用户名: 密码: 验证码:
耐药性癫痫患者脑组织和脑脊液中生物标记物的筛选及临床价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:耐药性癫痫患者脑组织中N-WASP及上、下游基因和蛋白表达的研究
     目的:研究神经元威斯科特-奥尔德里奇综合征蛋白(neuronal Wiskott-Aldrich syndrome protein,N-WASP)及上游分子细胞分裂周期42 GTP结合蛋白(cell division cycle 42 GTP-binding protein, Cdc42),下游分子肌动蛋白相关蛋白2/3 (actin-related protein 2/3, Arp2/3)在耐药性癫痫患者脑组织中的表达,探讨N-WASP在耐药性癫痫发病机制中的作用。
     方法:基因芯片扫描耐药性癫痫患者脑组织发现N-WASP显著升高后,分别用蛋白印迹、免疫组化及免疫荧光研究40例耐药性癫痫患者脑组织中N-WASP的表达,并分别用蛋白印迹、免疫组化及荧光研究其上、下游分子Cdc42、Arp2/3的表达,并与对照组进行比较。
     结果:基因芯片扫描显示N-WASP在耐药性癫痫组中明显增高(Cy5/Cy3=3.021),蛋白印迹示耐药性癫痫组脑组织中N-WASP相对灰度值0.9030±0.0492 (x±s),对照组脑组织为0.4320±0.0727 (x±s) (P<0.05)。免疫组化示N-WASP在耐药性癫痫患者组的OD值为0.384±0.072,比对照组0.143±0.046明显升高(P<0.05),免疫荧光与免疫组化结果一致。Cdc42在耐药性癫痫和对照组中的OD值分别为0.032±0.016,0.020±0.005 (P<0.05)。Arp2/3免疫印迹检测其在耐药性癫痫组和对照组中的灰度值分别为0.7765±0.0230,0.4986±0.0823,癫痫组明显增高(P<0.05)。以上结果显示N-WASP、Cdc42和Arp2/3在耐药性癫痫患者脑组织中表达显著上调。
     结论:N-WASP及其上游Cdc42,下游Arp2/3在耐药性颞叶癫痫患者脑组织中表达增高,提示该通路在耐药性颞叶癫痫的发生机制中可能有重要作用。
     第二部分耐药性癫痫患者脑脊液中生物标记物的筛选
     目的:研究耐药性颞叶癫痫患者脑脊液中差异蛋白的表达,通过与对照组比较,寻找耐药性癫痫患者脑脊液中的癫痫生物标记物。
     方法:运用双向凝胶电泳对两组脑脊液进行分离,图像分析后对差异点行液相色谱电喷雾串联质谱鉴定并进行数据库查询。对鉴定出来的蛋白质通过免疫印迹进行验证。
     结果:两组脑脊液中8个蛋白质点有显著差异表达(p<0.05) ,其中维生素D结合蛋白(vitamin D-binding protein, DBP)在耐药性癫痫患者中增高,而色素上皮衍生因子(pigment epithelium-derived factor, PEDF),组织蛋白酶D (cathepsin D, CTSD),gelsolin,载脂蛋白J (apolipoprotein J,apoJ ), Ras蛋白特异性鸟嘌呤核苷酸释放因子1(Ras protein-specific guanine nucleotide-releasing factor 1, RASGRF1 ), Fam3c和超氧化物歧化酶1 (superoxide dismutase 1,SOD1)在耐药性患者脑脊液中减少。另外6个蛋白点只在癫痫患者脑脊液胶图上出现,分别是四连结素(tetranectin,TN), talin-2,载脂蛋白E (apolipoprotein E, apoE),免疫球蛋白轻链lambda (immunoglobulin lambda light chain, IGL @ ),免疫球蛋白轻链kappa可变区1-5(immunoglobulin kappa variable light chain 1-5, IGKV1– 5)和胶原C肽链内切酶增强子1 (procollagen C-endopeptidase enhancer 1, PCOLCE)。免疫印迹分析DBP、SOD1和talin-2的表达证实了质谱鉴定的结果。
     结论:我们的研究结果提示耐药性癫痫患者脑脊液中存在着异常表达的癫痫生物标记物,该结果可能帮助我们更好的了解耐药性癫痫患者发病的病理生理机制。
PART ONE: EXPRESSION OF N-WASP AND ITS UPSTREAM AND DOWNSTREAM GENE AND PROTEIN EXPRESSION IN BRAIN TISSUE OF PATIENTS WITH DRUG-RESISTANT EPILEPSY
     Objective To investigate the expression of neuronal Wiskott-Aldrich syndrome protein (N-WASP), and its upstream elements cell division cycle 42 GTP-binding protein (Cdc42), downstream molecules actin-related protein 2/3 (Arp2 / 3) in the brain tissues obtained from patients with drug-resistant epilepsy and discuss their significances in epileptogenesis.
     Methods cDNA microarray scanning has shown that N-WASP significantly increased in brain tissue of patients with drug-resistant epilepsy. Western blot, immunohistochemistry and immunofluorescence were used to evaluate the expression of N-WASP, immunohistochemistry and immunofluorescence were used to evaluate the expression of its upstream regulator Cdc42. Western blot was used to detect its downstream effector Arp2/3 expression in 40 cases of drug-resistant epilepsy, respectively. Comparison was made with the control group.
     Results cDNA microarray result showed the Cy5/Cy3 ratio of N-WASP was 3.021. Western blot gray value was 0.9030±0.0492 ( x±s) in drug-resistant epilepsy group and 0.4320±0.0727 ( x±s) in control group (P<0.05). The immunohistochemistry OD value of epilepsy group was 0.384±0.072 ( x±s), and 0.143±0.046 ( x±s) for control group (P <0.05). The data of immunofluorescence analysis complied with the outcome of immunohistochemistry. OD values of Cdc42 in drug-resistant epilepsy group and control group were 0.032±0.016 ( x±s), 0.020±0.005 ( x±s), respectively (P <0.05). Gray value of Arp2 / 3 was 0.7765±0.0230 ( x±s) in case group, compared to 0.4986±0.0823 ( x±s) in control group (P <0.05). These results indicated that N-WASP, Cdc42 and Arp2 / 3 were upregulated in brain tissue of patient with drug-resistant epilepsy.
     Conclusions Overexpression of N-WASP and its upstream Cdc42, downstream Arp2 / 3 in patients with drug-resistant temporal lobe epilepsy, suggesting that this pathway may play an important role in the mechanisms of drug-resistant epilepsy.
     PART TWO: BIOMARKER SCREENING OF CEREBROSPINAL FLUID IN PATIENTS WITH DRUG-RESISTANT EPILEPSY
     Objective To investigate the proteomic changes of cerebrospinal fluid (CSF) in patient with drug-resistant epilepsy in order to discover cerebrospinal fluid biomarkers of epilepsy.
     Methods Two-dimensional gel electrophoresis followed by liquid chromatography electrospray ionization tandem mass spectrometry were used, these proteins were identified by database searching. Expression of some proteins was validated by western blot.
     Results Eight protein spots showed significant differential expression (p<0.05): vitamin D-binding protein (DBP) was elevated in the CSF of TLE patients whereas pigment epithelium-derived factor (PEDF), cathepsin D (CTSD), gelsolin, apolipoprotein J (apoJ), Ras protein-specific guanine nucleotide-releasing factor 1 (RASGRF1), Fam3c, and superoxide dismutase 1 (SOD1) were decreased in the CSF of TLE patients. Additional six protein spots presented only in the CSF of epilepsy patients were identified as tetranectin (TN), talin-2, apolipoprotein E (apoE), immunoglobulin lambda light chain (IGL@), immunoglobulin kappa variable light chain 1-5 (IGKV1-5), and procollagen C-endopeptidase enhancer 1 (PCOLCE). Expression of DBP、SOD1and talin-2 was validated by western blot.
     Conclusions Our results suggest that there exsist disease specific biomarkers of cerebrospinal fluid in patients with intractable epilepsy, which may provide better understanding of the pathophysiologic mechanisms underlying epileptogenesis.
引文
[1]吴江.神经病学[M].北京:人民卫生出版社,2005,277.
    [2]王学峰,晏勇.耐药性癫痫病人生活质量的调查[J].中国神经精神疾病杂志. 2002, 28(1):8~11.
    [3]王学峰,肖波,孙红斌.耐药性癫痫[M].上海:上海科学技术出版社,2002,28~29.
    [4] Matus A. Actin-based plasticity in dendritic spines [J]. Science. 2000,290(5492): 754~758.
    [5] Cavazos JE, Zhang P, Qazi R, et al. Ultrastructural features of sprouted mossy fiber synapses in kindled and kainic acid-treated rats [J]. J Comp Neurol. 2003,458(3):272~292.
    [6] Mueller BK. Growth cone guidance: first steps towards a deeper understanding [J]. Annu Rev Neurosci. 1999, 22: 351~388.
    [7] Koyama R, Ikegaya Y. Mossy fiber sprouting as a potential therapeutic target for eilepsy [J]. Curr. Neurovasc. Res. 2004, (1): 3~10.
    [8] Morimoto K, Fahnestock M, Racine, RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain [J]. Prog. Neurobiol. 2004, (1):1~60.
    [9] Hamani C, Mello LE. Spontaneous recurrent seizures and neuropathology in the chronic phase of the pilocarpine and picrotoxin model epilepsy[J]. Neurol. Res. 2002, (2): 199~209.
    [10] Leite JP, Neder L, Arisi GM, et al. Plasticity, synaptic strength, and epilepsy: what can we learn from ultrastructural data? [J] Epilepsia. 2005, 46 Suppl (5): 134~141.
    [11] Torres E, Rosen MK. Protein-tyrosine kinase and GTPase signals cooperate to phosphorylate and activate Wiskott-Aldrich syndrome protein (WASP)/neuronal WASP [J]. J Biol Chem. 2006, 281(6): 3513~3520.
    [12] Negishi M, Katoh H. Rho family GTPases and dendrite plasticity [ J ] . Neuroscientist. 2005, 11(3): 187~191.
    [13] Takenawa T. From N-WASP to WAVE: key molecules for regulation of cortical actin organization [J]. Novartis Found Symp.2005,269: 3~10.
    [14] Banzai Y, Miki H, Yamaguchi H, et al. Essential role of neural Wiskott-Aldrich syndrome protein in neurite extension in PC12 cells and rat hippocampal primary culture cells [J]. J. Biol. Chem. 2000, (16): 11987~11992.
    [15] Tsuchiya D, Kitamura Y, Takata K, et al. Developmental expression of neural Wiskott-Aldrich syndrome protein (N-WASP) and WASP family verprolin-homologous protein (WAVE)-related proteins in postnatal rat cerebral cortex and hippocampus[J]. Neurosci. Res. 2006, (4): 459~469.
    [16] Yu F, Guan Z, Zhuo M, et al. Further identification of NSF* as an epilepsy related gene[J]. Brain Res. Mol. Brain Res. 2002, (2): 141~144.
    [17] Akoev GN, Chalisova NI, Ludino MI, et al. Epileptiform activity increases the level of nerve growth factor in cerebrospinal fluid of epileptic patients and in hippocampal neurons in tissues culture[J]. Neuroscience. 1996, (2): 601~605.
    [18] Larner AJ. Axonal sprouting and synaptogenesis in temporal lobe epilepsy: possible pathogenetic and therapeutic roles of neurite growth inhibitory factors[J]. Seizure.1995,(4): 249~258.
    [19] Calabrese B,Wilson MS,Halpain S. Development and regulation of dendritic spine synapses [J]. Physiology-(Bethesda),2006,21: 38~47.
    [20] Kitamura Y, Tsuchiya D, Takata K, et al. Possible involvement of Wiskott-Aldrich syndrome protein family in aberrant neuronal sprouting in Alzheimer's disease [J]. Neurosci Lett. 2003, 346(3): 149~152.
    [21] Kjoller L, Hall A. Signaling to Rho GTPases[J]. Exp Cell Res. 1999, 253(1):166~179.
    [22] Yang N, Higuchi O, Ohashi K, et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization [J]. Nature. 1998, 393: 809~812.
    [23] Bokoch GM. Biology of the p21-activated kinases [J]. Annu Rev Biochem. 2003, 72: 743~781.
    [24] Takenawa T, Miki H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement [J]. J Cell Sci. 2001, 114(pt 10): 1801~1809.
    [25] Daub H, Gevaert K, Vandekerckhove J, et al. Rac/Cdc42 and p65PAK regulate the microtubuledestabilizing protein stathmin through phosphorylation at serine 16 [J]. J Biol Chem. 2001, 276: 1677~1680.
    [26] Erickson JW,Cerione RA. Multiple roles for Cdc42 in cell regulation [J]. Curr Opin Cell Biol. 2001,13(2): 153~157.
    [27] Disanza A, Steffen A, Hertzog M, et al. Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement [J]. Cell Mol Life Sci, 2005,62(9): 955~970.
    [28] Cheng CM, Mervis RF, Niu SL, et al. Insulinlike growth factor 1 is essential for normal dendritic growth [J]. J Neurosci Res.2003, 73: 1~9.
    [29] Nobes C, Hall A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia [J]. Cell. 1995, 81:53~62.
    [30] Kosma R, Ahmed S, Best A, et al. The ras-related protein Cdc42Hs and Bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts [J]. Mol Cell Biol. 1995, 15:1942~1952.
    [31] Chuang TH, Hahn KM, Lee JD, et al. The small GTPase Cdc42 initiates an apoptotic signaling pathway in Jurkat T lymphocytes [J]. Mol. Biol. Cell. 1997, 8(9): 1687~1698.
    [32] Semenova MM, Maki-Hokkonen AMJ, Cao J, et al. Rho mediates calcium-dependent activation of p38 alpha and subsequent excitotoxic cell death [J]. Nat Neurosci. 2007, 10(4):436~443.
    [33] Govek EE, Newey SE,Van-Aelst L. The role of the Rho GTPases in neuronal development [J]. Genes Dev. 2005,19(1): 1~49.
    [1]王学峰,肖波,孙红斌,主编.耐药性癫痫[M].上海:上海科技出版社,2003.21~23.
    [2] Wilkins MR, San chez JC, Gooley AA,et al. Progress with proteome projects:why all proteins expressed by a genome should be identified an d how to do it [J].Biotechno1.Genet.Eng.Rev.1996, 13:19~50.
    [3] Petricoin EF, Ardekani AM, Hit BA, et al. Use of proteomic paterns in serum to identify ovarian cancer [J]. Lancet. 2002, 359:572~577
    [4] Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men [J]. Cancer Res. 2002, 62:3609~3614
    [5] Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer [J]. Nat Rev Cancer. 2003, 3: 267~275
    [6] Schoonenboom NS,Pijnenburg YA,Mulder C,et a1.Amyloid beta(1-42) and phosphorylated tau in CSF as markers for early-onset Alzheimer disease [J]. Neurology.62(9):1580~1584
    [7] Hammack BN,Fung KY,Hunsucker SW,et a1.Proteomic analysis of multiple sclerosis cerebrospinal fluid [J]. Multi Scler.2004, 10(3):245~260
    [8] Czech T, Yang JW, Csaszar E, et al. Reduction of hippocampal collapsin response mediated protein-2 in patients with mesial temporal lobe epilepsy [J]. Neurochem.Res. 2004, (29):2189~2196
    [9] Eun JP, Choi HY, Kwak YG., et al. Proteomic analysis of human cerebral cortex in epileptic patients [J]. Exp. Mol. Med. 2004, 36: 185~191.
    [10] Yang JW, Czech T, Yamada J, et al. Aberrant cytosolic acyl-CoA thioester hydrolase in hippocampus of patients with mesial temporal lobe epilepsy [J]. Amino Acids. 2004, 27: 269~275
    [11] He S, Wang Q, He J, et al. Proteomic analysis and comparison of the biopsy and autopsy specimen of human brain temporal lobe [J]. Proteomics. 2006, 18: 4987~4996.
    [12] Yang JW, Czech T, Felizardo M, et al. Aberrant expression of cytoskeletonproteins in hippocampus from patients with mesial temporal lobe epilepsy [J]. Amino Acids. 2006, 30: 477~493.
    [13] Greene ND, Bamidele A, Choy M, et al. Proteome changes associated with hippocampal MRI abnormalities in the lithium pilocarpine-induced model of convulsive status epilepticus [J]. Proteomics. 2007, 7: 1336~1344
    [14] Jiang W, Du B, Chi Z, et al. Preliminary explorations of the role of mitochondrial proteins in drug-resistant epilepsy: some findings from comparative proteomics [J]. J. Neurosci. Res. 2007, 85: 3160~3170
    [15] Liu XY, Yang JL, Chen LJ, et al. Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy [J]. Proteomics. 2008, 8: 582~603
    [16] Seino M. Classification criteria of epileptic seizures and syndromes [J]. Epilepsy Res. 2006, 70 (Suppl 1): S27~33.
    [17] Armstead WM, Mirro R, Leffer CW, et al. Cerebral superoxide anion generation during seizures in newborn pigs [J]. J Cereb Blood Flow Metab. 1989, 9: 175~179.
    [18] Oliver CN, Starke-Reed PE, Stadtman ER, et al. Oxidative damage to brain proteins, loss of glutamine synthetase activity and production of free radicals during ischemia/riperfusion induced injury to gerbil brain [J]. Proc Natl Acad Sci U.S.A. 1990, 87: 5144~5147.
    [19] Sudha K, Rao AV, Rao A. Oxidative stress and antioxidants in epilepsy [J]. Clin Chim Acta. 2001, 303: 19~24.
    [20] Corbett JM, Dunn MJ, Posch A, et al. Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilized pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison [J]. Electrophoresis. 1994, 15:1205~1211.
    [21] Klose J, Kobalz U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome [J]. Electrophoresis. 1995, 16:1034~1059
    [22] Strausberg RL, Feingold EA, Grouse LH, at al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences [J]. Proc Natl Acad Sci USA. 2002, 99(26): 16899~16903.
    [23] Stoevring B, Jaliashvili I, Thougaard AV, et al. Tetranectin in cerebrospinal fluid of patients with multiple sclerosis [J]. Scand J Clin Lab Invest. 2006, 66(7): 577~583.
    [24] Liu XD, Zeng BF, Xu JG, et al. Proteomic analysis of the cerebrospinal fluid of patients with lumbar disk herniation [J]. Proteomics. 2006, 6(3):1019~1028
    [25] Westergaard UB, Andersen MH, Heegaard CW, et al. Tetranectin binds hepatocyte growth factor and tissue-type plasminogen activator [J]. Eur J Biochem. 2003, 270(8):1850~1854
    [26] Dietzmann K, von-Bossanyi P, Krause D, et al. Expression of the plasminogen activator system and the inhibitors PAI-1 and PAI-2 in posttraumatic lesions of the CNS and brain injuries following dramatic circulatory arrests: an immunohistochemical study [J]. Pathol Res Pract. 2000, 196(1): 15~21
    [27] Iba K, Sawada N, Chiba H, et al. Transforming growth factor-beta 1 downregulates dexamethasone-induced tetranectin gene expression during the in vitro mineralization of the human osteoblastic cell line SV-HFO [J]. FEBS Lett. 1995, 373(1): 1~4
    [28] Wewer UM, Ibaraki K, Schjorring P,et al. A potential role for tetranectin in mineralization during osteogenesis [J]. J Cell Biol. 1994, 127(6 Pt 1): 1767~1775.
    [29] Wewer UM, Iba K, Durkin ME, et al. Tetranectin is a novel marker for myogenesis during embryonic development, muscle regeneration, and muscle cell differentiation in vitro. Dev Biol[J]. Eur J Biochem. 2003, 270(8): 1850~1854
    [30] Majores M, Schoch S, Lie A, et al. Molecular neuropathology of temporal lobe epilepsy: complementary approaches in animal models and human disease tissue [J]. Epilepsia. 2007,48 Suppl (2):4~12
    [31] Beausoleil SA, Villen J, Gerber SA,et al. A probability-based approach for high-throughput protein phosphorylation analysis and site localization [J]. Nat Biotechnol. 2006,24 (10): 1285~1292
    [32] Senetar MA, McCann RO. Gene duplication and functional divergence during evolution of the cytoskeletal linker protein talin [J].Gene. 2005, 362:141~152.
    [33] Gee JR, Keller JN. Astrocytes: regulation of brain homeostasis via apolipoprotein E [J]. Int J Biochem Cell Biol. 2005, 37(6): 1145~1150
    [34] Michikawa M. The role of cholesterol in pathogenesis of Alzheimer's disease: dual metabolic interaction between amyloid beta-protein and cholesterol [J]. Mol Neurobiol. 2003, 27(1): 1~12
    [35] Davidsson P, Westman-Brinkmalm A, Nilsson CL, et al. Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients [J]. Neuroreport. 2002, 13(5):611~615
    [36] Riemenschneider M, Schmolke M, Lautenschlager N, et al. Association of CSF apolipoprotein E, Abeta42 and cognition in Alzheimer's disease [J]. Neurobiol Aging. 2002, 23(2):205~211
    [37] Chaix Y, Laguitton V, Lauwers-Cances V, et al. Reading abilities and cognitive functions of children with epilepsy: influence of epileptic syndrome [J]. Brain Dev. 2006, 28(2): 122~130.
    [38] Soria C, El-Sabbagh S, Escolano S, et al. Quality of life in children with epilepsy and cognitive impairment: a review and a pilot study [J]. Dev Neurorehabil. 2007, 10(3): 213-221
    [39] Klobeck HG, Solomon A, Zachau HG. Contribution of human V kappa II germ-line genes to light-chain diversity [J]. Nature. 1984, 309(5963):73~76
    [40] Vasicek TJ, Leder P. Structure and expression of the human immunoglobulin lambda genes [J]. J Exp Med. 1990, 172(2):609~620
    [41] Billiau AD, Wouters CH, Lagae LG. Epilepsy and the immune system: is there a link? [J] Eur J Paediatr Neurol. 2005, 9(1): 29~42
    [42] Whitney KD, Andrews PI, McNamara, JO. Immunoglobulin G and complement immunoreactivity in the cerebral cortex of patients with Rasmussen's encephalitis [J]. Neurology. 1999, 53(4): 699~708
    [43] Mikati MA, Saab R. Successful use of intravenous immunoglobulin as initial monotherapy in Landau-Kleffner syndrome [J]. Epilepsia. 2000, 41(7): 880~886.
    [44] Montelli TC, Soares AM, Peracoli MT. Immunologic aspects of West syndrome and evidence of plasma inhibitory effects on T cell function. Arq Neuropsiquiatr [J]. 2003, 61(3B): 731~737.
    [45] Tanaka Y, Nishida H,Yamada O, et al. Intrathecal glutamate receptor antibodies in a patient with elderly-onset drug-resistant epilepsy [J]. Rinsho Shinkeigaku. 2003, 43(6): 345~349
    [46] Ranua J, Luoma K, Auvinen A, et al. Serum IgA, IgG, and IgM concentrations in patients with epilepsy and matched controls: a cohort-based cross-sectional study [J]. Epilepsy Behav. 2005, 6(2): 191~195
    [47] Takahara K, Kessler E, Biniaminov L, et al. Type I procollagen COOH-terminal proteinase enhancer protein: identification, primary structure, and chromosomal localization of the cognate human gene PCOLCE [J]. J Biol Chem.1994,269(42):26280~26285
    [48] Kessler-Icekson G, Schlesinger H, Freimann S, et al. Expression of procollagen C-proteinase enhancer-1 in the remodeling rat heart is stimulated by aldosterone [J]. Int J Biochem Cell Biol. 2006,38(3): 358~365
    [49] Steiglitz BM, Kreider JM, Frankenburg EP, et al. Procollagen C proteinase enhancer 1 genes are important determinants of the mechanical properties and geometry of bone and the ultrastructure of connective tissues [J]. Mol Cell Biol. 2006,26(1): 238~249
    [50] Veznedaroglu E, Van-Bockstaele EJ, O'Connor, MJ. Extravascular collagen in the human epileptic brain: a potential substrate for aberrant cell migration in cases of temporal lobe epilepsy [J]. J Neurosurg. 2002, 97(5): 1125~1130
    [51] Speeckaert M, Huang G, Delanghe, JR, et al. Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism [J]. Clin Chim Acta. 2006, 372(1): 33~42
    [52] Zeng LH, Xu L, Rensing NR, et al. Kainate seizures cause acute dendritic injury and actin depolymerization in vivo [J]. J Neurosci. 2007, 27(43): 11604-11613
    [53] Meldrum BS. Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives [J]. Prog Brain Res. 2002, 135: 3~11
    [54] Iizuka H, Awata T, Osaki M, et al. Promoter polymorphisms of the pigment epithelium-derived factor gene are associated with diabetic retinopathy [J]. Biochem Biophys Res Commun. 2007, 361(2): 421~426
    [55] Rigau V, Morin M, Rousset MC, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy [J]. Brain. 2007,130(7):1942~1956
    [56] Riemenschneider M, Blennow K, Wagenpfeil S, et al. The cathepsin D rs17571 polymorphism: effects on CSF tau concentrations in Alzheimer disease [J]. Hum Mutat. 2006, 27(6): 532~537
    [57] Papassotiropoulos A, Lewis HD, Bagli M, et al. Cerebrospinal fluid levels of beta-amyloid(42) in patients with Alzheimer's disease are related to the exon 2 polymorphism of the cathepsin D gene [J]. Neuroreport. 2002, 13(10): 1291~1294
    [58] Mole SE, Zhong NA, Sarpong A, et al. New mutations in the neuronal ceroid lipofuscinosis genes [J]. Eur J Paediatr Neurol. 2001, 5 (Suppl A): 7~10
    [59] Zhu Y, Xu G, Patel A, et al. Cloning, expression, and initial characterization of a novel cytokine-like gene family [J]. Genomics. 2002, 80(2):144~150
    [60] Pilipenko VV, Reece A, Choo DI, et al. Genomic organization and expression analysis of the murine Fam3c gene [J]. Gene. 2004, 335: 159~168
    [61] Mauri P, Scarpa A, Nascimbeni AC, et al. Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers [J]. FASEB-J. 2005, 19(9): 1125~1127
    [62] Kiyono M, Kato J, Kataoka T, et al. Stimulation of Ras guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm) upon tyrosine phosphorylation by the Cdc42-regulated kinase ACK1 [J]. J Biol Chem. 2000, 275(38): 29788~29793
    [63] Robinson KN, Manto K, Buchsbaum RJ, et al. Neurotrophin-dependent tyrosine phosphorylation of Ras guanine-releasing factor 1 and associated neurite outgrowth is dependent on the HIKE domain of TrkA [J]. J Biol Chem. 2005,280(1): 225~235
    [64] Krapivinsky G, Krapivinsky L, Manasian Y, et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1 [J]. Neuron. 2003, 40(4): 775~784
    [65] Skvortsova VI, Limborskaia SA, Slominski? PA, et al. Association of homozygosity for short allele(S) of heavy neurofilament subunit gene with motor neuron disease and oxidative stress development [J]. Zh Nevrol Psikhiatr Im S S Korsakova. 2003, 103: 38~44
    [66] Costello DJ, Delanty N. Oxidative injury in epilepsy: potential for antioxidant therapy? [J] Expert Rev. Neurother. 2004, 4: 541~553.
    [67] Kim H, Bing G, Jhoo, W, et al. Changes of hippocampal Cu/Zn-superoxide dismutase after kainate treatment in the rat [J]. Brain Res. 2000, 853: 215~226.
    [68] Erakovic V, Zupan G, Varljen J, et al. Electroconvulsive shock in rats: changes in superoxide dismutase and glutathione peroxidase activity [J]. Brain Res. Mol. Brain Res. 2000, 76: 266~274
    [69] Ben-Menachem E, Kyllerman M, Marklund S. Superoxide dismutase and glutathione peroxidase function in progressive myoclonus epilepsies [J]. Epilepsy Res.2000, 40: 33~39
    [70] Suzuki T, Tozuka M, Kazuyoshi Y, et al. Predominant apolipoprotein J exists as lipid-poor mixtures in cerebrospinal fluid [J]. Ann Clin Lab Sci. 2002,32(4):369~376
    [71] Wiggins AK, Shen PJ, Gundlach, AL. Delayed, but prolonged increases inastrocytic clusterin (ApoJ) mRNA expression following acute cortical spreading depression in the rat: evidence for a role of clusterin in ischemic tolerance [J]. Brain Res Mol Brain Res. 2003 114(1): 20~30
    [72] Cole GM, Beech W, Frautschy SA, et al. Lipoprotein effects on Abeta accumulation and degradation by microglia in vitro [J]. J Neurosci Res. 1999, 57(4):504~520
    [73] Yuan X, Desiderio DM. Proteomics analysis of phosphotyrosyl-proteins in human lumbar cerebrospinal fluid [J]. J Proteome Res. 2003, 2(5): 476~487
    [74] Silacci P, Mazzolai L, Gauci C, et al. Gelsolin superfamily proteins: key regulators of cellular functions [J]. Cell Mol Life Sci. 2004,61(19-20): 2614~2623
    [75] Kangas H, Paunio T, Kalkkinen N, et al. In vitro expression analysis shows that the secretory form of gelsolin is the sole source of amyloid in gelsolin-related amyloidosis [J]. Hum Mol Genet. 1996, 5(9): 1237~1243
    [76] Chang TH, Szabo E. Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor gamma in non-small cell lung cancer [J]. Cancer Res. 2000, 60(4): 1129~1138
    [77] Furukawa K, Fu W, Li Y, et al. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons [J]. J Neurosci. 1997, 17(21): 8178~8186
    [78] Merchant M. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry [J]. J Electrophoresis. 2000, 21:1164~1177.
    [79] Tao WA, Aebersold R. Advances in quantitative proteomics via stable isotope tagging and mass spectrometry [J]. Curr Opin Biotechnol. 2003, 14(1):110~118
    [80] Bantscheff M, Schirle M, Sweetman G, et al. Quantitative mass spectrometry in proteomics: a critical review[J]. Anal Bioanal Chem. 2007, 389(4):1017~1031.
    [1] Wilkins MR,San chez JC,Gooley AA,et al. Progress with proteome projects:why all proteins expressed by a genome should be identified an d how to do it [J].Biotechno1.Genet.Eng.Rev.1996, 13:19~50.
    [2] O’Farrell PH. High resolution two-dimensional gel electrophoresis of proteins [J]. J. Biol. Chem. 1975, 250: 4007~4021.
    [3] Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissue: a novel approach to testing for induced point mutations in mammals [J]. Human genetic. 1975, 26:231~243.
    [4] Anderson NG, Anderson L. The human protein index [J]. Clin. Chem. 1982, 28: 739~748
    [5] Wasinger VC, Garry L, Corthals GL. Proteomic tools for biomedicine [J]. J . Chromatography. 2002, 771: 33~48
    [6] Biellqvist B, Ek K, Righetti PG, et al. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications [J]. J Biochem Biophys Methods. 1982, 6: 317~339
    [7] Righetti PG, Bossi A. Isoelectric focusing in immobilized pH gradients: an update [J]. J Chromatogr B Biomed Sci Appl. 1997, 699: 77~89.
    [8] Merchant M. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry [J]. J Electrophoresis. 2000, 21:1164-1177
    [9]马增春,高月,吕俊萍,等.双向凝胶电泳中三种蛋白质检测方法的比较[J].中国生物化学与分子生物学报. 2004,20(4):551~556.
    [10] Smyth WF,Brooks P.A critical evaluation of HPLC-ESI-MS and CE-ESI-MS for the detection and determination of small molecules of significance in clinical and forensic science [J].Electrophores,2004,25 :1413~1446.
    [11] Kathryn S. Fingerprinting disease with protein chip assays [J]. J Mol Med Today. 1999, 5: 326~327
    [12] Petricoin EF, Ardekani AM, Hit BA, et al. Use of proteomic paterns in serum to identify ovarian cancer [J]. Lancet. 2002, 359:572~577
    [13] Adam BL, Qu Y, Davis JW, et al. Serum protein fingerprinting coupled with apatern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men [J]. Cancer Res. 2002, 62:3609~3614
    [14] Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer [J]. Nat Rev Cancer. 2003, 3: 267~275
    [15] Wang H,Hanash s.Multi-dimensional liquid phase based separations in proteomics [J].Journal of Chromatography B. 2003,787:8~11.
    [16] Fonteh AN,Harrington RJ,Huhmer AF,et a1.Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods [J].Dis Markers. 2006,22(1):39~64.
    [17] Yuan x,Desiderio DM.Proteomics analysis of human cerebrospinal fluid [J].J Chromatogr B Analyt Technol Biomed Life Sci. 2005,815(2):179~189.
    [18] Raymackers J , Daniels A , De Brabandere V , et a1 . Identification of two-dimensionally separated human cerebrospinal fluid proteins by N-terminal sequencing, matrix-assisted laser desorption / ionizationmass spectrometry , nanoliquid chromatography-electrospray ionization-time of flight-mass spectrometry,and tandem mass spectrometry [J].Electrophoresis. 2000,21(11):2266~2283.
    [19]任仙文,李北平,王月兰,等.蛋白质相互作用的生物信息学研究进展[J].生物技术通讯. 2006,17(6):976~980
    [20] Lamerz J, Selle H, Scapozza L, et al. Correlation-associated peptide networks of human cerebrospinal fluid [J]. Proteomics. 2005, 11:2789~98
    [21]张旭华,刘师莲,靖永胜.人类脑脊液蛋白质组学研究[J],中华神经医学. 2005,4(12): 1279~1281
    [22] Davidsson P,Folkesson S,Christiansson M,et al. Identification of proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing as a prefractionation step followed by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation mass spectrometry[J].Mass Spectrom. 2002,1 6(22):2083~2089
    [23] Yuan X,Desiderio DM.Proteomics analysis of prefractionated human lumbar cerebrospinal fluid[J].Proteomics. 2005,5(2):541~550
    [24] Schoonenboom NS,Pijnenburg YA,Mulder C,et a1.Amyloid beta(1-42) and phosphorylated tau in CSF as markers for early-onset Alzheimer disease [J]. Neurology.62(9):1580~1584
    [25] Davidsson P,Paulson L,Hesse C,et a1.Proteome studied of human cerebrospinal eletrophoresis approach prior to mass spectrometry[J].Proteomics. 2001,1(3):444~452.
    [26] Puchades M,Hansson SF,Nilszon CL,et a1.Proteome studies of potential cerebrospinal fluid protein markers for Alzheimer disease[J].Brain Res Mol. 2003,118(2):140~146.
    [27] Carrette O,Demaite I,Scherl A ,et a1.A panel of cerebrospinal fluid potential biomarkers for the diagnosis of Alzheimer's disease [J]. Proteomics.2003, 3(8):1486~1494
    [28] Zhou G, Shoji H, Yamada S, et al. Decreased beta-phenylethylamine in CSF in Parkinson's disease [J]. Neurol Neruosurg Psychiatry. 1997, 63(6):754~775
    [29]张玉平,彭国光.帕金森病患者脑脊液蛋白质的双向凝胶电泳图谱初步分析[J].中国神经精神疾病杂志. 2006, 32(4):336~339
    [30] Hammack BN,Fung KY,Hunsucker SW,et a1.Proteomic analysis of multiple sclerosis cerebrospinal fluid [J]. Multi Scler.2004, 10(3):245~260
    [31] Irani DN,Anderson C,Gundry R,et a1.Cleavage of cystatin C in the cerebrospinal fluid of patients with multiple sclerosis [J]. Ann Neuro1.2006 59 (2):237~247
    [32] Davidsson P, Sjogren M,Andreasen N,et a1.Studies of the pathophysiological mechanisms in frontotemporal dementia by proteome analysis of CSF proteins [J]. Brain Res Mol Brain Res.2002, 109(2):128~133.
    [33] Piubelli C,Fiorini M,Zanusso G,et a1.Searching for markers of Creutzfeldt-Jakob disease in cerebrospinal fluid by two-dimensional mapping [J]. Proteomics.2006 Suppl (1):S256~61.
    [34] Choe LH,Green A,Knight RS,et a1.Electeophoresis.Apolipoprotein E and other cerebrospinal fluid proteins differentiate ante mortem variant Creutzfeldt-Jakob disease from ante mortem sporadic Creutzfeldt-Jakob disease [J]. 2002, 23(14):2242~2246
    [35] Pasinetti GM,Ungarl JH,Lange DJ,et a1.Identification of potential CSF biomarkers in ALS [J]. Neurology.2006, 66(8):1218~1222
    [36] Zheng PP,Luider TM,Pieters R.Identification of tumor-related proteins by proteomic analysis of cerebrospinal fluid from patients with primary brain tumors[J].Neuropathol Exp Neurol. 2003,62(8):855~862.
    [37] Tao WA, Aebersold R. Advances in quantitative proteomics via stable isotope tagging and mass spectrometry [J]. Curr Opin Biotechnol. 2003, 14(1):110~118
    [38] Bantscheff M, Schirle M, Sweetman G, et al. Quantitative mass spectrometry in proteomics: a critical review[J]. Anal Bioanal Chem. 2007, 389(4):1017~1031.
    [39] Gevaert K, Impens F, Ghesquière B, et al. Stable isotopic labeling in proteomics [J]. Proteomics. 2008, 8(24):4873~4885

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700