用户名: 密码: 验证码:
留高茬式玉米收获机切割部件的仿生设计及其切割机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着普通耕作方式和秸秆焚烧带来的土地流失加剧、土壤肥力不断下降、空气雾霾污染加重,人们逐渐意识到保护耕地、保护环境的重要性和紧迫性。针对农作物秸秆作为废弃物或者直接在田间焚烧带来的资源浪费和土壤环境污染,人们对秸秆的处理及利用方式提出了很多建议。保护性耕作以保护耕地为主要目标,并能实现农作物稳产高产且可持续发展的一种先进的农业耕作技术,越来越得到人们的重视,重要的是其对秸秆的还田处理得到了人们的广泛认可,因此在越来越多的国家和地区均积极推行保护性耕作。保护性耕作的内涵除了免耕少耕之外还包括秸秆还田,人们普遍认为秸秆还田能有效增加土壤有机质含量,疏松土壤并能增加土壤蓄水保墒的能力,并且具有促进农作物增收的作用。而且将秸秆进行覆盖还田还有明显的防风固土的作用,能有效减缓土壤水蚀和风蚀现象。但是,农作物秸秆也是重要的生物质能源,在不可再生资源日益枯竭的情况下,生物质能源越来越受到人们的重视。随着秸秆的综合利用技术越来越成熟,越来越多的秸秆将被综合利用,而不能简单全部进行还田,特别是东北地区,寒冷的天气很难保证秸秆有效的腐烂进行有机质还田。同时,为了满足保护性耕作对秸秆还田的农艺要求,秸秆应该一部分进行综合利用,另外部分秸秆进行还田。在此基础上,推广留高茬覆盖还田的保护性耕作模式是合适的。
     由此可知,针对东北地区收获玉米时较为合理的农艺是:在玉米收获的同时对玉米秸秆进行留高茬切割,留高茬作业(留茬高度为300~500mm)满足保护性耕作秸秆还田的要求,同时将切割下的秸秆进行收集打捆作业,然后进行秸秆的综合利用。因此,秸秆的切割是秸秆还田和秸秆进行综合利用之前必须完成的作业。目前,玉米收获机在收获时主要是将玉米秸秆全部粉碎或者不处理,还没有能够留高茬作业的机型。由此,本文研究重点放在了玉米收获机的留高茬作业切割部件设计上,尤其针对切割使用的锯片进行了仿生设计。
     (1)本文设计了能够自动留高茬的玉米联合收获机切割机构,该机构采用圆盘回转式切割,切割装置的动力来源为发动机动力输出轴,发动机动力输出轴的动力经传动箱和链轮传递到切割装置上。通过自制夹持玉米秸秆的装置进行了切割试验,结果表明该留高茬切割装置设计合理,能够达到留高茬的设计要求。
     (2)本文作者对切割机构的切割部件进行了仿生设计。自然界中,切割现象是非常普遍的,很多动物或者昆虫将食物撕裂或者切断(咬断)都属于切割的范畴,如以蛀食打洞危害的蠹虫、啮齿类的老鼠甚至吃植物叶茎的昆虫等。而以植物为主食的昆虫类,棉蝗是典型的代表,经过漫长的进化历程其具有优良的进食口器(咀嚼式口器),可以有效地取食植物的茎叶。通过观察发现棉蝗在进食时可以有效的切断食物。因此,本文作者对棉蝗的口器进行了观察,尤其对具有切割功能的上颚切齿叶部分进行了深入研究。将棉蝗上颚样品在体式显微镜下拍照观察,将拍到的照片用Matlab软件进行处理并提取出上颚切齿叶的外轮廓点的坐标,通过Origin软件进行曲线拟合,将该轮廓切齿叶部分拟合成5段曲线,以该拟合后的曲线为原型进行切割部件的仿生设计。
     (3)基于仿生原型先后设计了直线型和圆盘型2种类型的仿生切割部件,并以普通锯齿的锯条和锯片为对照进行了玉米秸秆的切割试验。
     对于直线型的仿生锯齿锯条,以万能试验机为动力拉动直线型仿生锯齿锯条切割固定的玉米秸秆,在空间直角坐标系中将直线型锯条放置在YOZ平面且与Z轴成12度夹角固定在夹具中与万能试验机横梁相连,玉米秸秆在XOZ平面水平放置并固定在自制的夹具中与万能试验机基座相连。直线型锯条以2mm/s的速度从秸秆下方向上运动切割玉米秸秆,通过计算机软件实时记录了切割过程的切割力的大小变化和锯条的位移,切割试验独立重复12次。
     通过和普通锯齿锯条的对比,结果表明仿生锯齿锯条有显著的降低切割力的作用(P <0.05),普通锯齿锯条切割一根玉米秸秆的平均切割力为71.78N,而仿生锯齿锯条的平均切割力为51.56N,降低了28.17%。相对于普通锯齿锯条,仿生锯齿锯条切割一根玉米秸秆所消耗的能量从10.27J降低为8.95J。
     通过视频慢放可以看出普通锯齿锯条切割玉米秸秆时主要是齿尖钩住一部分玉米秸秆,随着锯条的持续拉动,剥离秸秆后逐渐被拉断,而仿生锯齿锯条切割时除了拉断之外主要是靠切齿的滑切作用切断秸秆。
     (4)对于圆盘型的仿生锯齿锯片,由于不能使用万能试验机进行试验,本文作者设计了玉米秸秆切割试验台。该试验台通过电动机带动圆盘锯片进行秸秆的切割试验,通过扭矩传感器测量切割过程中的锯片切割扭矩变化,通过调节皮带轮的传动比改变圆盘锯片的切割速度,通过直流电机改变玉米秸秆的运动速度,通过拉力传感器测定切割过程的拉动玉米秸秆的拉力,并通过动态信号采集分析系统进行数据采集处理。试验考察了圆盘锯片的切割速度、玉米秸秆的前进速度、切割倾角3个因素对切割力、切割功耗、秸秆拉力和切割时间等的影响。试验进行了全因素试验,每个试验独立重复3次,试验表明:各因素对切割扭矩、切割功率及切割功耗均有显著性的影响(P <0.05)。
     在切割转速为600rpm、切割倾角为75°、秸秆牵引速度为1.3m/s的条件下,仿生锯齿锯片和普通锯齿锯片进行了切割玉米秸秆的对比试验,试验独立重复20次。结果表明仿生锯齿锯片和普通锯齿锯片均可以实现有效切割,普通锯齿锯片切割玉米秸秆的平均切割扭矩为1.691±0.226N·m,而使用齿尖采用交错双面磨刃的仿生锯齿锯片B切割玉米秸秆时的平均切割扭矩为1.439±0.214N·m,相对于普通锯齿锯片的切割降低了14.89%。普通锯齿锯片切割玉米秸秆消耗的能量为34.034±5.224J,而使用齿尖采用交错双面磨刃的仿生锯齿锯片B切割玉米秸秆有明显的降低能耗的作用,切割所需的能耗为27.741±6.181J,降低了18.49%,而切割时间没有显著性的变化。同时通过高速摄像进行切割过程观察,结果表明仿生锯齿锯片切割产生的碎屑较少使切割平面更为平整。
     (5)将圆盘型仿生锯齿锯片装置装到玉米收获机留高茬切割机构上,于2013年秋季在吉林大学农田试验场进行了田间收获和秸秆切割试验。试验结果表明:圆盘型仿生锯齿锯片能有效的切割玉米秸秆,无推倒现象发生,相对于普通锯齿锯片,具有留茬整齐的特点。在试验过程中没有发现拥堵的现象,对收获质量没有不良影响,证实了该留茬机构设计合理,同时能够满足保护性耕作留高茬的要求。田间试验结果表明玉米秸秆留茬的高度为399.5±24.9mm,在300~500mm之间,合格率为100%,由于受田间地块地貌及秸秆自然倒伏的影响,秸秆的切断率为93%。
     本文的研究内容来源于生产实际中遇到的问题,即玉米收获机收获玉米时如何实现留高茬,作者在原有的机型上设计了留高茬切割机构,通过试验证实了其合理性,同时运用仿生的方法进行了切割部件的仿生设计,玉米秸秆的切割试验表明仿生切割部件具有降低切割功耗的作用。因此,本文的研究内容在推广保护性耕作方面有一定的促进作用,另外仿生切割部件的设计在节能减排方面有重要的意义,为以后的切割部件的设计提供了参考。
With conventional tillage and straw burning caused soil erosion increasing,declining soil fertility, increased air pollution haze, people gradually realized that theimportance and urgency of protecting arable land and environment. Straw as waste ordirectly burn up brings waste of resources and environmental pollution of soil, andmany suggestions to deal with straw were bring up. Meanwhile conservation tillage asan advanced farming technology mainly to protect arable land as the main objective,and to achieve high-yield crops and sustainable development, obtained more and morepeople's attention, that important for straw back to field has been widely recognized bythe people, therefore more and more countries and regions are actively promotingconservation tillage. In addition to the connotation of conservation tillage for no-tillageand less-tillage, also includes straw back to field, it is widely believed straw caneffectively increase soil organic matter content, loose soil and can increase the capacityof the soil moisture conservation, and promote the crop yield. And the straw mulchingsolid earth could protect against wind, and effectively reduce soil water and winderosion phenomenon. However, crop stalks are also important sources of biomass, inthe case of non-renewable resources are depleted, and biomass energy obtained moreand more people’s attention. With the utilization technology of straw developed, moreand more utilization of straw will be used, but we cannot simply all be returning to thefield, especially in the Northeast, the cold weather is difficult to ensure effective stalkrotting increasing organic matter in field. Meanwhile, in order to meet conservationtillage on straw agronomic requirements, the paper advocates comprehensive utilizationof partial stalk, the other was put back to field. On this basis, the promotion of highstubble mulching conservation tillage mode is appropriate.
     It can be seen, when harvesting corn Northeast a more reasonable process is: whilethe corn harvest corn straw stubble cutting, leaving high stubble (stubble height of300~500mm) to meet conservation tillage straw requirements, while cutting down thestraw which would be bale collected, then utilization. So cutting the stalks must becompleted before the straw back to field and straw utilization operations. Currently, corn harvester mainly to smash all the corn stalks at harvest or no treatment, has notbeen able to stay high stubble operating models. Thus, this paper focused on the stubblecutting operating components of corn harvester, especially for the cutting blade carriedout using bionic design.
     (1)In a basis of the existing laboratory type4YZB-2corn combine harvester,removed the straw chopper off the device and designed the cutting stalk componentsunder snapping rolls. The cutting part uses the rotary disc cutting apparatus for cutting,the power source output shaft of the engine power, the power of the engine through thetransmission box and the power output shaft of the sprocket is transmitted to the cuttingdevice. Through self-made gripping device corn stalks were cut, results showed thatthe stubble cutting device reasonably designed to achieve high stubble designrequirements.
     (2)Atthesametimepartofthecuttingmechanismforcuttingwerebionicdesign.Nature, cutting phenomenon is very common, many animals or insects will tear or cutfood (biting) are all cutting areas, such as to endanger the silverfish eats holes, evenrodents mice and insects eat the leaf and stems. The plant-eating insects, especially thefamous locust plague of locusts is represented through a long evolutionary history ofits excellent eating mouthparts (chewing) can effectively feeding on stems and leavesof plants. The observation that when eating locusts can effectively cut off food.Therefore, mouthparts of locusts were observed, especially for the upper jaw with teethcut function. The locust’s palate samples observed under stereo microscope camera andtake photos with Matlab software for processing to extract the coordinates of the upperincisors, and the outer contour points by curve fitting software Origin, fitting into fivesegments curve. The fitting curve is the prototype of the bionic design cutting parts.
     (3)Based on the prototype linear and disc type bionic cut parts were designed,and traditional serrated blade as control, corn stalks were cut test.
     For linear bionic serrated blade, universal testing machine as the power to pullstraight serrated blade cutting fixed corn stalks, in the space of a Cartesian coordinatesystem in place at YOZ straight blade angle between the plane and the Z axis12degreesfixed in the fixture beams connected with universal testing machine, corn stalks in ahorizontal plane and fixed XOZ connected with the universal testing machine base inhomemade fixture. Straight blade speed of2mm/s cutting corn stalk from the bottomupward movement, in real time via computer software recorded the cutting force andthe displacement of saw blade, cutting test independently repeated12times.
     By contrast to conventional serrated blade, results showed bionic serrated blade significantly decrease the cutting force (P <0.05), using conventional serrated cuttingblade cutting corn stalks average force of71.78N, and the average cutting bionicserrated blade force of51.56N,28.17%cutting force was removed. Bionic serratedblade could reduce power consumption, compared with conventional serrated blade,bionic serrated blade cutting a stalk of corn consumed from10.27J reduced to8.95J.But for bionic serrated cutting blade, the cutting time is longer compared toconventional serrated blade, the average cutting time extended from37.52s to43.47s,17.83%extended cutting time.
     Through the slow motion video can be seen traditional serrated blade when cuttingcorn stalks are mainly part of the tooth tip hooked corn stalks, with the continuedpulling the blade gradually pulled straw after stripping off until cut off. Bionic serratedblade while cutting in addition to pull off the role mainly by sliding cut.
     (4)For disk bionic serrated blade, because it isn’t work using universal testingmachine to test, the author designed the corn stalk cutting test bench. The test rig drivenby an electric motor test disc blade for cutting corn stalk, the process of cutting bladecutting through the torque sensor to measure torque variation, by adjusting pulley gearratio change disc blade cutting speed, change of corn pulling velocity by continuouscurrent motor and measured the pull force by pulling the sensor, and data acquisitionand processing through dynamic signal acquisition and analysis system. Experimentalstudy of the circular saw blade cutting speed, corn stalks forward speed, and cuttingangle affecting the cutting force, cutting power, pulling force and cutting stalks of time.A full factorial experimental trials was conducted, each test was repeated three times,the test showed that the cutting time is not significantly different,the cutting torqueand the cutting power consumed have significant effects (P <0.05).
     Cutting speed is600rpm, cutting angle is75°, stalk pulling speed under1.3m/sconditions, bionic serrated blade and traditional serrated blade were used for cuttingcorn stalks comparative test, the test is repeated20times independently. The resultsshowed that the bionic serrated blade and traditional serrated blade can be achievedgeneral effective cutting, using traditional blade cutting corn stalks the mean cuttingtorque is1.691±0.226N·m, while the use of sharp teeth staggered double-sidedsharpening bionic serrated blade B cutting average cut corn stalks when torque is1.439±0.214N·m, relative to the traditional serrated blade cuts reduced14.89%.Traditionalblade cutting energy consumption of corn stalks is34.034±5.224J, use sharp teethstaggered double-sided sharpening bionic serrated blade B cutting corn stalkssignificantly reduce the energy consumption to27.741±6.181J,18.49%lower, and the cutting time is not significantly changed. While cutting through the high-speed camerato observe the process, the results showed that the debris generated by bionic serratedblade cutting corn stalk is less than traditional blade, which indicated the cutting planeis more flat.
     (5)Placetheserratedbladedisc bionicdevicetothecornharvest stubblecuttingmechanism, in the fall of2013at Jilin University, conducted a field test corn harvestingand cutting stalk tests. The test results showed that: Bionic serrated blade disc caneffectively cut corn stalks, no push over corn stalk phenomenon, as opposed to thetraditional serrated blade, with a stubble neat features. During the test no congestionphenomenon was found, no adverse effects on the quality of the harvest, stubble leavingparts confirmed the rational design of the original system does not have a negativeimpact on the harvest, and to meet the requirements of conservation tillage to remainhigh stubble. Field test results showed that the corn stalk stubble height of399.5±24.9mm, between300~500mm, with a pass rate of100%, due to the topography andnatural straw lodging affect, stalks cut ratio was93%.
     we try to solve the problem which come from actual production, namely, how toleave high stubble for corn harvester when harvesting corn, and designed the cuttingstalk components which was believed reasonableness. While the use of biomimeticapproach to the design of the bionic cut parts, cutting corn stalks tests showed bionicparts have reduced the cutting power consumption. Therefore, the research content ofthis paper are in terms of the promotion of conservation tillage, in addition to cuttingparts bionic design has important implications in terms of energy saving for the futuredesign of the cutting unit provides a reference.
引文
[1]祝大伟.不堪重负的黑土地[N].2013-08-25.
    [2]贾洪雷,马成林,李慧珍,等.基于美国保护性耕作分析的东北黑土区耕地保护[J].农业机械学报,2010,(10):28-34.
    [3]贾洪雷,马成林,刘昭辰,等.东北垄作三年轮耕耕作模式研究[C].中国农业机械学会2006年学术年会,中国江苏镇江,2006:7.
    [4]高焕文,李问盈,李洪文.中国特色保护性耕作技术[J].农业工程学报,2003,(03):1-4.
    [5]任露泉.地面机械脱附减阻仿生研究进展[J].中国科学(E辑:技术科学),2008,(09):1353-1364.
    [6]保护性耕作. http://www.baike.com/wiki/保护性耕作[M].百度百科.
    [7]滕义栋.应大力发展机械化保护性耕作[J].河北农机,2009,(03):16.
    [8]王俊安,殷国亮.浅析保护性耕作[J].甘肃农业,2011,(12):45+47.
    [9]严廷桂.西北地区保护性耕作技术的重要性[J].经济研究导刊,2011,(16):22-23.
    [10]张宗军,窦学诚.西北旱作农业区宜采用保护性耕作[J].现代农业科技,2010,(06):297+304.
    [11]马俊龙,王曦.谈机械化保护性耕作技术的实施[J].农业技术与装备,2008,(06):36+39.
    [12]费国盛.保护性耕作与环境保护分析报告[C]. Proceedings of the环境保护法制建设理论研讨会,中国陕西西安,2007:5.
    [13]陈银.银川平原节水型机械化保护性耕作技术研究[J].科学之友(B版),2008,(07):25-26+28.
    [14]陈继革.保护性耕作及其在我国发展的必要性[J].地理教育,2008,(01):20-21.
    [15]彭万臣.寒地黑土区宜实施保护性耕作[J].中国水土保持,2009,(01):10-13.
    [16]杨素.机械化保护性耕作技术研究[J].现代农业科学,2009,(04):110-111.
    [17]刘朝巍.玉米宽窄行交替休闲种植研究[D]:甘肃农业大学,2009.
    [18]夏萍,江家伍.机械化秸秆还田技术及配套机具(综述)[J].安徽农业大学学报,2001,(01):106-108.
    [19]毛罕平,陈翠英.秸秆还田机工作机理与参数分析[J].农业工程学报,1995,(04):62-66.
    [20]文立阁,李建桥,崔占荣.我国灭茬机具及其刀具的发展现状[J].农机化研究,2006,(05):10-13.
    [21]赵兰坡.施用作物秸秆对土壤的培肥作用[J].土壤通报,1996,(02):76-78+72.
    [22] Hooker B A, Morris T F, Peters R, Cardon Z G. Long-term effects of tillage andcorn stalk return on soil carbon dynamics [J]. Soil Sci Soc Am J,2005,69(1):188-196.
    [23]薛兰兰.秸秆覆盖保护性种植的土壤养分效应和作物生理生化响应机制研究[D]:西南大学,2011.
    [24]刘巽浩,王爱玲,高旺盛.实行作物秸秆还田促进农业可持续发展[J].作物杂志,1998,(05):2-6.
    [25]刘鹏程,丘华昌.不同方式秸秆还田培肥土壤的模拟试验[J].土壤肥料,1994,(06):19-23.
    [26]郑立臣,解宏图,张威,等.秸秆不同还田方式对土壤中溶解性有机碳的影响[J].生态环境,2006,(01):80-83.
    [27]颜丽,宋杨,贺靖,等.玉米秸秆还田时间和还田方式对土壤肥力和作物产量的影响[J].土壤通报,2004,(02):143-148.
    [28]范丙全,刘巧玲.保护性耕作与秸秆还田对土壤微生物及其溶磷特性的影响[J].中国生态农业学报,2005,(03):130-132.
    [29]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究[J].中国农业科学,1994,(06):41-49.
    [30]王笳,王树楼,丁玉川,等.旱地玉米免耕整秸秆覆盖土壤养分、结构和生物研究[J].山西农业科学,1994,(03):17-19.
    [31]卜玉山,苗果园,周乃健,等.地膜和秸秆覆盖土壤肥力效应分析与比较[J].中国农业科学,2006,(05):1069-1075.
    [32]卜玉山,苗果园,邵海林,等.对地膜和秸秆覆盖玉米生长发育与产量的分析[J].作物学报,2006,(07):1090-1093.
    [33]陈素英,张喜英,胡春胜,等.秸秆覆盖对夏玉米生长过程及水分利用的影响[J].干旱地区农业研究,2002,(04):55-57+66.
    [34]于舜章,陈雨海,周勋波,等.冬小麦期覆盖秸秆对夏玉米土壤水分动态变化及产量的影响[J].水土保持学报,2004,(06):175-178.
    [35]沈裕琥,黄相国,王海庆.秸秆覆盖的农田效应[J].干旱地区农业研究,1998,(01):48-53.
    [36]周凌云.秸秆覆盖对农田土壤物理条件影响的研究[J].农业现代化研究,1997,(05):56-58+65.
    [37]曾木祥,张玉洁.秸秆还田对农田生态环境的影响[J].农业环境与发展,1997,(01):1-7+48.
    [38]洪春来,魏幼璋,黄锦法,等.秸秆全量直接还田对土壤肥力及农田生态环境的影响研究[J].浙江大学学报(农业与生命科学版),2003,(06):40-46.
    [39]张志国,徐琪,R.L.Blevins.长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J].土壤学报,1998,(03):384-391.
    [40]吴婕,朱钟麟,郑家国,等.秸秆覆盖还田对土壤理化性质及作物产量的影响[J].西南农业学报,2006,(02):192-195.
    [41]李全起.秸秆覆盖节水效应研究[D]:山东农业大学,2004.
    [42]史央,蒋爱芹,戴传超,等.秸秆降解的微生物学机理研究及应用进展[J].微生物学杂志,2002,(01):47-50.
    [43]吴泠,何念鹏,周道玮.玉米秸秆改良松嫩盐碱地的初步研究[J].中国草地,2001,(06):35-39.
    [44] Li F H, Keren R. Calcareous Sodic Soil Reclamation as Affected by Corn StalkApplication and Incubation: A Laboratory Study [J]. Pedosphere,2009,19(4):465-475.
    [45]江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报,2001,(05):209-213.
    [46]王育红,姚宇卿,吕军杰.残茬和秸秆覆盖对黄土坡耕地水土流失的影响[J].干旱地区农业研究,2002,(04):109-111.
    [47] Wang T P, Zheng Z M. Wind Erosion Control by Liquefied Corn Stalk as a NovelSand-Fixing Agent [J]. Asian J Chem,2013,25(5):2637-2640.
    [48]朱瑞祥,薛少平,张秀琴,等.机械化玉米秸秆还田对土壤水肥状况的动态研究[J].农业工程学报,2001,(04):39-42.
    [49]马春梅,孙莉,唐远征,等.保护性耕作土壤肥力动态变化的研究—秸秆覆盖对土壤水分的影响(Ⅱ)[J].农机化研究,2006,(05):54-56.
    [50]马春梅,纪春武,唐远征,等.保护性耕作土壤肥力动态变化的研究——秸秆覆盖对土壤温度的影响[J].农机化研究,2006,(04):137-139.
    [51]李文革,李倩,贺小香.秸秆还田研究进展[J].湖南农业科学,2006,(01):46-48.
    [52]翟玲玲,潘莹玉.浅析生物质能[J].决策探索(下半月),2010,(07):45.
    [53]樊篱.农业废弃物直燃发电项目的风险研究[D]:华北电力大学(北京),2010.
    [54]毕于运,高春雨,王亚静,等.中国秸秆资源数量估算[J].农业工程学报,2009,(12):211-217.
    [55]生物质能. http://baike.baidu.com/view/40476.htm?func=retitle [M].百度百科.
    [56]刘奎明,贾文和,王贵.东辽县生物质能源利用前景展望[J].农村科学实验,2012,(08):8-9.
    [57]肖亮,宋国华.生物质能发展现状及前景分析[J].中国环境管理干部学院学报,2008,(04):35-39.
    [58]熊承永,李健,黄利宏.户用沼气池秸秆利用浅析[J].可再生能源,2003,(03):44-45+57.
    [59] Husseien M, Amer A A, El-Maghraby A, et al. A comprehensive characterizationof corn stalk and study of carbonized corn stalk in dye and gas oil sorption [J]. JAnal Appl Pyrol,2009,86(2):360-363.
    [60] Xiong S J, Ohman M, Zhang Y F, et al. Corn Stalk Ash Composition and ItsMelting (Slagging) Behavior during Combustion [J]. Energ Fuel,2010,244866-4871.
    [61] Li Z Y, Fu Y, Huang P, Zhang Y, et al. Isolation of Corn Stalk Rind Lignin fromBiorefinery Process Using Organic Acids [J]. Proceeding of the4th InternationalConference on Pulping, Papermaking and Biotechnology (Icppb '12), Vols I andIi,2012,325-329.
    [62] Li Y, Han Y M, Qin T F, Chu F X. Preparation of Polyurethane Foams Based onLiquefied Corn Stalk Enzymatic Hydrolysis Lignin [J]. J Biobased Mater Bio,2012,6(1):51-58.
    [63] Jarabo R, Monte M C, Fuente E, et al. Corn stalk from agricultural residue used asreinforcement fiber in fiber-cement production [J]. Ind Crop Prod,2013,43832-839.
    [64] He C, Yang Y Q, Jin Y C. Preparation of Concrete Water-Reducing Agent fromEnzymatic Hydrolysis Residue of Corn Stalk [J]. Research Progress in PaperIndustry and Biorefinery (4th Isetpp), Vols1-3,2010,1401-1404.
    [65] Rodriguez M, Rodriguez A, Bayer J, et al. Determination of Corn Stalk Fibers'Strength through Modeling of the Mechanical Properties of Its Composites [J].Bioresources,2010,5(4):2535-2546.
    [66] Flandez J, Gonzalez I, Resplandis J B, et al. Management of Corn Stalk Waste asReinforcement for Polypropylene Injection Moulded Composites [J].Bioresources,2012,7(2):1836-1849.
    [67] Lv G J, Wu S B, Yang G H, et al. Comparative study of pyrolysis behaviors ofcorn stalk and its three components [J]. J Anal Appl Pyrol,2013,104185-193.
    [68]陈小华,朱洪光.农作物秸秆产沼气研究进展与展望[J].农业工程学报,2007,(03):279-283.
    [69] Chen G Y, Zheng Z, Yang S G, et al. Experimental co-digestion of corn stalk andvermicompost to improve biogas production [J]. Waste Manage,2010,30(10):1834-1840.
    [70]张强,秦涛,张红艳,等.玉米秸秆的综合开发利用[J].玉米科学,2006,(02):168-169.
    [71] Behin J, Zeyghami M. Dissolving pulp from corn stalk residue and waste water ofMerox unit [J]. Chem Eng J,2009,152(1):26-35.
    [72]吕伟民,王宇,傅国红,等.玉米秸秆发酵生产燃料酒精[J].酿酒,2002,(05):84.
    [73]陈琳.农作物秸秆资源综合利用的战略研究[D]:南京林业大学,2007.
    [74]吴树栋.我国农作物秸秆综合利用现状[J].人造板通讯,2005,(08):1-4.
    [75]郑凤山,李月芬,丁占来.玉米秸秆制造刨花板的实验研究[J].人造板通讯,2002,(12):9-10+18.
    [76] Akgul M, Guler C, Uner B. Opportunities in utilization of agricultural residues inbio-composite production: Corn stalk (Zea mays indurata Sturt) and oak wood(Quercus Robur L.) fiber in medium density fiberboard [J]. Afr J Biotechnol,2010,9(32):5090-5098.
    [77]高德,常江,巩雪.玉米秸秆缓冲包装材料的研究[J].包装工程,2007,(01):27-29.
    [78]王丽红,柏雪源,易维明,等.玉米秸秆热解生物油特性的研究[J].农业工程学报,2006,(03):108-111.
    [79] Lv G J, Wu S B, Lou R. Characteristics of Corn Stalk Hemicellulose Pyrolysis ina Tubular Reactor [J]. Bioresources,2010,5(4):2051-2062.
    [80] Xing Y, Ma H C, Fan Y T, et al. Cellulose-hydrogen production from corn stalkbiomass by anaerobic fermentation [J]. Chinese Sci Bull,2009,54(8):1434-1441.
    [81] Xing Y, Fan S Q, Zhang J N, et al. Enhanced bio-hydrogen production from cornstalk by anaerobic fermentation using response surface methodology [J]. Int JHydrogen Energ,2011,36(20):12770-12779.
    [82]张茜,尚俐君.秸秆发电生态效益可观[J].华北电业,2005,(01):22-23.
    [83]刘首元,余英,赵碧光,等.我国秸秆发电产业化发展前景[J].水利电力机械,2007,(12):207-210.
    [84] Yang Y H. Research on Microbial Degradation of Corn Stalk [J]. Material andManufacturing Technology Ii, Pts1and2,2012,341-342221-225.
    [85] Wan T, Huang R Q, Zhao Q H, et al. Synthesis and swelling properties of cornstalk-composite superabsorbent [J]. J Appl Polym Sci,2013,130(1):698-703.
    [86] Fei C, Chen H Z. Absorption of ethanol by steam-exploded corn stalk [J].Bioresource Technol,2009,100(3):1315-1318.
    [87] Peng D, Lan Z L, Guo C L, et al. Application of cellulase for the modification ofcorn stalk: Leading to oil sorption [J]. Bioresource Technol,2013,137414-418.
    [88]阎文圣,陈颍西.对玉米秸秆综合利用的探讨[J].中国农机化,2003,(03):12-13+36.
    [89]崔明,赵立欣,田宜水,等.中国主要农作物秸秆资源能源化利用分析评价[J].农业工程学报,2008,(12):291-296.
    [90]汪海波,秦元萍,余康.我国农作物秸秆资源的分布、利用与开发策略[J].国土与自然资源研究,2008,(02):92-93.
    [91] Li X S, Lu B S, Li H L, et al. Production of Microbial Oils fermented by Two-stepFermentation with Corn stalk [J]. Procedia Environ Sci,2012,12432-438.
    [92] Li X S, Lu B S, Jiang H R. Production of Microbial Oils Fermented by Two-strainswith Corn Stalk [J]. Applied Mechanics and Mechanical Engineering Ii, Pts1and2,2012,138-139914-919.
    [93]李志勇,韩静,王蓓,等.河北省农作物秸秆综合利用现状及对策研究[J].中国农业信息,2012,(15):92-93.
    [94] Yan G H, Sun L, Xu M, et al. Experimental Research on Pyrolysis Process AboutCorn Stalk and Rice Husks [J]. Proceedings of the Asme Turbo Expo2008, Vol1,2008,369-375.
    [95]郭康权,杨中平,薛少平,杨林青.玉米秸秆颗粒燃料成型的试验研究[J].西北农业大学学报,1995,(02):106-108.
    [96] Wang Z W, Lei T Z, Yue Z H, et al. A comparison of biomass gasification andpyrolysis in three kinds of reactors using corn stalk pellets [J]. J Renew SustainEner,2012,4(3):
    [97]曹国良,张小曳,郑方成,等.中国大陆秸秆露天焚烧的量的估算[J].资源科学,2006,(01):9-13.
    [98]霍雨佳.焚烧秸秆易引发气象变化和环境污染[J].生命与灾害,2012,(07):26-27.
    [99]段凤魁,鲁毅强,狄一安,等.秸秆焚烧对北京市空气质量的影响[J].中国环境监测,2001,(03):8-11.
    [100]陈亮,赵兰坡,赵兴敏.秸秆焚烧对不同耕层土壤酶活性、微生物数量以及土壤理化性状的影响[J].水土保持学报,2012,(04):118-122.
    [101]张文芝.秸秆焚烧问题的经济学分析与对策[J].对外经贸,2012,(06):104-105.
    [102]王革华.实现秸秆资源化利用的主要途径[J].上海环境科学,2002,(11):651-653+661-691.
    [103]Huang P, Li Z Y, Zhai H M, et al. Alkali Extraction and Xylanase PretreatmentProperties of Corn Stalk Rind Pulp from Organic Acids Biorefinery [J].Proceeding of the4th International Conference on Pulping, Papermaking andBiotechnology (Icppb '12), Vols I and Ii,2012,486-489.
    [104]Zhao W, Zong Z M, Xu W J, et al. Direct Liquefaction of Corn Stalk in Sub-andSupercritical Methanol [J]. Energ Source Part A,2010,32(8):744-751.
    [105]Pang C S, Xie T J, Lin L, et al. Changes of the surface structure of corn stalk inthe cooking process with active oxygen and MgO-based solid alkali as apretreatment of its biomass conversion [J]. Bioresource Technol,2012,103(1):432-439.
    [106]Dong Y F, Yang R F, Lu J, et al. Characteristic of enzymatic hydrolysis of differentmorphological structure fractions of corn stalk [J]. J Biotechnol,2010,150S535-S536.
    [107] Dong Y F, Lu J, Jin H, et al. Comparison of Enzymatic Hydrolysis ofLeaves,Husks and Pith of Corn Stalk [J]. Future Materials Engineering andIndustry Application,2012,365240-244.
    [108]Fan Y T, Xing Y, Ma H C, et al. Enhanced cellulose-hydrogen production fromcorn stalk by lesser panda manure [J]. Int J Hydrogen Energ,2008,33(21):6058-6065.
    [109]马怀新.新能源与减碳[J].四川水力发电,2010,(S2):286-301.
    [110]强学彩.秸秆还田量的农田生态效应研究[D]:中国农业大学,2003.
    [111]李树龙,阎丽娜,宋英霞.玉米秸秆还田的作用、存在问题及对策[J].养殖技术顾问,2012,(08):235.
    [112]季陆鹰,葛胜,郭静,等.作物秸秆还田的存在问题及对策[J].江苏农业科学,2012,(06):342-344.
    [113]石增武,张道林,刘声春,等.玉米收获机茎秆切割铺放装置的设计与试验[J].农机化研究,2011,(12):113-115.
    [114]Langton M I, Smithers J C, Bezuidenhout C N, et al. Evaluation of the Illovomechanical cane cutter [J]. Int Sugar J,2007,109(1298):118-120.
    [115]Suryawanshi V, Thakur S S, Sharma A. Performance Evaluation of ExperimentalSelf-Propelled Double Row Sugarcane Harvester [J]. Ama-Agr Mech Asia Af,2013,44(3):80-88.
    [116]吴子岳,高焕文,陈君达.秸秆切碎灭茬机的模型研究与参数优化[J].农业机械学报,2001,(05):44-46.
    [117]Kakitis A, Nulle I, Ancans D. Geometric and Kinematic Parameters of BiomassCutter [J]. Eng Rur Develop,2012,251-256.
    [118]向家伟,杨连发,李尚平.小型甘蔗收获机根部切割器结构设计[J].农业机械学报,2008,(04):56-59.
    [119]Chattopadhyay P S, Pandey K P. Impact cutting behaviour sf sorghum stalk usinga flail-cutter-a mathematical model and its experimental verification [J]. J AgrEng Res,2001,78(4):369-376.
    [120]Xu C M, Wang C Y, Chen F, et al. The Measurement of Dynamic Stress for TheTop-cutter Machine of Cotton [J]. Mechanical Engineering and GreenManufacturing, Pts1and2,2010,1323-1327.
    [121]万其号.沙生灌木圆盘式切割器切割对比试验研究[D]:内蒙古农业大学,2007.
    [122]Sidahmed M M, Jaber N S. The design and testing of a cutter and feedermechanism for the mechanical harvesting of lentils [J]. Biosyst Eng,2004,88(3):295-304.
    [123]Lavoie F, D'Amours L, Savoie P. Development and field performance of a willowcutter-shredder-baler [J]. Conference: Agricultural Engineering2007,2007,2001311-316.
    [124]解福祥,于庆霞,闫象国,等.粗茎秆作物切割器设计与仿真分析[J].农业装备与车辆工程,2013,(06):17-20.
    [125]贾洪雷,王增辉,马成林,等.玉米秸秆切碎抛送装置的试验研究[J].农业机械学报,2003,(06):96-99.
    [126]吕勇.基于运动学仿真的单圆盘甘蔗切割器影响切割性能的机理研究[D]:广西大学,2007.
    [127]Ma F L, Li S P, He Y L, et al. Comprehensive evaluation of the cuttingperformance of sugarcane harvester based on fuzzy theory and neural network [J].Eighth International Conference on High-Performance Computing in Asia-PacificRegion, Proceedings,2005,443-448.
    [128]Lai X, Li S P, Ma F L, et al. Dynamical Analysis on Sugarcane Cutter RigidityEnhancement [J]. Advances in Mechanical Design, Pts1and2,2011,199-2001387-1390.
    [129]Li Y Z, Zhou Q, Wang W, et al. Optimal Design For cutting mechanism of theSugarcane planting [J]. Frontiers of Manufacturing and Design Science Iii, Pts1and2,2013,271-272589-593.
    [130]尹秋,王涛,张喜瑞,等.香蕉果梗切割力学特性试验[J].中国农机化学报,2013,(04):75-77.
    [131]罗海峰,汤楚宙,邹冬生,等.龙须草茎秆往复式切割试验研究[J].农业工程学报,2012,(02):13-17.
    [132]马永康.柠条切割机理及收割机切割器设计研究[J].山西农业大学学报,2006,(S2):119-122.
    [133]李景彬,葛云,朱江丽,等.棉秆切割性能的试验研究[J].甘肃农业大学学报,2011,(01):136-139.
    [134]宋芳.玉米收获机秸秆切碎刀的试验研究[D]:吉林农业大学,2011.
    [135]林茂,符新,梁栋,等.甘蔗切割器不同形状刀片切割力的仿真分析[J].西南农业学报,2011,(02):782-788.
    [136]林茂,李粤,廖宇兰,等.三种形状刀片的甘蔗切割器运动学仿真分析[J].机械设计与制造,2011,(12):234-236.
    [137]田波平,王静,廖庆喜,等.高粗茎秆农作物切割刀片试验研究[J].农机化研究,2006,(11):151-153.
    [138]李旭,舒彩霞,黄海东,等.高粗茎秆作物收割技术的研究进展[J].农机化研究,2010,(08):1-6.
    [139]韩正晟,粟震霄,魏宏安,等.齿形链式切割器的试验研究[J].农业工程学报,1998,(02):92-95.
    [140]温宝琴,高广娣,葛云,等.齿形链式切割器切割棉秆试验研究[J].农业机械,2012,(34):134-135.
    [141]孙永海,常振臣,李宝霖,等.大豆收割机圆盘式切割器切割参数的研究[J].农业机械学报,1999,(04):27-31.
    [142]Yoshioka T, Sugiura K, Inoue K. Application of a Sugarcane Harvester forHarvesting of Willow Trees Aimed at Short Rotation Forestry: an ExperimentalCase Study in Japan [J]. Croat J for Eng,2012,33(1):5-14.
    [143]赵湛,李耀明,徐立章,等.超级稻单茎秆切割力学性能试验[J].农业机械学报,2010,(10):72-75.
    [144]刘庆庭,区颖刚,卿上乐,等.甘蔗茎秆切割力试验[J].农业工程学报,2007,(07):90-94.
    [145]Takekoshi K, Gotoh M. Durability of cutting performance of a knife and micro-structural change of a knife edge [J]. Jsme Int J C-Mech Sy,2003,46(3):1151-1159.
    [146]李杰,阎楚良,杨方飞.基于虚拟样机技术的联合收获机切割机构的仿真[J].农业机械学报,2006,(10):74-76+135.
    [147]陈诚,俞国胜.灌木切割机理及设备研究[J].黑龙江农业科学,2010,(08):133-136.
    [148]陈诚.往复切割器式灌木平茬机切割力的研究[D]:北京林业大学,2011.
    [149]刘庆庭,区颖刚,卿上乐,等.光刃刀片切割甘蔗茎秆时根茬破坏力学分析[J].农业机械学报,2007,(09):51-54+62.
    [150]曹玉,刘伟峰,张欣达.玉米茎秆切割力影响因素试验研究[J].农机化研究,2012,(11):129-132+137.
    [151]江少杰.小型甘蔗收获机断尾机构创新设计与仿真试验分析[D]:广西大学,2007.
    [152]滕绍民,王泽群,李洋,等.切割方式与切割阻力的理论研究[J].农机化研究,2009,(05):89-90+96.
    [153]滕绍民.自走式青饲收割机不分行割台切割机理的研究[D]:中国农业机械化科学研究院,2004.
    [154]吕小荣.9LRZ-80型秸秆揉切机主要部件的分析研究[D]:新疆农业大学,2005.
    [155]程胜,任露泉.仿生技术在现代农业机械领域中应用现状[C].中国农业机械学会2008年学术年会,中国山东济南,2008:4.
    [156]李默.基于螳螂前足结构特征的仿生切茬刀片设计[D]:吉林大学,2013.
    [157]汲文峰.旋耕—碎茬仿生刀片[D]:吉林大学,2010.
    [158]蝗虫. http://baike.baidu.com/view/41292.htm?func=retitle [M].百度百科.
    [159]孙晓玲,任炳忠,赵卓,等.东北地区不同生境内蝗虫区系的比较[J].生态学杂志,2006,(03):286-289.
    [160]陈永林.蝗虫和蝗灾[J].生物学通报,1991,(11):9-12.
    [161]郑哲民.蝗虫的形态构造[J].生物学通报,1982,(02):29-31+28.
    [162]颜忠诚.昆虫的口器[J].生物学通报,2005,(09):9-12.
    [163]胡启山.昆虫“大嘴”吃四方——话说昆虫的食性、食相与口器[J].农药市场信息,2011,(25):52.
    [164]Costa A N, Vasconcelos H L, Vieira-Neto E H M, et al. Do herbivores exert top-down effects in Neotropical savannas? Estimates of biomass consumption by leaf-cutter ants [J]. J Veg Sci,2008,19(6):849-U814.
    [165]高吭,李玉柱,佟金,等.东方蝼蛄口器结构与表皮纳米力学性能研究[J].农业机械学报,2011,(08):224-227.
    [166]刘明,任东,谭京晶.昆虫口器及其进化简史[J].昆虫知识,2005,(05):587-592+607.
    [167]王晗,于非,陈荣洪,等.新疆草原七种蝗虫口器结构差异研究[J].昆虫知识,2010,(04):759-762.
    [168]雌雄同体的玉米. http://blog.sina.com.cn/s/blog_4b984a370102e7e8.html [M].
    [169]吴鸿欣.玉米秸秆收获关键技术与装备研究及数字化仿真分析[D]:中国农业机械化科学研究院,2013.
    [170]高梦祥,郭康权,杨中平,等.玉米秸秆的力学特性测试研究[J].农业机械学报,2003,(04):47-49+52.
    [171]Byrd M, Jameel H, Johnson W, et al. Chemical and pulping characteristics of cornstalk fractions [J]. New Technologies in Non-Wood Fiber Pulping andPapermaking,2006,5-8.
    [172]Wu J, Bai Q L, Su S B, et al. Near-infrared reflectance spectroscopy analysis ofcellulose content in corn stalk [J]. Chinese J Anal Chem,2005,33(10):1421-1423.
    [173]岳建芝,张杰,徐桂转,等.玉米秸秆主要成分及热值的测定与分析[J].河南农业科学,2006,(09):30-32.
    [174]Kocabiyik H, Polat R, Oktem A. Determination of Cutting Properties, Protein andMineral Content of Silage Corn Stalk [J]. Asian J Chem,2009,21(7):5580-5590.
    [175]刘庆庭,区颖刚,卿上乐,等.农作物茎秆的力学特性研究进展[J].农业机械学报,2007,(07):172-176.
    [176]陈声显.玉米秸秆力学模型及压缩成型设备研究[D]:吉林大学,2011.
    [177]张兴华.基于机器视觉的目标识别与测量算法的研究[D]:山东大学,2012.
    [178]闫海霞.基于数学形态学的图像边缘检测和增强算法的研究[D]:吉林大学,2009.
    [179]赵慧.基于数学形态学的图像边缘检测方法研究[D]:大连理工大学,2010.
    [180]夏萍,印崧,陈黎卿,等.收获机械往复式切割器切割图的数值模拟与仿真[J].农业机械学报,2007,(03):65-68.
    [181]Kakahy A N N, Ahmed D, Akhir M, et al. Effects of Feeding Angles and CuttingSpeeds of a Mower Knife with Serrated Edges on the Pulverization of SweetPotato Vines [J]. Advanced Materials Engineering and Technology,2012,626260-264.
    [182]Diao P S, Zhang D L, Zhang S X. Virtual Design and Kinematic Simulation forCutter of Corn Harvester [J]. I C Comp Aid Des Con,2008,313-317.
    [183]彭霞,曹杰,徐为民.西红柿收获机往复式切割器试验研究[J].农业机械,2009,(05):72-73.
    [184]陈霓,龚永坚,陈德俊,等.全喂入联合收获机双动刀切割器与驱动机构研究[J].农业机械学报,2008,(09):60-63+29.
    [185]杨树川.标准往复式切割器的工作性能研究[D]:西北农林科技大学,2005.
    [186]尹大庆.“割前脱”型联收机秸秆切割装置的试验研究[D]:东北农业大学,2006.
    [187]陈诚,俞国胜.往复式灌木切割器滑切角对灌木切割的影响[J].北京林业大学学报,2011,(02):115-119.
    [188]杨海,周海波,冯小川,等.锯齿形双圆盘切割器切割原理分析与仿真[J].农机化研究,2011,(09):23-26.
    [189]孟海波.秸秆切割破碎与揉切机刀片耐用性试验研究[D]:中国农业大学,2005.
    [190]廖庆喜,高焕文,舒彩霞.免耕播种机锯切防堵装置设计及其切割机理的研究(英文)[J].农业工程学报,2003,(05):64-70.
    [191]吴明亮,官春云,汤楚宙,等.油菜茎秆切割力影响因素试验[J].农业工程学报,2009,(06):141-144.
    [192]Jia H L, Li C Y, Zhang Z H, et al. Design of Bionic Saw Blade for Corn StalkCutting [J]. J Bionic Eng,2013,10(4):497-505.
    [193]Li X Z, Hao J J, Gao L, et al. Research on Cutter of Field Straw ChopperStrengthened with Flame Spray Welding [J]. Digital Manufacturing&AutomationIii, Pts1and2,2012,190-1911317-1320.
    [194]Chang S L, Tseng H C. Mathematical model development and fem analysis of aplastic rotary knife manufactured by a novel design cutter [J]. Proceedings of theFourth IASTED International Conference on Modelling, Simulation, andOptimization,2004,365-370.
    [195]Ye H W, Yada S, Chen H. A new measuring system of the cutting edge angle forfresh fish knife [J]. Nippon Suisan Gakk,2000,66(4):674-681.
    [196]McGorry R W, Dowd P C, Dempsey P G. Cutting moments and grip forces inmeat cutting operations and the effect of knife sharpness [J]. Appl Ergon,2003,34(4):375-382.
    [197]Marsot J, Claudon L, Jacqmin M. Assessment of knife sharpness by means of acutting force measuring system [J]. Appl Ergon,2007,38(1):83-89.
    [198]Stoyanov S, Hammer G F. Sharpening cutter knives [J]. Fleischwirtschaft,2010,90(9):103-105.
    [199]C. A, TA. D. THE ROLE OF KNIFE SHARPNESS IN THE SLITTING OFPLASTIC FILMS [J]. J Mater Sci,1996,31(5):1327-1334.
    [200]Liu L Q, Yao Z Q, Zhang X P, et al. Behavior of rubber cutting by a sharp cutter[J]. Advances in Engineering Plasticity and Its Applications, Pts1and2,2004,274-276481-486.
    [201]Nakanishi E, Maki S, Aoki M. Press cutting characteristics of plastic pipe by usingknife edge tool [J]. Advances in Abrasive Technology Xv,2012,565365-369.
    [202]Iskra P, Hernandez R E. Analysis of Cutting Forces in Straight-Knife PeripheralCutting of Wood [J]. Wood Fiber Sci,2012,44(2):134-144.
    [203]廖宜涛.基于有限元法的锯齿式芦竹切割器切割机理研究[D]:华中农业大学,2007.
    [204]李耀明,秦同娣,陈进,等.玉米茎秆往复切割力学特性试验与分析[J].农业工程学报,2011,(01):160-164.
    [205]Igathinathane C, Womac A R, Sokhansanj S. Corn stalk orientation effect onmechanical cutting [J]. Biosyst Eng,2010,107(2):97-106.
    [206]郭艳.盘刀式切碎器刀刃曲线对切割能耗的影响[J].吉林农业大学学报,2003,(01):107-110.
    [207]张世福,宋占华,闫银发,等.农作物秸秆切割试验台测控系统的研制与试验[J].农业工程学报,2013,(S1):10-17.
    [208]宋占华,肖静,张世福,等.曲柄连杆式棉秆切割试验台设计与试验[J].农业机械学报,2011,(S1):162-167.
    [209]佘永卫,杨树川.圆盘式茎秆切割试验台的设计[J].农机化研究,2005,(01):153-155+157.
    [210]马素玲.玉米秸杆揉切特性及其虚拟仪器测试系统的研究[D]:中国农业大学,2000.
    [211]唐忠,李耀明,徐立章,等.单茎秆切割试验台的设计与试验[J].农机化研究,2009,(12):141-143.
    [212]张光浩,张道林,陈延鑫,等.玉米茎秆切割能耗试验研究[J].农机化研究,2013,(01):169-172.
    [213]杜现军.棉秆力学特性研究与切割实验台的研制[D]:山东农业大学,2011.
    [214]沈成,陈巧敏,李显旺,等.双动刀苎麻茎秆切割试验台设计与试验[J].中国农机化学报,2013,(05):114-118+145.
    [215]邓玲黎,李耀明,徐立章,等.圆盘式玉米茎秆切割试验台的设计与切割过程分析[J].农机化研究,2013,(01):73-77.
    [216]李玉道.回转式棉花秸秆切割试验台的研制与试验研究[D]:山东农业大学,2012.
    [217]倪长安,蔺公振,姬江涛,等.圆盘切割器切割玉米茎秆的试验与分析[J].洛阳工学院学报,1995,(04):36-41.
    [218]Yao T, Duan G L, Cai J. Application of the TRIZ to circular saw blade [J]. GlobalDesign to Gain a Competitive Edge: An Holistic and Collaborative DesignApproach Based on Computational Tools,2008,447-456.
    [219]Jerro H D, Pang S S, Yang C, et al. Kinematics analysis of the chipping processusing the circular diamond saw blade [J]. J Manuf Sci E-T Asme,1999,121(2):257-264.
    [220]Yang J D, Luo Z P, Lu F, et al. Mechanical Analysis of Diamond Saw Blade [J].Key Eng Mater,2011,480-481539-545.
    [221]Zhou Y Z, Qiao D C, He G H, et al. Improvement of mechanical properties in asaw blade by electropulsing treatment [J]. Mater Lett,2003,57(9-10):1566-1570.
    [222]Yuan L. Influence of Radial Slots on the Vibration Characteristics of Circular SawBlade [J]. Vibration, Structural Engineering and Measurement Ii, Pts1-3,2012,226-228232-236.
    [223]张久雷,李志伟.香蕉假茎切割过程中的力学特性试验研究[J].农机化研究,2012,(05):174-177.
    [224]刘枫,罗罡,刘文亮.立辊式玉米收获机切割器的研究[J].价值工程,2011,(34):12-13.
    [225]de Toledo A, da Silva R P, Furlani C E A. Quality of cut and basecutter bladeconfiguration for the mechanized harvest of green sugarcane [J]. Sci Agr,2013,70(6):384-389.
    [226]马永康,张振国,边胤.柠条收割机切割器的设计与试验[J].农业机械学报,2007,(07):202-204+188.
    [227]贾瑞昌,赵华海.收获机械切割器的技术进展[J].广东农机,1999,(03):17-19.
    [228]刘庆庭,区颖刚,卿上乐,等.光刃刀片切割甘蔗茎秆破坏过程高速摄像分析[J].农业机械学报,2007,(10):31-35.
    [229]King M J. Knife and impact cutting of lamb bone [J]. Meat Sci,1999,52(1):29-38.
    [230]向家伟,杨连发,李尚平.小型甘蔗收获机切割器试验研究[J].农业工程学报,2007,(11):158-163.
    [231]Chabrier P, Martin P. An overview of methods for monitoring circular saw bladepreparation [J]. Holz Roh Werkst,1999,57(3):157-163.
    [232]Lai X, Li S P, Liang S, et al. Dynamical Simulation Analysis and ExperimentalStudy on a New Sugarcane Cutting Device [J]. Advances in MaterialsManufacturing Science and Technology Xiii, Vol Ii,2009,628-629335-340.
    [233]Xia Y M, Ouyang T, Zhang X M, et al. Mechanical model of breaking rock andforce characteristic of disc cutter [J]. J Cent South Univ,2012,19(7):1846-1852.
    [234]Schnaeckel W, Micklisch I, Krickmeier J, et al. Examinations for optimization ofcutting knifes-1. Improvement of cutting knife shapes for different meat products[J]. Fleischwirtschaft,2008,88(2):89-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700