, X.W. Zhang and G.Y. Zhou. Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3 ceramics. Applied Physics Letters,2007,90:262903.
    [79]Y.P. Guo, K. Kakimoto and H. Ohsato. Structure and electrical properties of lead-free (Na0.5K0.5)NbO3-BaTiO3 ceramics. Japanese Journal of Applied Physics,2004,43:6662-6666.
    [80]H.Y. Park, C.W. Ahn, H.C. Song, J.H. Lee, S. Nahm, K. Uchino, H.G. Lee and H.J. Lee, Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics. Applied Physics Letters,2006,89:062906.
    [81]C.W. Ahn, C.H. Choi, H.Y. Park, S. Nahm and S. Priya. Dielectric and piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-xBaTiO3 ceramics. Journal of Materials Science,2008,43:6784-6797.
    [82]R.P. Wang, R.-J. Xie, K. Hanada, K. Matsusaki, H. Kawanaka, H. Bando, T. Sekiya, M. Itoh. Enhanced piezoelectricity around the tetragonal/orthorhombic morphotropic phase boundary in (Na,K)NbO3-ATiO3 solid solutions. Journal of Electroceramics,2008,21:263-266.
    [83]Y.P. Guo, K. Kakimoto and H. Ohsato. Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-SrTiO3 ceramics, Solid State Communications,2004,129:279-284
    [84]R.P. Wang, R.-J. Xie, K. Hanada, K. Matsusaki, H. Bando and M. Itoh. Phase diagram and enhanced piezoelectricity in the strontium titanate doped potassium-sodium niobate solid solution. Physica Status Solidi A,2005,202:R57-R59.
    [85]J. Kano, K. Sasanuma, S. Tsukada, S. Kojima, R.P. Wang, K. Hanada, K. Matsusaki and H. Bando. Piezoelectric (Na0.5K0.5)Nb03-SrTi03 ceramics in the tetragonal-orthorhombic phase boundary studied by Raman spectroscopy. Ferroelectrics,2007,347:55-59.
    [86]H.Y. Park, K.H. Cho, D.S. Paik, S. Nahm and H.G. Lee. Microstructure and piezoelectric properties of lead-free (1-x)(Na0.5K0.5)NbO3-xCaTiO3 ceramics, Journal of Applied Physics,2007, 102:124101.
    [87]R.C. Chang, S.Y. Chu, Y.F. Lin, C.S. Hong and Y.P. Wong. An investigation of (Na0.5K0.5)NbO3-CaTi03 based lead-free ceramics and surface acoustic wave devices, Journal of the European Ceramic Society,2007,27:4453-4460.
    [88]R.Z. Zuo, X.S. Fang and C. Ye. Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3-(Bi0.5Na0.5)TiO3 ceramics. Applied Physics Letters,2007,90:092904.
    [89]H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Y. Li and Z.B. Pei. Structure and electrical properties's investigation of (K0.5Na0.5)NbO3-(Bi0.5Na0.5)TiO3 lead-free piezoelectric ceramics. Journal of Physics D:Applied Physics,2008,41:085416.
    [90]R.Z. Zuo, X.S. Fang, C. Ye and L.T. Li. Phase transitional behavior and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-(Bi0.5K0.5)TiO3 ceramics. Journal of the American Ceramic Society,2007,90:2424-2428.
    [91]H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Y. Li and Z.B. Pei. Polymorphic phase transition dependence of piezoelectric properties in (K0.5Na0.5)NbO3-(Bi0.5K0.5)TiO3 lead-free ceramics. Journal of Physics D:Applied Physics.2008,41:115413.
    [92]R.P. Wang, H. Bando and M. Itoh. University in phase diagram of (K,Na)NbO3-MTiO3 solid solutions. Applied Physics Letters,2009,95:092905.
    [93]D.M. Lin and K.W. Kwok. Structure and piezoelectric properties of K0.5Na0.5NbO3-Bi0.5Li0.5TiO3 lead-free ceramics. Journal of Materials Science:Materials in Electronics,2012,23:501-505.
    [94]X.P. Jiang, Q. Yang, Z.D. Yu, F. Hu, C. Chen, N. Tu and Y.M. Li. Microstructure and electrical properties of Li0.5Bi0.5TiO3-modified (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. Journal of Alloys and Compounds,2010,493:276-280.
    [95]M.R. Kim, H.C. Song, J.W. Choi, Y.S. Cho, H.J. Kim and S.J. Yoon. Synthesis and piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-x(Ba0.95Sr0.05)TiO3 ceramics. Journal of Electroceramics,2009,23:502-505.
    [96]D.M. Lin, K.W. Kwok and H.L.W. Chan. Microstructure, dielectric and piezoelectric properties of (K0.5Na0.5)NbO3-Ba(Ti0.95Zr0.05)O3 lead-free ceramics with CuO sintering aid. Applied Physics A,2007,88:359-363.
    [97]C.H. Wang. Physical and electric properties of lead-free (Na0.5K0.5)NbO3-Ba(Zr004Ti0.96)O3 ceramics. Journal of the Ceramic Society of Japan,2009,117:680-684.
    [98]Z.W. Chen, J.Q. Hu and X.H. He. Piezoelectric and dielectric properties of (Na0.5K0.5)NbO3-Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics. Journal of the Ceramic Society of Japan, 2008,116:661-663.
    [99]Z.W. Chen, X.H. He, Y. Yu and J.Q. Hu. Piezoelectric and dielectric properties of (Na0.5K0.5)NbO3-(Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free piezoelectric ceramics. Japanese Journal of Applied Physics,2009,48:030204.
    [100]Y.P. Guo, K. Kakimoto and H. Ohsato. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Applied Physics Letters,2004,85:4121-4123.
    [101]Y.P. Guo, K. Kakimoto and H. Ohsato. (Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Materials Letters,2005,59:241-244.
    [102]E. Hollenstein, M. Davis, D. Damjanovic and N. Setter. Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Applied Physics Letters,2005,87:182905.
    [103]G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, P. Qi, B.Q. Ming, J. Du and L.M. Zheng, S.J. Zhang and T.R. Shrout. Perovskite (Na0.5K0.5)1-x(LiSb)xNb1-xO3 lead-free piezoceramics. Applied Physics Letters,2006,88:212908.
    [104]Z.P. Yang, Y.F. Chang, B. Liu and L.L. Wei. Effects of composition on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3-LiSbO3 ceramics. Materials Science and Engineering A,2006,432:292-298.
    [105]S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang and J.F. Wang. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSb03 lead-free ceramics. Journal of Applied Physics,2006, 100:104108.
    [106]D.M. Lin, K.W. Kwok, K.H. Lam and H.L.W. Chan. Structure, piezoelectric and ferroelectric properties of Li- and Sb-modified Ko.5Nao.sNb03 lead-free ceramics. Journal of Physics D:Applied Physics,2007,40:3500-3505.
    [107]Y.F. Chang, Z.P. Yang, Y.T. Hou, Z.H. Liu and Z.L. Wang. Effects of Li content on the phase structure and electrical properties of lead-free (K0.46-x/2Na0.54-x/2Lix)(Nb0.76Ta0.20Sb0.04)O3 ceramics. Applied Physics Letters,2007,90:232905.
    [108]D.M. Lin, K.W. Kwok and H.L.W. Chan. Microstructure, phase transition, and electrical properties of (Ka0.5Na0.5)i-xLix(Nb1-yTay)O3 lead-free piezoelectric ceramics. Journal of Applied Physics,2007,102:034102.
    [109]B.Q. Ming, J.F. Wang, P. Qi and G.Z. Zang. Piezoelectric properties of (Li,Sb,Ta) modified (Na,K)NbO3 lead-free ceramics. Journal of Applied Physics,2007,101:054103.
    [110]D.M. Lin, K.W. Kwok and H.L.W. Chan. Phase structures and electrical properties of K0.5Na0.5(Nb0.925Ta0.075)O3-LiSbO3 lead-free piezoelectric ceramics. Journal of Physics D:Applied Physics,2007,40:6060-6065.
    [111]Y.F. Chang, Z.P. Yang, D.F. Ma, Z.H. Liu and Z.L. Wang. Phase transitional behavior, microstructure, and electrical properties in Ta-modified [(K0.458Na0.542)0.96Li0.04]NbO3 lead-free piezoelectric ceramics. Journal of Applied Physics,2008,104:024109.
    [112]J.G. Wu, T. Peng, Y.Y. Wang, D.Q. Xiao, J.M. Zhu, Y. Jin, J.G. Zhu, P. Yu, L. Wu and Y.H. Jiang. Phase structure and electrical properties of (K0.48Na0.52)(Nb0.95Ta0.05)O3-LiSbO3 lead-free piezoelectric ceramics. Journal of the American Ceramic Society,2008,91:319-321.
    [113]L. Wu, J.L. Zhang, S.F. Shao, P. Zheng and C.L. Wang. Phase coexistence and high piezoelectric properties in (K0.40Na0.60)0.96Li0.04Nb0.80Ta0.20O3 ceramics. Journal of Physics D: Applied Physics,2008,41:035402.
    [114]D.M. Lin, K.W. Kwok, K.H. Lam and H.L.W. Chan. Phase structure and electrical properties of K0.5Na0.5(Nb0.94Sb0.6)O3-LiTaO3 lead-free piezoelectric ceramics. Journal of Physics D:Applied Physics,2008,41:052002.
    [115]R.Z. Zuo, C. Ye and X.S. Fang. Dielectric and piezoelectric properties of lead free Na0.5K0.5NbO3-BiScO3 ceramics. Japanese Journal of Applied Physics,2007,46:6733-6736.
    [116]R.Z. Zuo, C. Ye and X.S. Fang. Na0.5K0.5NbO3-BiFeO3 lead-free piezoelectric ceramics. Journal of Physics and Chemistry of Solids,2008,69:230-235.
    [117]R.Z. Zuo, D.Y. Lv, J. Fu, Y. Liu and L.T. Li. Phase transition and electrical properties of lead free (Na0.5K0.5)NbO3-BiAlO3 ceramics. Journal of Alloys and Compounds,2009,476:836-839.
    [118]H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Y. Li and Z.B. Pei. Design and electrical properties's investigation of (K0.5Na0.5)NbO3-BiMeO3 lead-free piezoelectric ceramics. Journal of Applied Physics,2008,104:034104.
    [119]X.Y. Sun, J. Chen, R.B. Yu, C. Sun, G.R. Liu, X.R. Xing and L.J. Qiao. BiScO3 doped (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. Journal of the American Ceramic Society,2009, 92:130-132.
    [120]W.J. Wu, D.Q. Xiao, J.G. Wu, W.F. Liang, J.Li and J.G. Zhu. Polymorphic phase transition-induced electrical behavior of BiCoO3-modified (K0.48Na0.52)NbO3 lead-free piezoelectric ceramics. Journal of Alloys and Compounds,2011,509:L284-L288.
    [121]R.Z. Zuo and C. Ye. Structures and piezoelectric properties of (NaKLi)1-x(BiNaBa)xNb1-xTixO3 lead-free ceramics. Applied Physics Letters,2007,91:062916.
    [122]Y.J. Dai and X.W. Zhang. Phase transition behavior and electrical properties of lead-free (1-x)(0.98K0.5Na0.5NbO3-0.02LiTaO3)-x(0.96Bi0.5Na0.5TiO3-0.04BaTiO3) piezoelectric ceramics. Journal of the European Ceramic Society,2008,28:3193-3198.
    [123]C.W. Ahn, C.S. Park, D. Viehland, S. Nahm, D.H. Kang, K.S. Bae and S. Priya. Correlation between phase transitions and piezoelectric properties in lead-free (K,Na,Li)NbO3-BaTiO3 ceramics. Japanese Journal of Applied Physics,2008,47:8880-8883.
    [124]Q.J. Zheng, D.M. Lin, X.C. Wu, C.G. Xu, C. Yang and K.W. Kwok. Structure and piezoelectric properties of new ternary K0.5Na0.5NbO3-LiSbO3-CaTiO3 lead-free piezoceramics. Journal of Materials Science:Materials in Electronics,2010,21:625-629.
    [125]Y.X. Liu, Y.Q. Huang, T.T. Liu, B. Zhang, Q.S. Yan and G.X. Zhang. Dielectric and piezoelectric properties of (1-x)(K0.498Na0.498Li0.04)NbO3-x(Bi0.5Na0.5)0.9Ba0.1(Zr0.0055Ti0.9945)O3 lead-free ceramics. Journal of Materials Science,2010,45:188-191.
    [126]M.H. Jiang, X.Y. Liu and G.H. Chen. Phase structures and electrical properties of new lead-free Na0.5K0.5NbO3-LiSbO3-BiFeO3 ceramics. Scripta Materialia,2009,60:909-912.
    [127]T.A. Skidmore, T.P. Comyn and S.J. Milne. Dielectric and piezoelectric properties in the system:(1-x)[(Na0.5K0.5NbO3)0.93-(LiTaO3)0.07-x[BiScO3]. Journal of the American Ceramic Society, 2010,93:624-626.
    [128]M.H. Jiang, M.J. Deng, H.X. Lu, S. Wang and X.Y. Liu. Piezelectric and dielectric properties of K0.5Na0.5NbO3-LiSbO3-BiScO3 lead-free piezoceramics. Materials Science and Engineering B-Advanced Functional Solid-State Materials,2011,176:167-170.
    [129]L. Wu, J.L. Zhang, C.L. Wang and J.C. Li. Influence of compositional ratio K/Na on physical properties in (KxNa1-x)NbO3 ceramics. Journal of Applied Physics,2008,103:084116.
    [130]J. Tellier, B. Malic, B. Dkhil, D. Jenko, J. Cilensek and M. Kosec. Crystal structure and phase transitions of sodium potassium niobate perovskites. Solid State Sciences,2009,11:320-324.
    [131]J.G. Wu, D.Q. Xiao, Y.Y. Wang, J.G. Zhu, L. Wu and Y.H. Jiang. Effects of K/Na ratio on the phase structure and electrical properties of (KxNa0.96-xLi0.04)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics. Applied Physics Letters,2007,91:252907.
    [132]J.G. Wu, D.Q. Xiao, Y.Y. Wang, J.G. Zhu and P. Yu. Effects of K content on the dielectric, piezoelectric, and ferroelectric properties of 0.95(KxNa1-x)NbO3-0.05LiSbO3 lead-free ceramics. Journal of Applied Physics,2008,103:024102.
    [133]J.G. Wu, D.Q. Xiao, Y.Y. Wang, L. Wu, Y.H. Jiang and J.G. Zhu. K/Na ratio dependence of the electrical properties of [(KxNa1-x)0.95Li0.05](Nb0.95Ta0.05)O3 lead-free ceramics. Journal of the American Ceramic Society,2008,91:2385-2387.
    [134]S.J. Liu, B. Wan, P. Wang and S.H. Song. Influence of A-site non-stoichiometry on structure and electrical properties of K0.5Na0.5NbO3-based lead-free piezoelectric ceramics. Scripta Materialia, 2010,63:124-127.
    [135]P. Zhao, B.P. Zhang and J.F. Li. High piezoelectric d33 coefficient in Li-modified lead-free (Na,K)NbO3 ceramics sintered at optimal temperature. Applied Physics Letters,2007,90:242909.
    [136]P. Zhao, B.P. Zhang and J.F. Li. Enhancing piezoelectric d33 coefficient in Li/Ta-codoped lead-free (Na,K)NbO3 ceramics by compensating Na and K at a fixed ratio. Applied Physics Letters, 2007,91:172901.
    [137]M.S. Kim, D.S. Lee, E.C. Park, S.J. Jeong and J.S. Song. Effect of Na2O addtions on the sinterability and. piezoelectric properties of lead-free 95(Na0.5K0.5)NbO3-5LiTaO3 ceramics. Journal of the European Ceramic Society,2007,27:4121-4124.
    [138]M.S. Kim, S.J. Jeong and J.S. Song. Microstructures and piezoelectric properties in the Li2O-excess 0.95(Na0.5K0.5s)NbO3-0.05LiTaO3 ceramics. Journal of the American Ceramic Society, 2007,90:3338-3340.
    [139]M.S. Kim, S.J. Jeong, I.S. Kim and J.S. Song. Piezoelectric properties of Li2O excess (Na0.4875K0.4625Li0.05)(Nb0.95Ta0.05)O3 ceramics by conventional sintering method. Journal of the Ceramic Society of Japan,2009,117:592-595.
    [140]K. Wang and J.F. Li. Low-temperature sintering of Li-modified (K,Na)NbO3 lead-free ceramics:Sintering behavior, microstructure, and electrical properties. Journal of the American Ceramic Society,2010,93:1101-1107.
    [141]J. Acker, H. Kungl and M.J. Hoffmann. Influence of alkaline and niobium excess on sintering and microstructure of sodium-potassium niobate (K0.5Na0.5)NbO3. Journal of the American Ceramic Society,2010,93:1270-1281.
    [142]Y.J. Zhao, Y.Z. Zhao, R.X. Huang, R.Z. Liu and H.P. Zhou. Influence of B-site non-stoichiometry on structure and electrical properties of KNLNS lead-free piezoelectric ceramics. Materials Letters,2012,75:146-148.
    [143]J.H. Cho, N.R. Yeom, S.J. Kwon, Y.H. Jeong, Y.J. Lee, M.P. Chun, J.H. Nam, J.H. Paik and B.I. Kim. Non-stoichiometric effect in (K,Na)NbO3-based perovskite ceramics. Japanese Journal of Applied Physics,2012,51:09MD09.
    [144]R.P. Wang, R.J. Xie, T. Sekiya and Y. Shimojo. Fabrication and characterization of potassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method. Materials Research Bulletin,2004,39:1709-1715.
    [145]B.P. Zhang, L.M. Zhang, J.F. Li, H.L. Zhang and S.Z. Jin. SPS sintering of NaNbO3-KNbO3 piezoelectric ceramics. Materials Science Forum,2005,475-479:1165-1168.
    [146]J.F. Li, K. Wang, B.P. Zhang and L.M. Zhang. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. Journal of the American Ceramic Society,2006,89:706-709.
    [147]X.M. Pang, J.H. Qiu, K.J. Zhu and J.Z. Du. (K,Na)NbO3-based lead-free piezoelectric ceramics manufactured by two-step sintering. Ceramics International,2012,38:2521-2527.
    [148]Y. Li, Y.J. Dai, H.Q. Wang, T. Sun, W. Xu and X.W. Zhang. Microstructures and electrical properties of KNbO3 doped (Li,Ta,Sb) modified (K,Na)NbO3 lead-free ceramics by two-step sintering. Materials Letters,2012,89:70-73.
    [149]J.G. Hao, W.F. Bai, B. Shen and J.W. Zhai. Improved piezoelectric properties of (KxNa1-x)0.94Li0.06NbO3 lead-free ceramics fabricated by combining two-step sintering. Journal of Alloys and Compounds,2012,534:13-19.
    [150]J.Fang, X.H. Wang, Z.B. Tian, C.F. Zhong and L.T. Li. Two-step sintering:An approach to broaden the sintering temperature range of alkaline niobate-based lead-free piezoceramics. Journal of the American Ceramic Society,2010,93:3552-3555.
    [151]D.L. Wang, K.J. Zhu, H.L. Ji and J.H. Qiu. Two-step sintering of the pure K0.5Na0.5NbO3 lead-free piezoceramics and its piezoelectric properties. Ferroelectrics,2009,392:120-126.
    [152]J.G. Fisher, D. Rout, K.S. Moon and S.J.L. Kang. Structural changes in potassium sodium niobate ceramics sintered in different atmospheres. Journal of Alloys and Compounds,2009, 479:467-472.
    [153]J.G. Fisher and S.J.L. Kang. Microstructural changes in (K0.5Na0.5)NbO3 ceramics sintered in various atmospheres. Journal of the European Ceramic Society,2009,29:2581-2588.
    [154]D.J. Liu, H.L. Du, F.S. Tang, F. Luo, D.M. Zhu and W.C. Zhou. Effect of heating rate on the structure evolution of (K0.5Na0.5)NbO3-LiNbO3 lead-free piezoelectric ceramics. Journal of Electoceramics,2008,20:107-111.
    [155]Y.H. Zhen and J.F. Li. Normal sintering of (K,Na)NbO3-based ceramics:Influence of sintering temperature on densification, microstructure, and electrical properties. Journal of the American Ceramic Society,2006,89:3669-3675.
    [156]H.L. Du, F.S. Tang, F. Luo, D.M. Zhu, S.B. Qu, Z.B. Pei and W.C. Zhou. Influence of sintering temperature on piezoelectric properties of (K0.5Na0.5)NbO3-LiNbO3 lead-free piezoelectric ceramics. Materials Research Bulletin,2007,42:1594-1601.
    [157]R.C. Chang, S.Y. Chu, Y.P. Wong, C.S. Hong and H.H. Huang. The effects of sintering temperature on the properties of lead-free (Na0.5K0.5)Nb03-SrTiO3 ceramics. Journal of Alloys and Compounds,2008,456:308-312.
    [158]Z.Y. Shen, Y.H. Zhen, K. Wang and J.F. Li. Influence of sintering temperature on grain growth and phase structure of compositionally optimized high-performance Li/Ta-modified (Na,K)NbO3 ceramics. Journal of the American Ceramic Society,2009,92:1748-1752.
    [159]Z.Y. Shen, K. Wang and J.F. Li. Combined effects of Li content and sintering temperature on polymorphic phase boundary and electrical properties of Li/Ta co-doped (Na,K)NbO3 lead-free piezoceramics. Applied Physics A,2009,97:911-917.
    [160]P. Kumar and P. Palei. Effect of sintering temperature on ferroelectric properties of 0.94(K0.5Na0.5)NbO3-0.06LiNbO3 system. Ceramics International,2010,36:1725-1729
    [161]W.F. Liang, D.Q. Xiao, W.J. Wu, X.H. Li, Y. Sun and J.G. Zhu. Effect of sintering temperature on phase transitions, properties and temperature stability of (K0.46sNa0.465Li0.07)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics. Current Applied Physics,2011, 11:S138-S142.
    [162]X.M. Pang, J.H. Qiu, K.J. Zhu and B. Shao. Influence of sintering temperature on piezoelectric properties of (K0.4425Na0.52Li0.0375)(Nb0.8925Sb0.07Ta0.0375)O3 lead-free piezoelectric ceramics. Journal of Materials Science:Materials in Electronics,2011,22:1783-1787.
    [163]F.R. Marcos and P. Ochoa and J.F. Fernandez. Sintering and properties lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics. Journal of the European Ceramic Society,2007,27:4125-4129.
    [164]F.R. Marcos, P. Marchet, T.M. Mejean and J.F. Fernandez. Role of sintering time, crystalline phases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics. Materials Chemistry and Physics,2010,123:91-97.
    [165]M. Matsubara, T. Yamaguchi, K. Kikuta and S. Hirano. Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with Novel sintering aid. Japanese Journal of Applied Physics, 2004,43:7159-7163.
    [166]R.Z. Zuo, J. Rodel, R.Z. Chen and L.T. Li. Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. Journal of the American Ceramic Society,2006, 89:2010-2015.
    [167]R. Sasaki, R. Suzuki, S. Uraki, H. Kakemot and T. Tsurumi. Low-temperature sintering of alkaline niobate based piezoelectric ceramics using sintering aids. Journal of the Ceramic Society of Japan,2008,116:1182-1186.
    [168]H.Y. Park, I.T. Seo, J.H. Choi, S. Nahm and H.G. Lee. Low-temperature sintering and piezoelectric properties of (Nao.5Ko.5)Nb03 lead-free piezoelectric ceramics. Journal of the American Ceramic Society,2010,93:36-39.
    [169]J. Bernard, A. Bencan, T. Rojac, J. Holc, B. Malic and M. Kosec. Low-temperature sintering of K0.5Na0.5NbO3 ceramics. Journal of the American Ceramic Society,2008,91:2409-2411.
    [170]R.Z. Zuo, Z.K. Xu and L.T. Li. Dielectric and piezoelectric properties of Fe2O3-doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 lead-free ceramics. Journal of Physics and Chmistry of Solids, 2008,69:1728-1732.
    [171]J. Fang, X.H. Wang and L.T. Li. Properties of ultrafine-grained Na0.5K0.5NbO3 ceramics prepared from nanopowder. Journal of the American Ceramic Society,2011,94:1654-1656.
    [172]Y.D. Hou, C. Wang, J.L. Zhao, H.Y. Ge, M.K. Zhu and H. Yan. The fine-grained KNN-LN ceramics densified from nanoparticles obtained by an economical sol-gel route. Materials Chemistry and Physics,2012,134:518-522.
    [173]H.Q. Wang, R.Z. Zuo, J. Fu and Y. Liu. Sol-gel derived (Li,Ta,Sb) modified sodium potassium niobate ceramics:processing and piezoelectric properties. Journal of Alloys and Compounds,2011,509:936-941.
    [174]J.K. Lee, J.H. Cho, B.I. Kim and E.S. Kim. Strain characteristics and electrical properties of [Li0.055(K0.5Na0.5)0.945](Nb1-xTax)O3 ceramics. Journal of Ceramic Processing Research,2012, 13:s341-345.
    [175]J.S. Kim, J.P. Kim, C.W. Ahn, I.W. Kim and B.M. Jin. Ferroelectric and piezoelectric properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics fabricated by using a citric-acid-assisted modified sol-gel method. Journal of the Korean Physical Society,2012,61:966-970.
    [176]N. Liu, K. Wang, J.F. Li and Z.H. Liu. Hydrothermal synthesis and spark plasma sintering of (K,Na)NbO3 lead-free piezoceramics. Journal of the American Ceramic Society,2009, 92:1884-1887.
    [177]Y. Zhou, M. Guo, C. Zhang and M. Zhang. Hydrothermal synthesis and piezoelectric properties of Ta-doping K0.5Na0.5NbO3 lead-free piezoelectric ceramic. Ceramics International, 2009,35:3253-3258.
    [178]T. Maeda, N. Takiguchi, M. Ishikawa, T. Hemsel and T. Morita. (K,Na)NbO3 lead-free piezoelectric ceramics synthesized from hydrothermal powders. Materials Letters,2010, 64:125-128.
    [179]H.H. Gu, K.J. Zhu, X.M. Pang, B. Shao, J.H. Qiu and H.L. Ji. Synthesis of (K,Na)(Nb,Ta)O3 lead-free piezoelectric ceramic powders by high temperature mixing method under hydrothermal conditions. Ceramics International,2012,38:1807-1813.
    [180]J.H. Li and Q.C. Sun. Characterization of (Nao.47Ko.47Lio.o6)(SbxNb1-x)O3 ceramics prepared by molten salt synthesis method. Solid State Communications,2009,149:581-584.
    [181]J.H. Li. Characterization of ternary (Na0.5K0.5)1-xLixNbO3 lead-free piezoelectric ceramics prepared by molten salt synthesis method. Journal of Materials Science,2011,46:6364-6370.
    [182]S.Y. Xu and J.F. Li. Synthesis and piezoelectricity of single-crystalline (K,Na)NbO3 nanobars. Journal of the American Ceramic Society,2011,94:3812-3818.
    [183]T. Rojac, M. Kosec, B. Malic and J. Holc. Mechanochemical synthesis of NaNbO3, KNbO3 and K0.5Na0.5NbO3. Science of Sintering,2005,37:61-67.
    [184]A. Castro, B. Jimenez, T. Hungria, A. Moure and L. Pardo. Sodium niobate ceramics prepared by mechanical activation assisted methods. Journal of the European Ceramic Society,2004, 24:941-945.
    [185]J. Yoo, K. Lee, K. Chung, S. Lee, K. Kim, J. Hong, S. Ryu and C. Lhee. Piezoelectric and dielectric properties of (LiNaK)(NbTaSb)O3 ceramics. Japanese Journal of Applied Physics,2006, 45:7444-7448.
    [186]H.L. Du, W.C. Zhu, F. Luo, D.M. Zhu, S.B. Qu and Z.B. Pei. An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics. Applied Physics Letters,2007, 91:202907.
    [187]F.R. Marcos, J.J. Romero, D.A. Ochoa, J.E. Garcia, R. Perez and J.F. Fernandez. Effects of poling process on KNN-modified piezoceramic properties. Journal of the American Ceramic Society,2010,93:318-321.
    [188]M.I. Morozov, H. Kungl and M.J. Hoffmann. Effects of poling over the orthorhombic-tetragonal phase transition temperature in compositionally homogeneous (K,Na)NbO3-based ceramics. Applied Physics Letters,2011,98:132908.
    [189]H.L. Du, F.S. Tang, F. Luo, W.C. Zhou, S.B. Qu and Z.B. Pei. Effect of poling condition on piezoelectric properties of (K0.5Na0.5)NbO3-LiNbO3 lead-free piezoelectric ceramics. Materials Science and Engineering B,2007,137:175-179.
    [190]E. Hollenstein, D. Damjanovic and N. Setter. Temperature stability of the piezoelectric properties of Li-modified KNN ceramics. Journal of the European Ceramic Society,2007, 27:4093-4097.
    [191]S.J. Zhang, R. Xia and T.R. Shrout. Modified (Ko.sNao.s)Nb03 based lead-free piezoelectrics with broad temperature usage range. Applied Physics Letters,2007,91:132913.
    [192]J.G. Wu, D.Q. Xiao, Y.Y. Wu, WJ. Wu, B. Zhang and J.G. Zhu. Improved temperature stability of CaTiO3-modifed [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05Ta0.04)O3 lead-free piezoelectric ceramics. Journal of Applied Physics,2008,104:024102.
    [193]T.A. Skidmore, T.P. Comyn and S.J. Milne. Temperature stability of ([Na0.5K0.5NbO3]0.93-[LiTaO33]0.07) lead-free piezoelectric ceramics. Applied Physics Letters,2009, 94:222902.
    [194]Y. Gao, J.L. Zhang, X.J. Zong, C.L. Wang and J.C. Li. Extremely temperature-stable piezoelectric properties of orthorhombic phase in (K,Na)NbO3-based ceramics. Journal of Applied Physics,2010,107:074101.
    [195]C. Lei and Z.-G. Ye. Lead-free piezoelectric ceramics derived from the K0.5Na0.5NbO3-AgNbO3 solid solution system. Applied Physics Letters,2008,93:042901.
    [196]P. Zheng, J.L. Zhang, S.F. Shao, Y.Q. Tan and C.L. Wang. Piezoelectric properties and stabilities of CuO-modified Ba(Ti,Zr)O3 ceramics. Applied Physics Letters,2009,94:032902.
    [197]K.P. Rema, V.K. Etacheri and V. Kumar. Influence of low trivalent iron doping on the electrical characteristics of PZT. Journal of Materials Science:Materials in Electronics,2010, 21:1149-1153.
    [198]S. Sugihara and M. Koyama. The effect of copper on the electric properties of Pb(Zr,Ti)O3. Ferroelectrics,1994,158:369-374.
    [199]T. Kamiya, T. Suzuki, T. Tsurumi and M. Daimon. Effects of manganese addition on piezoelectric properties of Pb(Zr0.5Ti0.5)O3. Japanese Journal of Applied Physics,1992, 31:3058-3060.
    [200]M. Matsubara, K. Kikuta and S. Hirano. Piezoelectric properties of (K0.5Na0.5)(Nb1-xTax)O3-K5.4CuTa10O29 ceramics. Journal of Applied Physics,2005,97:114105.
    [201]M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo and S. Hirano. Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of the American Ceramic Society,2005,88:1190-1196.
    [202]D.M. Lin, K.W. Kwok and H.L.W. Chan. Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Applied Physics Letters,2007,90:232903.
    [203]Q. Chen, L. Chen, Q.S. Li, X.Yue, D.Q. Xiao, J.G. Zhu, X.L. Shi and Z.Q. Liu. Piezoelectric properties of K4CuNb8O23 modified (Nao.5Ko.5)Nb03 lead-free piezoceramics. Journal of Applied Physics,2007,102:104109.
    [204]J.B. Lim, S.J. Zhang, J.H. Jeon and T.R. Shrout. (K,Na)NbO3-based ceramics for piezoelectric "hard" lead-free materials. Journal of the American Ceramic Society,2010, 93:1218-1220.
    [205]D.M. Lin, K.W. Kwok, H.Y. Tian and H.L.W. Chan. Phase transitions and electrical properties of (Na1-xKx)(Nbi-ySby)O3 lead-free piezoelectric ceramics with a MnO2 sintering aid. Journal of the American Ceramic Society,2007,90:1458-1462.
    [206]D.M. Lin, M.S. Guo, K.H. Lam, K.W. Kwok and H.L.W. Chan. Lead-free piezoelectric ceramic (K0.5Na0.5)Nb03 with MnO2 and K5.4Cu1.3Tai0O29 doping for piezoelectric transformer application. Smart Materials and Structures,2008,17:035002.
    [207]W.L. Yang, Z.X. Zhou, B. Yang, R. Zhang, Z. Wang, H.Z. Chen and Y.Y. Jiang. Structure and piezoelectric properties of Fe-doped potassium sodium niobate tantalate lead-free ceramics. Journal of the American Ceramic Society,2011,94:2489-2493.
    [208]E. Erdem, R.-A. Eichel, Cs. Fetzer, I. Dezsi, S. Lauterbach, H.-J. Kleebe and A.G. Balogh. Site of incorporation and solubility for Fe ions in acceptor-doped PZT ceramics. Journal of Applied Physics,2010,107,054109.
    [209]R.-A. Eichel, P. Erhart, P. Traskelin, K. Albe, H. Kungl and M.J. Hoffmann. Defect-dipole formation in copper-doped PbTiO3 ferroelectrics. Physical Review Letters,2008,100:095504.
    [210]R.-A. Eichel. Defect structure of oxide ferroelectrics-valence state, site of incorporation, mechanisms of charge compensation and internal bias fields. Journal of Electroceramics,2007, 19:9-21.
    [211]S. Limpijumnong, S. Rujirawat, A. Boonchun, M.F. Smith and B. Cherdhirunkorn. Identification of Mn site in Pb(Zr,Ti)O3 by synchrotron x-ray absorption near-edge structure: Theory and experiment. Applied Physics Letters,2007,90:103113.
    [212]R.-A. Eichel, E. Erunal, M.D. Drahus, D.M. Smyth, J. Tol, J. Acker, H. Kungl and H.J. Hoffmann. Local variations in defect polarization and covalent bonding in ferroelectric Cu2+-doped PZT and KNN functional ceramics at the morphotropic phase boundary. Physical Chemistry Chemical Physics,2009,11:8689-8705.
    [213]I. Levin, V. Krayzman, J.C. Woicik, A. Tkach and P.M. Vilarinho. X-ray absorption fine structure studies of Mn coordination in doped perovskite SrTiO3. Applied Physics Letters,2010, 96:052904.
    [214]G.A. Smolensky. Physical phenomena in ferroelectrics with diffused phase transition. Journal of the Physical Society of Japan,1970,28 (Supplements):26-37.
    [215]L.E. Cross. Relaxor ferroelectrics., Ferroelectrics,1987,76:241-267.
    [216]A.J. Bell. Calculations of dielectric properties from the superparaelectric model of relaxors. Journal of Physics:Condensed Matter,1993,5:8773-8792.
    [217]H. Gui, B.L. Gu and X.W. Zhang. Dynamics of the freezing process in relaxor ferroelectrics. Physical Review B,1995,52:3135-3142.
    [218]A.E. Glazounor, A.J. Bell and A.K. Tagantsev. Relaxors as super paraelectrics with distributions of the local transition temperature. Journal of Physics:Condensed Matter,1995, 7:4145-4168.
    [219]G. Burns and F.H. Dacol. Ferroelectric with a glassy polarization phase. Ferroelectrics,1990, 104:25-35.
    [220]D. Viehland, S.J. Jang, L.E. Cross and M. Wuttig. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. Journal of Applied Physics,1990,68:2916-2921.
    [221]D. Viehland, M. Wutting and L.E. Cross. The glass behavior of relaxor ferroelectrics. Ferroelectrics,1991,120:71-77.
    [222]D. Viehland, J.F. Li, S.J. Jang, L.E. Cross and M. Wuttig. Glassy polarization behavior of relaxor ferroelectrics. Physical Review B,1992,46:8013-8017.
    [223]N. Setter and L.E. Cross. The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics. Journal of Applied Physics,1980,51:4356-4360.
    [224]J. Chen, H.M. Chan and M.P. Harmer. Ordering structure and dielectric properties of undoped and La/Na-doped Pb(Mg1/3Nb2/3)O3. Journal of the American Ceramic Society,1989,72:593-598.
    [225]C.A. Ranall, A.S. Bhalla, T.R. Shrout and L.E. Cross. Classification and consequence of complex lead perovskite ferroelectrics with regard to B-site cation order. Journal of Materials Research,1990,5:829-834.
    [226]X.W. Zhang, Q. Wang and B.L. Gu. Study of the order-disorder transition in A(B'B")O3 perovskite type ceramics. Journal of the American Ceramic Society,1991,74:2846-2850.
    [227]X. Yao, Z. Chen and L.E. Cross. Polarization and depolarization behavior of hot pressed lead lanthanum zirconate titanate ceramics. Journal of Applied Physics,1983,54:3399-3403.
    [228]Z. Yin, X. Chen, X. Song and J. Feng. Studies on microstructure and micro-property of PLZT ceramics. Ferroelectrics,1988,87:85-96.
    [229]L.A. Burisll, H. Qian, J.-L. Peng and X.D. Fan. Observation and analysis of nanodomains textures in the dielectric relaxor lead magnesium niobate. Physica B,1995,216:1-23.
    [230]R.A. Cowley, S.N. Gvasaliya, S.G. Lushnikov, B. Roessli and G.M. Rotaru. Relaxing with relaxors:a review of relaxor ferroelectrics. Advances in Physics,2011,60:229-327.
    [231]W. Kleemann. Randoma fields in relaxor ferroelectrics-A jubilee review. Journal of Advanced Dielectrics,2012,2:1241001.
    [232]G.A. Samara. The relaxational properties of compositionally disordered ABO3 perovskites. Journal of Physics:Condensed Matter,2003,15:R367.
    [233]L. Xie, Y.L. Li, R. Yu, Z.Y. Cheng, X.Y. Wei, X. Yao, C.L. Jia, K. Urban, A.A. Bokow, Z.-G. Ye and J. Zhu. Static and dynamic polar nanoregions in relaxor ferroelectric Ba(Ti1-xSnx)O3 system at high temperature. Physical Review B,2012,85:014118.
    [234]R. Farhi, M.El Marssi, J.-L. Dellis, Y.I. Yuzyuk, J. Ravez and M.D. Glinchuk. Raman scattering from relaxor ferroelectrics and related compounds. Ferroelectrics,1999,235:9-17.
    [235]F.M. Jiang, S. Kojima, C.L. Zhao and C.D. Feng. Raman scattering on the B-site order controlled by A-site substitution in relaxor perovskite ferroelectrics. Journal of Applied Physics, 2000,88:3608-3612.
    [236]B. Mihailova, U. Bismayer, B. Guttler, M. Gospodinov and L. Konstantinov. Local structure and dynamics in relaxor-ferroelectric PbSc1/2Nb1/2O3 and PbSc1/2Ta1/2O3 single crystals. Journal of Physics:Condensed Matter,2002,14:1091-1105.
    [237]J. TOULOUSE, F. Jiang, O. Svitelskiy, W. Chen and Z.-G. Ye. Temperature evolution of the relaxor dynamics in Pb(Zn1/3Nb2/3)O3:A critical Raman analysis. Physical Review B,2005, 72:184106.
    [238]A. Slodczyk, P. Daniel and A. Kania. Local phenomena of (1-x)PbMg1/3Nb2/3O3-xPbTiO3 single crystals (0≤x≤0.38) studied by Raman scattering. Physical Review B,2008,77:184114.
    [239]A. Naberezhnov, S. Vakhrushev, B. Dorner, D. Strauch and H. Moudden. Inelastic neutron scattering study of the relaxor ferroelectric PbMg1/3Nb2/3O3 at high temperatures. European Physical Journal B,1999,11:13-20.
    [240]P.M. Gehring, S.-E. Park and G. Shirane. Dynamical effects of the nanometer-sized polarized domains in Pb(Zn1/3Nb2/3)O3. Physical Review B,2001,63:224109.
    [241]G.Y. Xu, J.S. Wen, C. Stock and P.M. Gehring. Phase intability induced by polar nanoregions in a relaxor ferroelectric system. Nature Materials,2008,7:562-566.
    [242]W. Dmowski, S.B. Vakhrushev, I.-K. Jeong, M.P. Hehlen, F. Trouw and T. Egami. Local lattice dynamics and the orgin of the relaxor ferroelectric behavior. Physical Review Letters,2008, 100:137602.
    [243]K. Hirota, Z.-G. Ye, S. Wakimoto, P.M. Gehring and G. Shirane. Neutron diffuse scattering from polar nanoregions in the relaxor Pb(Mg1/3Nb2/3)O3. Physical Review B,2002,65:104105.
    [244]M. Matsuura, K. Hirota, P.M. Gehring, Z.-G. Ye, W. Chen and G. Shirane. Composition dependence of the diffuse scattering in the relaxor ferroelectric compound (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (0≤x≤0.40). Physical Review B,2006,74:144107.
    [245]P. Ganesh, E. Cockayne, M. Ahart, R.E. Cohen, B. Burton, R.J. Hemley, Y. Ren, W.G. Yang and Z.-G. Ye. Origin of diffuse scattering in relaxor ferroelectrics. Physical Review B,2010, 81:144102.
    [246]A. Bosak, D. Chernyshov, S. Vakhrushev and M. Krisch. Diffuse scattering in relaxor ferroelectrics:true three-dimensional mapping, experimental artfacts and modeling. Acta Crystallographica Section A,2012,68:117-123.
    [247]I.-K. Jeong, C.Y. Park, J.S. Ahn, S. Park and D.J. Kim. Ferroelectric-relaxor crossover in Ba(Ti1-xZrx)O3 studied using neutron total scattering measurements and reverse Monte Carlo modeling. Physical Review B,2010,81:214119.
    [248]I.-K. Jeong, J.S. Ahn, B.G. Kim, S. Yoon, S.P. Singh and D. Pandey. Short- and medium-range structure of multiferroic Pb(Fe1/2Nb1/2)O3 studied using neutron total scattering analysis. Physical Review B,2011,83:064108.
    [249]D.J. Barber, A.D. Hilton and K.Z. Baba-Kishi. Application of transmission electron microscopy to studies of relaxor materials. British Ceramic Proceedings,1989,41:139-148.
    [250]C.A. Randall and A.S. Bhalla. Nanosructural-property relations in complex lead perovskites. Japanese Journal of Applied Physics,1990,29:327-333.
    [251]M. Yoshida, S. Mori, N. Yamanoto, Y. Uesu and J.M. Kiat. TEM observation of polar domains in relaxor ferroelectric Pb(Mg1/3Nb2/3)O3. Ferroelectrics,1998,217:327-333.
    [252]M. Cantoni, SSN. Bharadwaja, S. Gentil and N. Setter. Direct observation of the B-site cationic order in the ferroelectric relaxor Pb(Mg1/3Ta2/3)O3. Journal of Applied Physics,2004, 96:3870-3875.
    [253]D.J. Gao, K.W. Kwok, D.M. Lin and H.L.W. Chan. Microstructure and electrical properties of La-modified K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Journal of Physics D:Applied Physics, 2009,42:035411.
    [254]J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, G.R. Li and Q.R. Yin. Relaxor behavior and dielectric properties of (La,Ta)-modified (K0.5Na0.5)NbO3 lead-free ceramics. Journal of Alloys and Compounds,2009,484:233-238.
    [255]V. Bobnar, J. Bernard and M. Kosec. Relaxorlike dielectric properties and history-dependent effects in the lead-free K0.5Na0.5NbO3-SrTiO3 ceramic system. Applied Physics Letters,2004, 85:994-996.
    [256]M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic and J. Holc. New lead-free relaxors based on the K0.5Na0.5NbO3-SrTiO3 solid solution. Journal of Materials Research,2004, 19:1849-1854.
    [257]Y.P. Guo, K. Kakimoto and H. Ohsato. Ferroelectric-relaxor behavior of (Na0.5K0.5)NbO3-based ceramics. Journal of Physics and Chemistry of Solids,2004,65:1831-1835.
    [258]V. Bobnar, B. Malic, J. Holc, M. Kosec, R. Steinhausen and H. Beige. Electrostrictive effect in lead-free relaxor K0.5Na0.5NbO3-SrTiO3 ceramic system. Journal of Applied Physics,2005, 98:024113.
    [259]H.L. Du, W.C. Zhou, D.M. Zhu, S.B. Qu, Y. Li and Z.B. Pei. Sintering characteristic, microstructure, and dielectric relaxor behavior of (K0.5Na0.5)NbO3-(Bi0.5Na0.5)TiO3 lead-free ceramics. Journal of the American Ceramic Society,2008,91:2903-2909.
    [260]C.W. Cho, M.R. Cha, J.Y. Jang, S.H. Lee, D.J. Kim, S. Park, J.S. Bae, S.D. Bu, S. Lee and J. Huh. Ferroelectric relaxor properties of (1-x)K0.5Na0.5NbO3-xBa0.5Ca0.5TiO3 ceramics. Current Applied Physics,2012,12:1266-1271.
    [261]V. Bobnar, J. Holc, M. Hrovat and M. Kosec. Relaxorlike dielectric dynamics in the lead-free K0.5Na0.5NbO3-SrZrO3 ceramic system. Journal of Applied Physics,2007,101:074103.
    [262]H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu and Z.B. Pei. Phase structure, dielectric properties, and relaxor behavior of (K0.5Na0.5)NbO3-(Ba0.5Sr0.5)TiO3 lead-free solid solution for high temperature applications. Journal of Applied Physics,2009,105:124104.
    [263]C.T. Nelson, P. Gao, J.R. Jokisaar, C. Heikes, C. Adamo, A. Melville, S.H. Baek, C.M. Folkman, B. Winchester, Y. Gu, Y. Liu, K. Zhang, E. Wang, J. Li, L.Q. Chen, C.B. Eom, D.G. Schlom and X.Q. Pan. Domain dynamics during ferroelectric switching. Science,2011, 334:968-971.
    [264]S. Pruvost, A. Hajjaji, L. Lebrun, D. Guyomar and Y. Boughaleb. Domain switching and energy harvesting capabilities in ferroelectric materails. Journal of Physical Chemistry C,2010, 114:20629-20635.
    [265]T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin and S.W. Cheong. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science,2009,324:63-66.
    [266]A. Achuthan and C.T. Sun. A study of mechanisms of domain switching in a ferroelectric material via loading rate effect. Acta Materialia 2009,57:3868-3875.
    [267]S.V. Kalinin, B.J. Bodriguez, S. Jesse, Y.H. Chu, T. Zhao, R. Ramesh, S. Choudhury, L.Q. Chen, E.A. Eliseev and A.N. Morozovska. Intrinsic single-domain switching in ferroelectric materials on a nearly ideal surface. Proceeding of the National Academy of Science of the United States of American,2007,104:20204-20209.
    [268]J.Y. Jo, H.S. Han, J.G. Yoon, T.K. Song, S.H. Kim and T.W. Noh. Domain switching kinetics in disordered ferroelectric thin films. Physical Review Letters,2007,99:267602.
    [269]J.Y. Li, R.C. Rogan, E. Ustundag and K. Bhattacharya. Domain switching in polycrystalline ferroelectric ceramics. Nature Materials,2005,4:776-781.
    [270]J.F. Scott and C.A.Paz de Araujo. Ferroelectric memories. Science,1989,246:1400-1405.
    [271]W.W. Cao and C.A. Randall. Grain size and domain size relations in bulk ceramic ferroelectric materials. Journal of Physics and Chemistry of Solids,1996,57:1499-1505.
    [272]R. Thessmann, L.A. Schmitt, J. Kling, R. Schierholz, K.A. Schonau, H. Fuess, M. Knapp, H. Kungl and M.J. Hoffmann. Nanodomains in morphotropic lead zirconate titanate ceramics:On the origin of the strong piezoelectric effect. Journal of Applied Physics,2007,102:024111.
    [273]R.P. Herber, G..A. Schneider, S. Wagner and M.J. Hoffmann. Characterization of ferroelectric domains in morphotropic potassium sodium niobate with scanning probe microscopy. Applied Physics Letters,2007,90:252905.
    [274]F.R. Marcos, A. D. Campo, R.L. Juarez, J.J. Romero and J.F. Fernandez. High spatial resolution structure of (K,Na)NbO3 lead-free ferroelectric domains. Journal of Materials Chemistry, 2012,22:9714.
    [275]J.H. Cho, Y.H. Lee, K.S. Han, M.P. Chun, J.H. Nan and B.I. Kim. Effect of domain size on the coercive field of orthorhombic (Li,K,Na)NbO3 ceramics. Journal of the Korean Physical Society, 2010,57:971-974.
    [276]R.L. Juzrez, O.N. Peralta, F.G. Garcia, F.R. Marcos, M.E.V. Castrejon. Ferroelectric domain structure of lead-free potassium-sodium niobate ceramics. Journal of the European Ceramic Society, 2001,31:1861-1864.
    [277]M. Eriksson, H.X. Yan, G. Viola, H. Ning, D. Gruner, M. Nygren, M.J. Reece and Z.J. Shen. Ferroelectric domain structure and electrical properties of fine-grianed lead-free sodium potassium niobate ceramics. Journal of the American Ceramic Society,2011,94:3391-3396.
    [278]N. Lu, R. Yu, Z.Y. Cheng, YJ. Dai, X.W. Zhang and J. Zhu, Ferroelectric polarization and domain walls in orthorhombic (K1-xNax)NbO3 lead-free ferroelectric ceramics. Applied Physics Letters,2010,96:221905.
    [279]T.A. Skidmore, T.P. Comyn, A.J. Bell, F.Y. Zhu and S.J. Milne. Phase diagram and structure-property relationships in the lead-free piezoelectric system:Na0.5K0.5NbO3-LiTaO3. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2011,58:1819-1825.
    [280]N. Klein, E. Hollenstein, D. Damjanovic, H.J. Trodahl, N. Setter and M. Kuball. A study of the phase diagram of (K,Na,Li)NbO3 determined by dielectric and piezoelectric measurements, and Raman spectroscopy. Journal of Applied Physics,2007,102:104112.
    [281]X.Y. Sun, J.X. Deng, J. Chen, C. Sun and X.R. Xing. Effects of Li substitution on the structure and ferroelectricity of (Na,K)NbO3. Journal of the American Ceramic Society,2009, 92:3033-3036.
    [282]K. Wang and J.-F. Li. Analysis of crystallographic evolution in (Na,K)NbO3-based lead-free piezoceramics by x-ray diffraction. Applied Physics Letters,2007,91:262902.
    [283]H.E. Mgbemere, M. Hinterstein and G.A. Schneider. Electrical and structural characterization of (KxNa1-x)NbO3 ceramics modified with Li and Ta. Journal of Applied Crystallography,2011, 44:1080-1089.
    [284]H.E. Mgbemere, R.P. Fernandes, M. Hinterstein, G.A. Schneider. Temperature-dependent synchrotron powder diffraction phase studies of (K0.37Na0.52Li0.03)(Nb0.87Ta0.1Sb0.03)O3 ferroelectric ceramics. Zeitschrift Fur Kristallographie,2011,226:138-144.
    [285]D.A. Hall, F. Azough, N.M. Stewart, R.J. Cernik, R. Freer and T. Mori. In-situ X-ray diffraction study of ferroelectric domain switching in orthorhombic NKN ceramics. Functional Materials Letters,2010,3:31-34.
    [286]A. Kodre, J. Tellier, I. Arcon, B. Malic and M. Kosec. Extended x-ray absorption fine structure study of phase transitions in the piezoelectric perovskite K0.5Na0.5NbO3. Journal of Applied Physics,2009,105:113528.
    [287]M.P. Lemeshko, E.S. Nazarenko, A.A. Gonchar, L.A. Reznichenko, T.I. Nedoseykina, A.A. Novakovich, O. Mathon, Y. Joly and R.V. Vedrinskii. EXAFS studies of the local atomic structure of the lead-free piezoelectric ceramics KxNai-xNbO3 over the temperature range 10-1023 K. Physical Review B,2007,76:134106.
    [288]VA. Shuvaeva, K. Yanagi, Y. Yagi, K. Sakaue and H. Terauchi. Local structure and nature of phase transitions in KNbO3. Solid State Communications,1998,106:335-339.
    [289]N. de Mathan, E. Prouzet, E. Husson and H. Dexpert. A low-temperature extended x-ray absorption study of the local order in simple and complex perovskites:Ⅰ. Potassium niobate. Journal of Physics:Condensed Matter,1993,5:1261-1270.
    [290]O. Hanske-Petitpierre, Y. Yacoby, J. Mustre de Leon, E.A. Stern and J.J. Rehr. Off-center displacement of the Nb ions below and above the ferroelectric phase transition of KTa0.91Nb0.09O3. Physical Review B,1991,44:6700-6707.
    [1]H.J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz and M. Kuball. Raman spectroscopy of (K,Na)NbO3 and (K,Na)1-xLixNbO3. Applied Physics Letters,2008,93:262901.
    [2]B.贾菲等.压电陶瓷.科学出版社,1979.
    [3]R.Z. Zuo, J. Fu and D.Y. Lv. Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48-xLix)(Nb1-x-ySbyTax)O3 system. Journal of the American Ceramic Society,2009, 92:283-285.
    [4]J.L. Zhang, X.J. Zong, L. Wu, Y. Gao, P. Zheng and S.F. Shao. Polymorphic phase transition and excellent piezoelectric performance of (K0.55Na0.45)0.965Li0.035Nb0.80Ta0.20O3 lead-free ceramics. Applied Physics Letters,2009,95:022909.
    [5]Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura. Lead-free piezoceramics. Nature,2004,432:84-87.
    [6]R.Z. Zuo, C. Ye and X.S. Fang. Dielectric and piezoelectric properties of lead free Nao.sKo.sNb03-BiSc03 ceramics. Japanese Journal of Applied Physics,2007,46:6733-6736.
    [7]R.Z. Zuo, C. Ye and X.S. Fang. Nao.sKo.sNb03-BiFe03 lead-free piezoelectric ceramics. Journal of Physics and Chemistry of Solids,2008,69:230-235.
    [8]R.Z. Zuo, D.Y. Lv, J. Fu, Y. Liu and L.T. Li. Phase transition and electrical properties of lead free (Na0.5K0.5)NbO3-BiAlO3 ceramics. Journal of Alloys and Compounds,2009,476:836-839.
    [9]H.Y. Park, I.T. Seo, M.K. Choi, S. Nahm, H.G. Lee, H.W. Kang and B.H. Choi. Microstructure and piezoelectric properties of the CuO-added (Na0.5K0.5)(Nb0.97Sb0.03)O3 lead-free piezoelectric ceramics. Journal of Applied Phyiscs,2008,104:034103.
    [10]D.M. Lin, K.W. Kwok, H. Tian and H.W.L. Chan. Phase transitions and electrical properties of (Na1-xKx)(Nb1-ySby)O3 lead-free piezoelectric ceramics with a MnO2 sintering aid. Journal of the American Ceramic Society,2007,90:1458-1462.
    [11]Y.J. Dai, X.W. Zhang and K.P. Chan. Morphotropic phase boundary and electrical properties of K1-xNaxNbO3 lead-free ceramics. Applied Physics Letters,2009,94:042905.
    [12]J.L. S. Emeterio. Determination of electromechanical coupling factors of low Q piezoelectric resonators operating in stiffened modes. IEEE Transactions on Ultrasonics, Ferroelectrics, and Freuqency Control,1997,44:108-113.
    [13]R.D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A,1976,32:751-767.
    [14]E. Buixaderas, V. Bovtun, M. Kempa, M. Savinov, D. Nuzhnyy, F. Kadlec, P. Vanek, J. Petzelt, M. Eriksson and Z. Shen. Broadband dielectric response and grain-size effect in K0.5Na0.5NbO3 ceramics. Journal of Applied Physics,2010,107:014111.
    [15]R. Wordenweber, E. Hollmann, R. Kutzner and J. Schubert. Induced ferroelectricity in strained epitaxial SrTiO3 films on various substrates. Journal of Applied Physics,2007,102:044119.
    [16]W. Zhong, D. Vanderbilt and K.M. Rabe. First-principles theory of ferroelectric phase transitions for perovskites:the case of BaTiO3. Physical Review B,1995,52:6301-12.
    [17]E. Hollenstein, M. Davis, D. Damjanovic and N. Setter. Piezoelectric properties of Li-and Ta-modified (K0.5Na0.5)NbO3 ceramics. Applied Physics Letters,2005,87:182905.
    [18]Y.P. Guo, K. Kakimoto and H. Ohsato. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Applied Physics Letters,2004,85:4121-4123.
    [19]R.E. Cohen. Origin of ferroelectricity in perovskite oxides. Nature,1992,358:136-138.
    [20]R.-A. Eichel, E. Erunal, M.D. Drahus, D.M. Smyth, J. Tol, J. Acker, H. Kungl and H.J. Hoffmann. Local variations in defect polarization and covalent bonding in ferroelectric Cu2+-doped PZT and KNN functional ceramics at the morphotropic phase boundary. Physical Chemistry Chemical Physics,2009,11:8689-8705.
    [21]D.M. Lin, K.W. Kwok and H.L.W. Chan. Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Applied Physics Letters,2007,90:232903.
    [22]K. Okazaki and H. Maiwa. Space charge effects on ferroelectric ceramic particle surfaces. Japanese Journal of Applied Physics,1992,31:3113-3116.
    [23]W.W. Cao and C.A. Randall. Grain size and domain size relations in bulk ceramic ferroelectric materials. Journal of Physics and Chemistry of Solids,1996,57:1499-1505.
    [24]P. Zheng, J.L. Zhang, S.F. Shao, Y.Q. Tan and C.L. Wang. Piezoelectric properties and stabilities of CuO-modified Ba(Ti,Zr)O3 ceramics. Applied Physics Letters,2009,94:032902.
    [25]K. Higashide, K. Kakimoto and H. Ohsato. Temperature dependence on the piezoelectric property of (1-x)(Na0.5K0.5)NbO3-xLiNbO3 ceramics. Journal of the European Ceramic Society, 2007,27:4107-4110.
    [1]L. Egerton and D.M. Dillon. Piezoelectric and dielectric properties of ceramics in the system potassium sodium niobate. Journal of the American Ceramic Society,1959,42:438-442.
    [2]J.F. Li, K. Wang, B.P. Zhang and L.M. Zhang. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. Journal of the American Ceramic Society,2006,89:706-709.
    [3]R.Z.Zuo, J. Rodel, R.Z. Chen and L.T. Li. Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. Journal of the American Ceramic Society,2006, 89:2010-2015.
    [4]H.L. Du, Z.M. Li, F.S. Tang, S.B. Qu, Z.B. Pei and W.C. Zhou. Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering. Materials Science and Engineering B,2006,131:83-87.
    [5]B. Malic, D. Jenko, J. Holc, M. Hrovat and M. Kosec. Synthesis of sodium potassium niobate:A diffusion couples study. Journal of the American Ceramic Society,2008,91:1916-1922.
    [6]Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura. Lead-free piezoceramics. Nature,2004,432:84-87.
    [7]E. Hollenstein, M. Davis, D. Damjanovic and N. Setter. Piezoelectric properties of Li- and Ta-modified (Ko.5Nao.s)Nb03 ceramics. Applied Physics Letters,2005,87:182905.
    [8]G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, P. Qi, B.Q. Ming, J. Du and L.M. Zheng. Perovskite (Na0.5K0.5)1-x(LiSb)xNb1-xO3 lead-free piezoceramics. Applied Physics Letters, 2006,88:212908.
    [9]B.Q. Ming, J.F. Wang, P. Qi and G.Z. Zang. Piezoelectric properties of (Li,Sb,Ta) modified (Na,K)NbO3 lead-free ceramics. Journal of Applied Physics,2007,101:054103.
    [10]Z.P. Yang, Y.F. Chang and L.L. Wei. Phase transitional behavior and electrical properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 piezoelectric ceramics. Applied Physics Letters, 2007,90:042911.
    [11]D.M. Lin, K.W. Kwok and H.L.W. Chan. Phase structures and electrical properties of K0.5Na0.5(Nb0.925Ta0.075)O3-LiSbO3 lead-free piezoelectric ceramics. Journal of Physics D:Applied Physics,2007,40:6060-6065.
    [12]J.G. Wu, T. Peng, Y.Y. Wang, D.Q. Xiao, J.M. Zhu, Y. Jin, J.G. Zhu, P. Yu, L. Wu and Y.H. Jiang. Phase structure and electrical properties of (K0.48Na0.52)(Nb0.95Ta0.05)O3-LiSbO3 lead-free piezoelectric ceramics. Journal of the American Ceramic Society,2008,91:319-321.
    [13]Y.P. Guo, K. Kakiimoto and H. Ohsato. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Applied Physics Letters,2004,85:4121-4123.
    [14]S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang and J.F. Wang. Characterization of lead free (K0.5Na0.5)NbO3-LiSbO3 piezoceramic. Solid State Communications,2007,141:675-679.
    [15]H.C. Song, K.H. Cho, H.Y. Park, C.W. Ahn, S. Nahm, K. Uchino, S.H. Park and H.G. Lee. Microstructure and piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-xLiNbO3 ceramics. Journal of the American Ceramic Society,2007,90:1812-1816.
    [16]M. Matsubara, T. Yamaguchi, K. Kikuta and S. Hirano. Effect of Li substitution on the piezoelectric properties of potassium sodium niobate ceramics. Japanese Journal of Applied Physics, 2005,44:6136-6142.
    [17]Y. Saito and H. Takao. High performance lead-free piezoelectric ceramics in the (K,Na)NbO3-LiTaO3 solid solution system. Ferroelectrics,2006,338:17-32.
    [18]M.S. Kim, S.J. Jeong and J.S. Song. Microstructures and piezoelectric properties in the Li2O-excess 0.95(Na0.5K0.5)NbO3-0.05LiTaO3 ceramics. Journal of the American Cermaic Society, 2007,90:3338-3340.
    [19]Y.F. Chang, Z.P. Yang, Y.T. Hou, Z.H. Liu and Z.L. Wang. Effect of Li content on the phase structure and electrical properties of lead-free (K0.46-x/2Na0.54-x/2Lix)(Nb0.76Ta0.20Sb0.04)O3 ceramics. Applied Physics Letters,2007,90:232905.
    [20]N.M. Hagh, B. Jadidian and A. Safari. Property-processing relationship in lead-free (K,Na,Li)NbO3-solid solution system. Journal of Eelectroceramics,2007,18:339-346.
    [21]D.M. Lin, K.W. Kwok, K.H. Lam and H.L.W. Chan. Structure, piezoelectric and ferroelectric properties of Li- and Sb-modified K0.5Na0.5NbO3 lead-free ceramics. Journal of Physics D:Applied Physics,2007,40:3500-3505.
    [22]J.G. Wu, Y.Y. Wang, D.Q. Xiao, J.G. Zhu, P. Yu, L. Wu and W.J. Wu. Piezoelectric properties of LiSbO3-modified (K0.48Na0.52)NbO3 lead-free cereamics. Japanese Journal of Applied Physics, 2007,46:7375-7377.
    [23]D.M. Lin, K.W. Kwok, H.Y. Tian and H.L.W. Chan. Phase transitional and electrical properties of (Na1-xKx)(Nb1-ySby)O3 lead-free piezoelectric ceramics with a MnO2 sintering aids. Journal of the American Ceramic Society,2007,90:1458-1462.
    [24]J.L. S. Emeterio. Determination of electromechanical coupling factors of low Q piezoelectric resonators operating in stiffened modes. IEEE Transactions on Ultrasonics, Ferroelectrics, and Freuqency Control,1997,44:108-113.
    [25]D. Schutz, M. Deluca, W. Krauss, A. Feteira, T. Jackson and K. Reichmann. Lone-pair-induced covalency as the cause of temperature-and field-induced instabilities in bismuth sodium titanate. Advanced Functional Materials,2012,22:2285-2294.
    [26]R.D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A,1976,32:751-767.
    [27]M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo and S. Hirano. Procesisng and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. Journal of the American Ceramic Society,2005,88:1190-1196.
    [28]A.K. Singh, S.K. Mishra, Ragini, D. Pandey, S. Yoon, S. Baik and N. Shin. Origin of high piezoelectric response of Pb(ZrxTii-x)O3 at the morphotropic phase boundary:role of elastic instability. Applied Physics Letters,2008,92:022910.
    [29]Ke Wang and J.F. Li. Domain engineering of lead-free Li-modified (K,Na)NbO3 polycrystals with highly enhanced piezoelectricity. Advanced Functional Materials,2010,20:1924-1929.
    [1]B.贾菲等.压电陶瓷.科学出版社,1979.
    [2]R.Z. Zuo, J. Fu, D.Y. Lv and Y. Li. Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. Journal of the American Ceramic Society,2010,93:2783-2787.
    [3]R.Z. Zuo, J. Fu and D.Y. Lv. Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48-xLix)(Nb1-x-ySbyTax)03 system. Journal of the American Ceramic Society,2009, 92:283-285.
    [4]R.Z. Zuo, C. Ye and X.S. Fang. Dielectric and piezoelectric properties of lead free Na0.5K0.5NbO3-BiScO3 ceramics. Japanese Journal of Applied Physics,2007,46:6733-6736.
    [5]R.Z. Zuo, C. Ye and X.S. Fang. Na0.5K0.5NbO3-BiFeO3 lead-free piezoelectric ceramics. Journal of Physics and Chemistry of Solids,2008,69:230-235.
    [6]R.Z. Zuo, D.Y. Lv, J. Fu, Y. Liu and L.T. Li. Phase transition and electrical properties of lead free (Na0.5K0.5)NbO3-BiAlO3 ceramics. Journal of Alloys and Compounds,2009,476:836-839.
    [7]R.P. Wang, H. Bando and M. Itoh. University in phase diagram of (K,Na)NbO3-MTiO3 solid solutions. Applied Physics Letters,2009,95:092905.
    [8]H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Y. Li and Z.B. Pei. Structure and electrical properties's investigation of (K0.5Na0.5)NbO3-(Bi0.5Na0.5)TiO3 lead-free piezoelectric ceramics. Journal of Physics D:Applied Physics,2008,41:085416.
    [9]H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Y. Li and Z.B. Pei. Polymorphic phase transition dependence of piezoelectric properties in (K0.5Na0.5)NbO3-(Bi0.5K0.5)TiO3 lead-free ceramics. Journal of Physics D:Applied Physics.2008,41:115413.
    [10]R.Z. Zuo, X.S. Fang, C. Ye and L.T. Li. Phase transitional behavior and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-(Bi0.5K0.5)TiO3 ceramics. Journal of the American Ceramic Society,2007,90:2424-2428.
    [11]R.Z. Zuo, X.S. Fang and C. Ye. Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3-(Bi0.5Na0.5)TiO3 ceramics. Applied Physics Letters,2007,90:092904.
    [12]Y.P. Guo, K. Kakimoto and H. Ohsato. Structure and electrical properties of lead-free (Na0.5K0.5)NbO3-BaTiO3 ceramics. Japanese Journal of Applied Physics,2004,43:6662-6666.
    [13]C.M. Lu, Q.S. Liu, J.B. Zuo and Q.C. Sun. Temperature stability of the Pb(Mn1/3Sb2/3)0.05Zr0.47Ti0.48O3 piezoelectric ceramics. Journal of Inorganic Materials,2012, 27:271-276.
    [14]X.L. Chao, Z.P. Yang, M.Y. Dong and G. Li. Fabrication, characteristics and temperature stability of Pb(Mg1/3Nb2/3)O3-Pb(Sbi/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr,Ti)O3 piezoelectric actuators. Sensors and Actuators A:Physical.2009,151:71-76.
    [15]A.X. Kuang and T.S. Chou. Study of the temperature stability of the PMMN quaternary systems piezoelectric ceramics. Ferroelectrics,1989,91:383.
    [16]W.F. Liu and X.B. Ren. Large piezoelectric effect in Pb-free ceramics. Physical Review Letters, 2009,103:257602.
    [17]R.P. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi and M. Itoh. Tuning the orthorhombic-rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate. Physica Status Solidi-Rapid Research Letters,2009,3:142-144.
    [18]S.D. Ross. The vibrational spectra of lithium niobate, barium sodium nobate and barium sodium tantalate. Journal of Physics C:Solid State Physics,1970,3:1785-1790.
    [19]J.A.B. Saip, E.R. Moor and A.L. Ccbrera. Raman study of phase transitions in KNbO3. Solid State Communications,2005,135:367-72.
    [20]M.R. Suchomel and P.K. Davies. Predicting the position of the morphotropic phase boundary in high temperature PbTiO3-Bi(B'B")O3 based dielectric ceramics. Journal of Applied Physics,2004, 96:4405-4410.
    [21]D.I. Bilc and D.J. Singh. Frustration of tilts and A-site driven ferroelectricity in KNbO3-LiNbO3 alloy. Physical Review Letters,2006,96:147602.
    [22]M.R. Suchomel and P.K. Davies. Enhanced tetragonality in (x)PbTiO3-(1-x)Bi(Zn1/2Ti1/2)O3 and related solid solution system. Applied Physics Letters,2005,86:262905.
    [23]D.M. Stein, M.R. Suchomel and P.K. Davies. Enhanced tetragonality in (x)PbTiO3-(1-x)Bi(B'B")O3 systems:Bi(Zn3/4W1/4)O3. Applied Physics Letters,2006,89:132907.
    [24]A.K. Kalyani, R. Garg and R. Ranjan. Competing A-site and B-site driven ferroelectric instabilities in the (1-x)PbTiO3-(x)BiAlO3 system. Applied Physics Letters,2009,94:202903.
    [25]M. Ghita and M. Fornari. Interplay between A-site and B-site drven instabilities in perovskites. Physical Review B,2005,72:054114.
    [26]R.Wordenseber, E. Hollmann, R. Kutzner and J. Schubert. Induced ferroelectricity in strained epitaxial SrTiO3 films on various substrates. Journal of Applied Physics,2007,102:0441019.
    [27]W. Zhang, D. Vanderbilt and K.M. Rabe. First-principles theory of ferroelectric phase transitions for perovskites:the case of BaTiO3. Physical Review B,1995,52:6301-6312.
    [28]D.E. Cox, B. Noheda, G. Shirane, Y. Uesu, K. Fujishiro and Y. Yamada. Universal phase diagram for high-piezoelectric perovskite systems. Applied Physics Letters,2001,79:400-403.
    [1]R.Z. Zuo, J. Fu, D.Y. Lv and Y. Liu. Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. Journal of the American Ceramic Society,2010,93:2783-2787.
    [2]R.Z. Zuo, J. Fu and D.Y. Lv. Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48-xLix)(Nb1-x-ySbyTax)O3 system. Journal of the American Ceramic Society,2009, 92:283-285.
    [3]R.Z. Zuo and J. Fu. Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics. Journal of the American Ceramic Society, 2011,94:1467-1470.
    [4]C.W. Ahn, C.S. Park, D. Viehland, S. Nahm, D.H. Kang, K.S. Bae and S. Priya. Correlation between phase transitions and piezoelectric properties in lead-free (K,Na,Li)NbO3-BaTiO3 ceramics. Japanese Journal of Applied Physics,2008,47:8880-8883.
    [5]T. Takenaka, K. Maruyama and K. Sakata. (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics. Japanese Journal of Applied Physics,1991,30:2236-2239.
    [6]K. Uchino and S. Nomura. Critical exponents of the dielectric constants in diffused phase transition crystals. Ferroelectrics,1982,44:55-61.
    [7]R.Z. Zuo, J. Rodel, R.Z. Chen and L.T. Li. Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. Journal of the American Ceramic Society,2006, 89:2010-2015.
    [8]S.J. Zhang, R. Xia, T.R. Shrout, G.Z. Zang and J.F. Wang. Characterization of lead free (Ko.sNao.5)Nb03-LiSb03 piezoceramic. Solid State Communications,2007,141:675-679.
    [9]W.W. Cao and L.E. Cross. Theoretical model for the morphotropic phase boundary in lead zirconate-lead titanate solid solution. Physical Review B,1993,47:4825-4830.
    [10]W.W. Cao and L.E. Cross. The ratio of rhombohedral and tetragonal phases on the morphotropic phase boundary in lead zirconate titanate. Japanese Journal of Applied Physics,1992, 31:1399-1402.
    [11]H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu and Z.B. Pei. An approach to further improve piezoelectric properties of (K0.5Na0.5)NbO3-based lead-free ceramics. Applied Physics Letters,2007, 91:202907.
    [12]J.G. Wu, D.Q. Xiao, Y.Y. Wang, W.J. Wu, B. Zhang, J. Li and J.G. Zhu. CaTiO3-modified [(K0.5Na0.5)0.94Li0.06](Nb0.94Sb0.06)O3 lead-free piezoelectric ceramics with improved temperature stability. Scripta Materialia,2008,59:750-752.
    [13]S.J. Zhang, R. Xia and T.R. Shrout. Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range. Applied Physics Letters,2007,91:132913.
    [14]E. Hollenstein, D. Damjanovic and N. Setter. Temperature stability of the piezoelectric properties of Li-modified KNN ceramics. Journal of the European Ceramic Society,2007, 27:4093-4097.
    [1]K. Uchino. Ferroelectric Devices. Marcel Dekker, New Yord,2000.
    [2]J.F. Scott and C.A. Araujo. Ferroelectric memories. Science,1989,246:1400.
    [3]P. Bintachitt, S. Jesse, D. Damjanovic, Y. Han, I.M. Reaney, S.Trolier-Mckinstry and S.V. Kalinin. Collective dyanmics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics. Proceeding of the National Academy of Science of the United States of American, 2010,107:7219-7224.
    [4]D.A. Hall. Nonlinearity in piezoelectric ceramics. Journal of Materials Science,2001, 36:4575-4601.
    [5]D. Damjanovic and M. Demartin. The Rayleigh law in piezoelectric ceramics. Journal of Physics D:Applied Phyiscs,1996,29:2057-2060.
    [6]Y.H. Shin, I. Grinberg, I.-W. Chen and A.M. Rappe. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature,2007,449:881.
    [7]D.P. Chen and J.-M. Liu. Dynamic hysteresis of tetragonal ferroelectrics:the resonance of 90°-domain switching. Applied Physics Letters,2012,100:062904.
    [8]B.K. Chakrabarti and M. Acharyya. Dynamic transitions and hysteresis. Review Modern Physics,1999,71:847.
    [9]D. Viehland and J.F. Li. Kinetics of polarization reversal in 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3: heterogeneous nucleation in the vicinity of quenched random fields. Journal of Applied Physics, 2001,90:2995.
    [10]C. Jullian, J.F. Li and D. Viehland. Polarization dynamics over broad time and field domains in modified ferroelectrics. Applied Physics Letters,2003,83:1196.
    [11]Y.Y. Guo, T. Wei, Q.Y. He and J.-M. Liu. Dynamic hysteresis scaling of ferroelectric Pb0.9Ba0.1(Zr0.52Ti0.48)O3 thin films. Journal of Physics:Condensed Matter,2009,21:485901.
    [12]S. Gupta and S. Priya. Ferroelectric properties and dynamic scaling of<100> oriented (K0.5Na0.5)NbO3 single crystals. Applied Physics Letters,2011,98:242906.
    [13]R. Yimnirun, R. Wongmaneerung, S. Wongsaenmai, A. Ngamjarurojana, S. Ananta and Y. Laosiritaworn. Dynamic hysteresis and scaling behavior of hard lead zirconate titanate bulk ceramics. Applied Physics Letters,2007,90:112908.
    [14]G. Yu, X.L. Dong, G.S. Wang, F. Cao, X.F. Chen and H.C. Nie. Three-stage evolution of dynamic heteresis scaling behavior in 63PbTiO3-37BiScO3 bulk ceramics. Journal of Applied Physics,2010,107:106102.
    [15]X.B. Ren. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nature Materials,2004,3:91.
    [16]D.M. Lin, K.W. Kwok and H.L.W. Chan. Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Applied Physics Letters,2007,90:232903.
    [17]P.V. Lambeck and G.H. Jonker. The nature of domain stabilization in ferroelectric perovskites. Journal of Physics Chemistry of Solids,1986,47:453.
    [18]Y.H. Kim and J.J. Kim. Scaling behavior of an antiferroelectric hysteresis loop. Physical Review B,1997,55:R11933.
    [19]X.F. Chen, F. Cao, H.L. Zhang, G. Yu, G.S. Wang, X.L. Dong, Y. Gu, H.L. He and Y.S. Liu. Dynamic hysteresis and scaling behavior of energy density in Pbo.99Nbo.o2[(Zr0.60Sn0.40)0.94Ti0.05]03 antiferroelectric bulk ceramics. Journal of the American Ceramic Society,2012,95:1163.
    [20]D.A. Ochoa, J.E. Garica, R. Perez, V. Gomis, A. Albareda, F. Rubio-Marcos and J.F. Fernandez. Extrinsic contribution and non-linear response in lead-free KNN-modified piezoceramics. Journal of Physics D:Applied Physics,2009,42:025402.
    [21]B. Peng, Z.X. Yue and L.T. Li. Evaluation of domain wall motion during polymorphic phase transition in (K,Na)NbO3-based piezoelectric ceramics by nonlinear response measurements. Journal of Applied Physics,2011,109:054107.
    [22]K. Kobayashi, K. Hatano, Y. Mizuno and C.A. Randall, Rayleigh behavior in the lead free piezoelectric Lix(Nao.5Ko.5)i-xNb03 ceramics. Applied Physics Express,2012,5:031501.
    [23]R. Theissmann, L.A. Schmitt, J. Kling, R. Schierholz, K.A. Schonau, H. Fuess, M. Knapp, H. Kungl and M.J. Hoffmann. Nanodomains in morphotropic lead zirconate titanate ceramics:On the origin of the strong piezoelectric effect. Journal of Applied Physics,2007,102:024111.
    [24]G.A. Rossetti and A.G. Khachaturyan. Inherent nanoscale structural instabilities near morphotropic boundaries in ferroelectric solid solutions. Applied Physics Letters,2007,91:072909.
    [25]G.A. Rossetti, A.G. Khachaturyan, G. Akcay and Y. Ni. Ferroelectric solid solutions with morohotropic boundaries:Vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. Journal of Applied Physics,2008,103:114113.
    [26]K. Yako, H. Kakemoto, T. Tsurumi and S. Wada. Domain size dependence of d33 piezoelectric properties for barium titanate single crystals with engineered domain configurations. Materials Science and Engineering B,2005,120:181-185.
    [27]R. Ahluwalia, T. Lookman, A. Saxena and W.W. Cao. Domain-size dependence of piezoelectric properties of ferroelectrics. Physical Review B,2005,72:014112.
    [28]R.E. Eitel, T.R. Shrout and C.A. Randall. Nonlinear contributions to the dielectric permittivity and converse piezoelectric coefficient in piezoelectric ceramics. Journal of Applied Physics,2006, 99:124110.
    [29]Q.M. Zhang, W.Y. Pan, S.J. Jang and L.E. Cross. Domain wall excitations and their contributions to the weak-signal response of doped lead zirconate titanate ceramics. Journal of Applied Physics,1988,64:6445-6451.
    [30]J.E. Garica, R. Perez, D.A. Ochoa, A. Albareda, M.H. Lente and J.A. Eiras. Evaluation of domain wall motion in lead zirconate titanate ceramics by nonlinear response measurements. Journal of Applied Physics,2008,103:054108.
    [31]A. Bernal, S.J. Zhang and N. Bassiri-Gharb. Effects of orientation and composition on the extrinsic contributions to the dielectric response of relaxor-ferroelectric single crystals. Applied Physics Letters,2009,95:142911.
    [32]G. Arlt. Microstructure and domain effects in ferroelectric ceramics. Ferroelectrics,1989, 91:3-7.
    [33]H.R. Zeng, H.F. Yu, R.Q. Chu, G.R. Li, H.S. Luo and Q.R. Yin. Spatial inhomogeneity of ferroelectric domain structure in Pb(Mg1/3Nb2/3)O3-30%PbTiO3 single crystals. Materials Letters, 2005,59:238-240.
    [34]L.A. Schmitt, K.A. Schonau, R. Theissmann, H. Fuess, H. Kungl and M.J. Hoffmann. Composition dependence of the domain configuration and size in Pb(Zr1-xTix)O3 ceramics. Journal of Applied Physics,2007,101:074107.
    [35]H. Wang, J. Zhu, X.W. Zhang, Y.X. Tang and H.S. Luo. Domain structure of adaptive orthorhombic phase in [110]-poled Pb(Mg1/3Nb2/3)O3-30.5%PbTiO3 single crystals. Applied Physics Letters,2008,92:132906.
    [36]D. Damjanovic. A morphotropic phase boundary system based on polarization rotation and polarization extension. Applied Physics Letters,2010,97:062906
    [37]A.G. Khachaturyan. Ferroelectric solid solutions with morphotropic boundary:Rotational intability of polarization, metasbable coexistence of phases and nanodomains adaptive states. Philosophical Magazine,2010,90:37-60.
    [38]W.W. Cao and C.A. Randall. Grain size and domain size relations in bulk ceramic ferroelectric materials. Journal of Physics and Chemistry of Solids,1996,57:1499-1505.
    [39]T. Sluka, A.K. Tagantsev, D. Damjanovic, M. Gureev and N. Setter. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nature Communications, 2011,3:748.
    [40]A.A. Bokov and Z.-G. Ye. Recent progree in relaxor ferroelectrics with perovskite structure. Journal of Materials Science,2006,41:31-52.
    [41]K. Uchino and S. Nomura. Critical exponents of the dielectric constants in diffused phase transition crystals. Ferroelectrics,1982,44:55-61.
    [42]D. Viehland, S.J. Jang, L.E. Cross and M. Wuttig. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. Journal of Applied Physics,1990,68:2916-2921.
    [43]A.K. Tanantsev. Vogle-Fulcher relationship for the dielectric permittivity of relaxor ferroelectrics. Physical Review Letters,1994,72:1100-1103.
    [44]R. Pirc and R. Blinc. Vogel-Fulcher freezing in relaxor ferroelectrics. Physical Review B,2007, 76:020101(R).
    [45]X.H. Dai, Z. Xu and D. Viehland. Normal to relaxor ferroelectric transformations in lanthanum-modified tetragona-structured lead zirconate titanate ceramics. Journal of Applied Physics,1996,79:1021-1026.
    [46]S.M. Gupta, J.F. Li and D. Viehland. Coexistence of relaxor and normal ferroelectric phases in morphotropic phase boundary compositions of lanthanum-modified lead zirconate titanate. Journal of the American Ceramic Society,1998,81:557-564.
    [47]W. Chen, X. Yao and X.Y. Wei. Tunability and ferroelectric relaxor properties of bismuth strontium titanate ceramics. Applied Physics Letters,2007,90:182902.
    [48]V. Koval, C. Alemany, J. Briancin, H. Brunckova and K. Saksl. Effect of PMN mofidication on structure and electrical response of xPMN-(1-x)PZT ceramic systems. Journal of the European Ceramic Society,2006,89:202-209.
    [49]P.K. Davies and M.A. Akbas. Chemical order in PMN-related relaxors:structure, stability, modification, and impact on properties. Journal of Physics and Chemistry of Solids,2000, 61:159-166.
    [50]B.P. Burton, E. Cockayne and U.V. Waghmare. Correlations between nanoscale chemical and polar order in relaxor ferroelectrics and the lenthscale for polar nanoregions. Physical Review B, 2005,72:064113.
    [51]X.H. Zhu, J.M. Zhu, S.H. Zhou, Q. Li, Z.Y. Meng, Z.G. Liu and N.B. Ming. Domain morphology evolution associated with the relaxor-normal ferroelectric transition in the Bi- and Zn-modified Pb(Ni1/3Nb2/3)O3-PbZrO3-PbTiO3 system. Journal of the European Ceramic Society, 2000,20:1251-1255.
    [52]M.S. Yoon and H.M. Jang. Relaxor-normal ferroelectric transition in tetragonal-rich field of Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3 system. Journal of Applied Physics,1995,77:3991-4001.
    [53]V. Dorcet and G. Trolliard. A transmission electron microscopy study of the A-site disordered perovskite Na0.5Bi0.5TiO3. Acta Materialia,2008,56:1753-1761.
    [54]C.W. Tai and Y. Lereah. Nanoscale oxygen octahedral tilting in 0.90(Bi1/2Na1/2)TiO3-0.05(Bi1/2Ki/2)TiO3-0.05BaTiO3 lead-free perovskite piezoelectric ceramics. Applied Physics Letters,2009,95:062901.
    [55]D.I. Woodward, J. Knudsen and I.M. Reaney. Review of crystal and domain structures in the PbZrxTi1-xO3 solid solution. Physical Review B,2005,72:104110.
    [56]D. Viehland. Transmission electron microscopy study of high-Zr-content lead zirconate titanate.Physical Review B,1995,52:778-791.
    [1]W.W. Cao and L.E. Cross. Theoretical model for the morphotropic phase boundary in lead-zirconate-lead titanate solid solution. Physical Review B,1993,47:4825-4830.
    [2]B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross and S.-E. Park. A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Applied Physics Letters,1999, 74:2059-2061.
    [3]H.X. Fu and R.E. Cohen. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature,2000,403:281-283.
    [4]D. Vanderbilt and M.H. Cohen. Monoclinic and triclinic phases in high-order Devonshire theory. Physical Review B,2001,63:094108.
    [5]R. Guo, L.E. Cross, S.-E. Park, B. Noheda, D.E. Cox and G. Shirane. Origin of the high piezoelectric response in PbZr1-xTixO3. Physical Review Letters,2000,84:5423-5426.
    [6]M. Hinterstein, J. Rouquette, J. Haines, Ph. Papet, M. Knapp, J. Glaum and H. Fuess. Structural description of the macroscopic piezo- and ferroelectric properties of lead zirconate titanate. Physica Review Letters,2011,107:077602.
    [7]B. Noheda, D.E. Cox, G. Ghirane, S.-E. Park, L.E. Cross and Z. Zhong. Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3. Physical Review Letters, 2001,86:3891-3894.
    [8]B. Noheda, Z. Zhong, D.E. Cox, G. Shirane, S.-E. Park and P. Rehrig. Electric-field-induced phase transitions in rhombohedral Pb(Zn1/3Nb2/3)i-xTixO3. Physical Review B,2002,65:224101.
    [9]马礼敦,杨福家.同步辐射应用概论(第二版).上海:复旦大学出版社,2008.
    [10]M.P. Lemeshko, E.S. Nazarenko, A.A. Gonchar, L.A. Reznichenko, T.I. Nedoseykina, A.A. Novakovich, O. Mathon, Y. Joly and R.V. Vedrinskii. EXAFS studies of the local atomic structure of the lead-free piezoelectric ceramics KxNa1-xNbO3 over the temperature range 10-1023 K. Physical Review B,2007,76:134106.
    [11]V.A. Shuvaeva, D. Zekria, A.M. Glazer, Q. Jiang, S.M. Weber, P. Bhattacharya and P.A. Thomas. Local structure of the lead-free relaxor ferroelectric (KxNa1-x)0.5Bi0.5TiO3. Physical Review B,2005,71:174114.
    [12]K. Sato, T. Miyanaga, S. Ikeda and D. Diop. SAFS study of local structure change in perovskite titanates. Physica Scripta,2005, T115:359-361.
    [13]E.A. Stem. Character of order-disorder and displacive components in barium titanate. Physical Review Letters,2004,93:037601.
    [14]V.A. Shuvaeva, K. Yanagi, Y. Yagi, K. Sakaue and H. Terauchi. Local structure and nature of phase transitions in KNbO3. Solid State Communications,1998,106:335-339.
    [15]E.A. Stern and Y. Yacoby. Structural disorder in perovskite ferroelectric crystals as revealed by XAFS. Journal of Physics and Chemistry of Solids,1996,57:1449-1455.
    [16]N. Sicron, B. Ravel, Y. Yacoby, E.A. Stern, F. Dogan and J.J. Rehr. Nature of the ferroelectric phase transition in PbTiO3. Physical Review B,1994,50:13168-13180.
    [17]N. de Mathan, E. Prouzet, E. Husson and H. Dexpert. A low-temperature extended x-ray absorption study of the local order in simple and complex perovskites:Ⅰ. Potassium niobate. Journal of Physics:Condensed Matter,1993,5:1261-1270.
    [18]O. Hanske-Petitpierre, Y. Yacoby, J. Mustre de Leon, E.A. Stem and J.J. Rehr. Off-center displacement of the Nb ions below and above the ferroelectric phase transition of KTa0.91Nb0.09O3. Physical Review B,1991,44:6700-6707.
    [19]A. Kodre, J. Tellier, I. Arcon, B. Malic and M. Kosec. Extended x-ray absorption fine structure study of phase transitions in the piezoelectric perovskite K0.5Na0.5NbO3. Journal of Applied Physics, 2009,105:113528.
    [20]M.P. Lemeshko, E.S. Nazarenko, A.A. Gonchar, L.A. Reznichenko, T.I. Nedoseykina, A.A. Novakovich, O. Mathon, Y. Joly and R.V. Vedrinskii. EXAFS studies of the local atomic structure of the lead-free piezoelectric ceramics KxNa1-xNbO3 over the temperature range 10-1023 K. Physical Review B,2007,76:134106.
    [21]J. Fu, R.Z. Zuo, S.C. Wu, J.Z. Jiang, L. Li, T.Y. Yang, X.H. Wang and L.T. Li. Electric field induced intermediate phase and polarization rotation path in alkaline niobate based piezoceramics close to the rhombohedral and tetragonal phase boundary. Applied Physics Letters,2012, 100:122902.
    [22]M. Budimir, D. Damjanovic and N. Setter. Piezoelectric response and free-energy instability in the perovskite crystals BaTiO3, PbTiO3, and Pb(Zr,Ti)O3. Physical Review B,2006,73:174106.
    [23]Z.G. Wu and R.E. Cohen. Pressure-induced anomalous phase transitions and colossal enhancement of piezoelectricity in PbTiO3. Physical Review Letters,2005,95:037601.
    [24]D. Viehland, A. Amin and J.F. Li. Piezoelectric instability in <011>-oriented Pb(B1/3'B2/3")O3-PbTiO3 crystals. Applied Physics Letters,2001,79:1006.
    [25]M.D. Fontana, G. Metrat, J.L. Servoin and F. Gervais. Infrared spectroscopy in KNbO3 through the successive ferroelectric phase transitions. Journal of Physics C:Solid State Physics, 1984,17:483-514.
    [26]D. Schutz, M. Deluca, W. Krauss, A. Feteira, T. Jackson and K. Reichmann. Lone-pair-induced covalency as the cause of temperature-and field-induced instabilities in bismuth sodium titanate. Advanced Functional Materials,2012,22:2285-2294.
    [27]K. Kakimoto, K. Akao, Y.P. Guo and H. Ohsato. Raman scattering study of piezoelectric (Na0.5K0.5)NbO3-LiNbO3 ceramics. Japanese Journal of Applied Physics,2005,44:7064-7067.
    [28]K. Kakimoto, K. Akao, Y.P. Guo and H. Ohsato. Raman scattering study of piezoelectric (Na0.5K0.5)NbO3-LiNbO3 ceramics. Japanese Journal of Applied Physics,2005,44:7064-7067.
    [29]Y. Shiratori, A. Magrez, C. Pithan. Phase transition of KNaNb2O6 induced by size effect. Chemical Physics Letters,2004,391:288-292.
    [30]Y.Y. Li, Q.H. Liu, T. Yao, Z.Y. Pan, Z.H. Sun, Y. Jiang, H. Zhang, Z.J. Pan, W.S. Yan and S.Q. Wei. Hexagonal BaTi1-xCoxO3 phase stabilized by Co dopants. Applied Physics Letters,2010, 96:091905.
    [31]J.L. Jone, E. Aksel, G. Tutuncu, T.M. Usher, J. Chen, X.R. Xing and A.J. Studer. Domain wall and interphase boundary motion in a two-phase morphotropic phase boundary ferroelectric: Frequency dispersion and contribution to piezoelectric and dielectric properties. Physical Review B, 2012,86:024104.
    [32]温保松,严鸿萍,马佳华.PMN基电致伸缩陶瓷电致应变温度特性.无机材料学报.2000,15:1025-1029.
    [1]D. Vanderbilt and M.H. Cohen. Monoclinic and triclinic phases in higher-order Devonshire theory. Physical Review B,2001,63:094108.
    [2]B. Noheda. Structure and high-piezoelectricity in lead oxide solid solutions. Current Opinion in Solid State and Materials Science.2002,6:27-34.
    [3]B. Noheda, D.E. Cox, G. Shirane, S.-E. Park, L.E. Cross and Z. Zhong. Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3. Physical Review Letters, 2001,86:3891-3894.
    [4]M. Hinterstein, J. Rouquette, J. Haines, Ph. Papet, M. Knapp, J. Glaum and H. Fuess. Structural description of the macroscopic piezo-and ferroelectric properties of lead zirconate titanate. Physical Review Letters,2011,107:077602.
    [5]B.贾菲等.压电陶瓷.科学出版社,1979.
    [6]D.W. Baker, P.A. Thomas, N. Zhang and A.M. Glazer. A comprehensive study of the phase diagram of KxNa1-xNbO3. Applied Physics Letters,2009,95:091903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700